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Abstract: In the railway industry, the rail is the basic load-bearing structure of railway tracks. The
prediction of the remaining useful life (RUL) for rails is important to avoid unexpected system
failures and reduce the cost of maintaining the system. However, the existing detection of rail flaws is
difficult, the rail deterioration mechanisms are diverse, and the traditional data-driven methods have
insufficient feature extraction. This causes low prediction accuracy. With objectives set in relation to
the problems outlined above, a rail RUL prediction approach based on a convolutional bidirectional
long- and short-term memory neural network with a residual self-attention (CNNBiLSTM-RSA)
mechanism is designed. Firstly, the pre-processed vibration data are taken as the input for the
convolutional bi-directional long- and short-term memory neural network (CNNBiLSTM) to extract
the forward and backward dependencies and features of the rail data. Secondly, the RSA mechanism
is introduced in order to obtain the contributions of the features at different moments during the
degradation process of the rail. Finally, an end-to-end RUL prediction implementation based on
the convolutional bi-directional long- and short-term memory neural network with the residual
self-attention mechanism is established. The experiments were carried out using the full life-cycle
data of rails collected at the railway site. The results show that the method achieves a higher accuracy
in the RUL prediction of rails.

Keywords: heavy duty; trains rail; deep learning; lifetime prediction

1. Introduction

Because of the significant capacity, high efficiency, energy consumption, and low
transport costs of heavy rail transport, it is both widely used and valued in different
countries across the world. Rail transport has been internationally recognized as the
direction of development for bulk cargo transport, especially in China due to its vast,
uneven distribution of resources across the country [1,2]. However, with the increase in
train speeds and railway capacity, railway defects and even failures occur frequently. The
type of railway section fault in mountainous areas has also changed from the previous
type of rail fault—which is based on the side grinding of the upper strand of the curve, the
thick edge of the lower strand, and the abrasion of the rail on the long gradient—to the rail
defect—which is based on stripping off the blocks, cracks, and abrasions. The rail is an
essential part of the line equipment, directly bearing the rolling stock load, so the service
state of the rail directly affects the operational state of the heavy railway. Therefore, it is
essential for the operation of heavy railways to accurately detect the operating condition of
rails and predict their RUL [3].

The RUL of rails is realized via feature extraction, construction of life prediction
models, and other techniques based on current or historical inspection data and other
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information. Therefore, the research focus, when considering RUL, is on how to use data-
processing and -mining techniques to construct suitable models and extract typical features
from rail data. Residual life prediction models are generally classified as physical model
methods, statistical model methods, and data-driven methods [4]. The physical modeling
approach assesses the health of a system through the construction of mathematical models
based on failure mechanisms or first principles of damage [5]. Li et al. [6] proposed a
numerical model based on the simulation of rail profile wear, which, by applying improved
models such as Kalker’s non-Hertzian contact, simulated the shape of the worn rail profile
in general agreement with the field measurements. Wang et al. [7] developed a numerical
model of vehicle track based on the multi-body dynamics and the improved Archard wear
formula, and a numerical model of vehicle trajectory was developed to characterize the
development of high rail-side wear in a heavily trafficked transport track. This approach
is highly descriptive as system degradation modeling relies on natural laws. However,
the method suffers from problems, such as high cost and complexity of implementation,
and is not readily accepted in engineering practice [8]. The statistical modeling method is
based on historical data and statistical learning, which builds a prediction model by fitting
and analyzing historical data to predict the RUL. Xu et al. [9] used an inverse Gaussian
(IG) stochastic process to establish a structural resistance degradation model, which was
updated in real time using the Bayesian updating theory and demonstrated the feasibility of
the method with numerical examples. Due to the irregularity of the track structure damage,
it is very difficult to establish the exact mathematical statistics in practical applications, and
the dynamic characteristics of the machine cannot be taken into account.

In recent years, neural network methods, like convolutional neural networks
(CNNs) [10,11] and recurrent neural networks (RNNs), have become the most commonly
used data-driven-based methods [12]. By extracting features, they reveal potential cor-
relations and causal relationships between the collected data and the health state of the
machinery and provide an end-to-end solution for solving the RUL prediction problem [13].
Therefore, these data-driven approaches have gradually become mainstream in recent
years. The long short-term memory network (long short-term memory, LSTM) [14] and
its variants have all been successfully adapted to the field of RUL prediction in succession.
Ma et al. [15] introduced a deep neural network based on a convolutional long short-term
memory (CLSTM) network, which contains the time-frequency information as well as the
temporal information of the signal. This network retains the advantages of LSTM and
incorporates time-frequency features to accurately predict RUL. However, the LSTM only
predicts future data by capturing past data. Bi-directional long short-term memory (BiL-
STM) simultaneously acquires future and past information, demonstrating better qualities
in RUL prediction [16]. Zhao et al. [17] used a BiLSTM neural network to learn intrinsic fea-
tures in both directions and improved the fault recognition accuracy. Li et al. [18] proposed
a multi-branch improved convolutional network (MBCNN)-BiLSTM model for predicting
bearing RUL. MBCNN achieves spatial feature extraction of orientation input data, and
then BiLSTM further mines the temporal features of the data, thus improving the prediction
accuracy of bearing RUL. Sun et al. [19] proposed a complete ensemble empirical mode
decomposition (CEEMD)-CNN-LSTM model, which was experimentally verified to have
higher prediction accuracy than single CNN and LSTM. The above study shows that fully
extracting data features can improve the prediction performance and achieve better predic-
tion accuracy. Although CNNs and LSTM can extract data features well, they are not fully
suitable for rail vibration signals, because CNN is deficient in temporal feature extraction
and LSTM is deficient in local feature extraction. In contrast, combining the two can make
better use of the advantages of both, thus improving the ability of feature extraction.

Due to the special characteristics of the existing rail inspection, the full life-cycle data
of rail injury and damage have the characteristics of low frequency and long time span,
and at the same time, it is difficult and costly to explore the failure mechanism of rails
involving complex wheel–rail relationship problems. In addition, a series of problems,
such as gradient explosion and disappearance, and large memory occupation, have not
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been properly solved during the process of model training. Meanwhile, if the prediction
accuracy is not enough, it may cause significant economic damage and casualties. This
poses a challenge to deep learning-based RUL prediction for railway tracks.

In recent years, attention has arguably become one of the most important concepts in
the field of deep learning. With the development of deep neural networks, the attention
mechanism has been widely used in various application areas [20]. It has been shown that
the attention mechanism has better access to the extracted feature information [21]. Mnih
et al. [22] proposed an attention mechanism to solve problems such as gradient vanishing
and gradient explosion. The method calculates different weights given to different features
of the model. Liu et al. [23] proposed an end-to-end RUL prediction method based on
feature-attention, which applies the proposed feature-attention mechanism directly to the
input data so as to dynamically assign greater weights to more important features during
training, thereby improving the prediction performance. The residual connection can en-
hance the gradient propagation, thus solving the problem of the increase in network depth
that can easily cause gradient disappearance and gradient explosion [24]. Xu et al. [25]
proposed a CNN-LSTM-Skip model to estimate the State of Health (SOH) of lithium-ion
batteries. Jump connections were added to the Convolutional Neural Network–Long
Short-Term Memory (CNN-LSTM) model in order to solve the problem of neural network
degradation caused by multilayer LSTM. Cao et al. [26] presented a temporal convolutional
network–residual self-attention mechanism (TCN-RSA), where the RSA scans through the
global information and discovers local useful information, thus achieving the function of
enhancing useful information and suppressing redundant information. The above method
provides ideas for solving the problem of defects in rail inspection data.

This paper presents a new approach to deriving the RUL of railway rails from the
vibration information caused by wave abrasion and other injuries in heavy railways and
to construct a feature extraction module, CNN-BiLSTM, which extracts the temporal
features of the data and effectively extracts the forward and reverse dependencies of the
data without requiring significant familiarity with the failure mechanisms of the rails.
This effectively overcomes the limitations of the above literature in performing more
comprehensive feature extraction from the data, including the challenge of using expert
knowledge to build accurate damage-tracking models. Different attention mechanisms
have satisfactory results. However, the self-attention mechanism in the above literature
involves a large number of weight matrix operations; the optimization of the weight matrix
optimization is usually difficult in traditional deep learning methods, the gradient of the
error function must be back-propagated layer by layer, and the error function has a poorer
optimization effect or the gradient disappears after back-propagation on the weight matrix.
To address this problem, the RSA module is constructed, which solves the above problem
by adding the residual self-attention mechanism with residual connection; at the same
time, the RSA can also obtain the internal correlation features, which effectively improves
the expressive ability of the model. The proposed method is validated and analyzed by
experimenting with the vibration data collected by our team in a railway section. The
contributions are as follows:

(1) A CNNBiLSTM-RSA model is proposed to establish an end-to-end prediction model
between monitoring the data and the remaining service life of rails by using indirect
data such as vibration signals caused by rail damage. A case study of the proposed
method is carried out on different types of rail damage and roll bearings, and the
CNN-BiLSTM-RSA has a better nature in terms of prediction accuracy, as well as a
certain generalization ability.

(2) The CNN-BiLSTM feature extraction module is constructed to make full use of the
advantages of both to enhance the feature extraction capability, which can adaptively
extract features and reduce the influence of artificial factors to a certain extent.

The rest of the paper is structured as follows: The framework of the presented pre-
diction method is presented in Section 2, and the individual components are described
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in detail. Section 3 presents the rail data and details the experimental results and related
analyses. Finally, the conclusions are presented in Section 4.

2. RUL Prediction for Rails Based on CNNBiLSTM-RSA

Trains run on and between the track coupling process is complex and variable, thereby
giving rise to various types of rail injuries. Among them, stripping, wave abrasion, fish
scale, and other defects are the most common, and different types of rail defects have
different impacts on line operation. For example, if the stripping length is more than
15 mm and the width is more than 3 mm, it is regarded as a slight defect and needs to
be polished. When the stripping reaches a length of 25 mm and a depth of more than 3
mm, it is considered to be a serious defect and requires replacement of the rail [27]. RUL
is a predictive maintenance metric used to estimate the remaining time or service life of
a component or system before it reaches a critical state or a failure state. In this study,
the direct structure of the data-driven approach [28] is adopted for typical injuries and
damages to rails. The RUL of a railway track can be directly derived from the vibration
information caused by spalling and other injuries during the whole life cycle of heavy
railway rails. The method can be applied to the track life prediction of in-service railway
tracks. The schematic diagram of the proposed end-to-end prediction model is shown in
Figure 1. The prediction model mainly consists of a feature extraction layer, a residual
self-attention module, and a fully connected layer.
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Acquisition; (B) Feature extraction section; (C) Output life prediction results.

The original vibration data of the rail are preprocessed as the sample of the model
input. The feature extraction module is composed of a combination of CNN and BiLSTM,
which effectively combines the feature processing capability of CNN and the temporal
association capability of BiLSTM. This allows the model to better extract the vibration
signal features from the rail. Meanwhile, to make better use of the extracted timing
information, the position encoder in the transformer model is used to encode the position of
the features extracted by the CNNBiLSTM model. Then, an RSA mechanism is constructed
behind it to obtain the contribution of different moments in the time series. Meanwhile,
residual connectivity is introduced into the CNNBiLSTM-RSA network through its feature
of transmitting data across layers. This avoids the gradient vanishing problem in the
network and enhances the trainability and network expressiveness of the network. Finally,
the mapping between the rail features and the RUL labels is established through the fully
connected layer.
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2.1. Feature Extraction Module

The use of expert knowledge to determine the rail degradation to manage the full
life-cycle data of the rail can increase the interference of artificial factors to a certain extent.
Allowing the feature extraction module to adaptively learn the fault features without any
signal processing to a certain extent can avoid processing the original sample data, thereby
reducing the impact of artificial factors. The CNN-BiLSTM module is constructed and
includes a convolutional layer, ReLU, MAXpool, and BiLSTM layer. The rail vibration
signal belongs to the single-dimensional time series signal, for which 1DCNN is usually
used. A typical 1DCNN structure is illustrated in Figure 2. The input vibration signal is
expressed as X = [x1, x2, · · · xN ]. Features in different regions are extracted by multiple
one-dimensional convolution kernels. The convolution operation is defined as follows:

Xi = fi(wTxi−1 + bi), (1)

where bi and fi denote the bias term and activation function, respectively. The ReLU
function is expressed in the following form:

f (X) = max(0, X). (2)
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Then, the features extracted through the convolution calculation are used as inputs for
the pooling layer, the sequence is downsized, the network model is simplified by pooling
calculation, and the maximum pooling is selected in this paper. A multi-layer convolutional
layer and pooling layer are designed. This allows the characteristics of the rail vibration
signal to be effectively extracted. Finally, the output of the pooling layer is used as the input
for the fully connected layer. However, CNNs have a weak ability to associate features in
long sequence information [29].

Although CNN has the ability to automatically extract features from data, it is less
capable of handling time-series data with strong time dependence; in contrast, LSTM can
effectively solve the long-term dependence problem due to the introduction of gating units.
By combining the two, the extraction of spatial and temporal features can be enhanced
and the computation time can be relatively reduced. BiLSTM and LSTM are both variants
of RNNs (recurrent neural networks), which can effectively avoid the long-term depen-
dency problem caused by gradient vanishing or gradient explosion during the training
process of RNN [30]. Compared to the RNN, the LSTM enables the learning of long-term
memory through gating units. Many studies have demonstrated that LSTM is effective
in dealing with the temporal relationship between inputs and outputs and in learning
the data correlation of the time series [31]. LSTM maintains the current recurrent neuron
state based on the current inputs and the previous recurrent neuron states. The LSTM
unit introduces four gating units defined as the input gate, the output gate, the forgetting
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gate, and the self-recycling memory unit in order to control the different memory units in
their information flow interactions with each other [32]. In the hidden unit, the forgetting
gate chooses which state information to keep or forget from previous time steps; the input
gate determines what pattern of input vectors needs to be fed into that memory cell state;
by comparison, the output gate controls how it changes other memory cell states. It is
assumed that Xt and Ht denote sequential input data and cyclic output state at time step t,
respectively. The gate, hidden output, and cell state are expressed as follows:

It = σ(UiXt + Wi Ht−1 + bi),
Ft = σ(U f Xt + W f Ht−1 + b f ),
Ot = σ(UoXt + Wo Ht−1 + bo),

C̃t = tanh(UcXt + WcHt−1 + bc),
Ct = Ft ⊗ Ct−1 + It ⊗ C̃t,
Ht = Ot ⊗ tanh(Ct),

(3)

where U denotes the weight matrix of the respective gate; Wi, W f , Wo, and Wc denote the
corresponding recursive weight matrix of the respective gate.

However, LSTM only uses previous information to predict the current state. It cannot
use information from a future time. To address this problem, BiLSTM obtains bi-directional
information from both historical and future time data and has a more powerful feature
learning performance than LSTM. BiLSTM is designed with a bi-directional structure. This
structure captures the time series data representations in both forward and backward
directions, as shown in Figure 3. BiLSTM superimposes two parallel layers of LSTM in both
the forward and backward directions of propagation. The internal state stores information
from past time-series values in H f (t) in the forward direction; information from future
sequence values is stored in Hb(t) in the backward direction. Separate hidden states H f (t)
and Hb(t) at time step t are sequentially connected to obtain the final output. The recursive
states of the BiLSTM are expressed as follows:

H f (t) = ψ(W f hXt + W f hhX f (t−1) + b f b),
Hb(t) = ψ(WbhXt + WbhhXb(t+1) + bb),

(4)

The final output vector is obtained using the following equation:

Yt = σ(W f hyH f (t) + Wbhy Hb(t) + by), (5)

where W f hy and Wbhy are the forward and backward weights, respectively, and σ is the
activation function.
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2.2. Residual Self-Attention Module

In order to fit the characteristics of low frequency and long time span of the full
life-cycle data of rail injury and damage, to enhance the temporal feature information, to
retain the long-term dependence, and to enhance the weight of the useful information in
order to improve the prediction accuracy of rail RUL, the residual self-attention module is
constructed. This module consists of the residual self-attention mechanism that incorporates
the residual connection, which can obtain the contribution of temporal information and
improve the sensitivity of feature mapping to temporal information. Finally, the predicted
value of the rail RUL is obtained by the fully connected layer.

2.2.1. Residual Connections

Due to their ability to transfer information across layers, residual connections are an
effective approach for training deep networks. The residual block includes branches that
lead to a number of transformations of H as shown in Figure 4. The output of the changes
in H and the original output merged are expressed as follows:

Y = Activation(X + H(X)), (6)

Typically, the network becomes more expressive and performs better as the number
of layers in the network deepens. However, the increase in the number of layers brings
problems such as gradient vanishing and gradient explosion. Meanwhile, residual connec-
tivity is very beneficial for very deep networks by allowing the learning layer to modify the
identity mapping without performing the entire transformation. Therefore, at the end of
the CNNBiLSTM-RSA residual connections are used so as to avoid problems like gradient
vanishing and gradient explosion.
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2.2.2. Self-Attention Mechanism

The self-attention (SA) mechanism is the central idea of the transformer model [33].
The SA mechanism allows the model to focus more on the information that contributes
more to the output. The RSA mechanism module is improved to capture information
with different contributions in the sequences, which improves the expressive ability of the
network. This also enables the model to better learn the mapping relationship between the
features and RUL labels. As shown in Figure 5, the model calculates the different weights
between the elements in the sequence.

The input of the RSA mechanism consists of three parts, which are query (query, Q),
key (key, K), and value (value, V) [29]. They are computed using the following equation:

Q = WqX,
K = WkX,
V = WvX,

(7)
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where Wq, Wk, and Wv are weight matrices.
The value of SA is calculated as follows:

SA(Q, K, V) = so f t max(
QKT
√

dk
)V, (8)

where dk is the dimension of the key vector; the so f tmax function obtains the weight of
each value.

Finally, the SA and the inputs are fed through the residual connection into the batch-
regression layer to compute the value of the RSA:

RSA = BN(SA + input). (9)
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In order to better utilize the timing information in the features coming out of the
feature extraction module, the position encoder in the transformer model is added to
encode the position of this signal feature before the RSA mechanism [34]:

PE(pos,2i) = sin(pos/100002i/d),
PE(pos,2i+1) = cos(pos/100002i/d),

(10)

where pos denotes the position number in the sequence; d denotes the dimension of the
sensor; 2i denotes an even number of sensors; 2i + 1 denotes an odd number of sensors.

3. Experimental Results and Discussion
3.1. Experimental Data Presentation and Pre-Processing

The data used in the experiment include the whole life-cycle vibration data collected
from a railway section, which reflects the state of the rail from normal to degraded up
to the point of failure. Sensors with three channels were placed in different positions on
the train to acquire vibration signals from horizontal, front–back, and vertical directions.
Four working conditions are combined with different train speeds and loads, as shown in
Table 1. Under each working condition, there are three different types of rail damage: wave
abrasion, fish scale injury, and pieces stripping off the blocks. The actual state of damage to
the rail is shown in Figure 6. Because the shape of the rail is different under different types
of damage, the corresponding input shapes of the three types of rail damage are wave
abrasion, fish scale injury, and stripping off the blocks, respectively. The corresponding
input shapes are 3 ∗ 5000, 3 ∗ 3000, and 3 ∗ 2500. The vibration sequence is sampled and
recorded as a sample each time the detection train passes through the damaged defects. The
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data from the three channels of the sensor are stacked under each condition, i.e., horizontal,
fore–aft, and vertical vibration signals were used simultaneously. In order to ensure that
each experiment is consistent for the training and the test sets, the samples collected during
the forward passage of the train are used as the training set for each condition, and the
reverse passage is used as the validation and test set. When testing a certain type of damage
under a certain working condition, the vibration data of other damage under the same
working condition were used for training.

Table 1. Heavy-haul railway rail dataset.

Operating
Condition Running Speed No-Load Type of Damage

condition 1 Low speed unladen stripping off the
blocks (A_1)

Wave abrasion
(B_1)

fish scale injury
(C_1)

condition 2 Low speed load stripping off the
blocks (A_2)

Wave abrasion
(B_2)

fish scale injury
(C_2)

condition 3 high speed unladen stripping off the
blocks (A_3)

Wave abrasion
(B_3)

fish scale injury
(C_3)

condition 4 high speed load stripping off the
blocks (A_4)

Wave abrasion
(B_4)

fish scale injury
(C_4)
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3.2. Experimental Equipment and Experimental Parameter Settings

The experimental environment used in this paper is described as follows.
Hardware environment: (1) 13thGen Intel®CoreTM i5-13500HX 2.50 GHz (2) 16 GB

RAM (3) RTX3080. A 64-bit operating system. The model was implemented in Python 3.10
using Pytorch 2.0.1.

Some appropriate hyperparameters are needed to be selected in the model to ensure
the accuracy of the model predictions. Model performance is usually verified using grid
search and cross-validation as a means of obtaining the best performance of the model.
The k-values of cross-validation may affect their sensitivity to changes in the training set,
which in turn affects the hyperparameter selection results; therefore, a grid search for
hyperparameter selection has been applied in this paper. The training method used is
multi-batch training, the number of samples in each batch is 16, the number of training
batches is 100, and the initial learning rate is set to 0.001. In addition, the selected optimizer
is Adam. The parameter structure of the model is demonstrated in Table 2.
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Table 2. Model structure parameter settings.

Feature Extraction Module
1DCNN

In_channels= 3
Out_channels = 32

kernel_size = 3
padding = 1

Max_Pooling kernel_size = 2

BILSTM
input_size = 32

hidden_size = 32
kernel_size = 2

Batch Normalization
Dropout

Residual connection
Fully connected

Train Epoch = 100
batch_size = 16

optimizers = Adam
lr = 0.001

3.3. Evaluation Metrics

The performance of the presented method is compared with others. The mean absolute
error (MAE) [35] and root-mean-square error (RMSE) [36] are selected to evaluate the
performance of the methods and are defined as follows:

MAE = 1
n

n
∑

i=1
|ri − ri|,

RMSE =

√
1
n

n
∑

i=1
(ri − ri)

2,
(11)

where ri and ri are the actual and predicted RUL, respectively.
The vibration data collected in each of the three directions are stacked into one sam-

ple and the input data are normalized in the data preprocessing. In this paper, the life
percentage of the rail is used as the output label [37], i.e., the actual rail RUL of the rail
is normalized to a range of 0–100%. For each sample indexed, the output label is the life
percentage of the rail, i.e., the ratio of the current sample indexed value to the total number
of full life cycles. That is, when this ratio is 0, the rail reaches full life into failure. The
normalized value is calculated as follows:

RUL =
f (x)

T
∗ 100 (12)

where f (x) is the true RUL at that time.
With the increase in the number of iterations, the loss function value decreases in the

training process and gradually tends to be stable. The experimental results are demon-
strated in Figure 7. As shown in Figure 7 the RUL prediction curve is better fitted to the
labelled value of the actual RUL. The results preliminarily prove that the presented method
effectively predicts the accurate rail RUL.

To further validate the superiority of the model, the prediction results of the model
presented in this paper are compared with the CNN, the CNNLSTM network, and the
CNNBiLSTM network. The RAE and RMSE values under various operating conditions are
shown in Figures 8 and 9.

As seen from the figure, the MAE and RMSE values of the CNNBiLSTM-RSA model
are lower than those of the other three algorithms, which shows that the CNNBiLSTM-RSA
model has higher prediction accuracy. This is due to the fact that the introduced RSA
mechanism avoids the problems of gradient vanishing and gradient explosion that exist in
typical recurrent networks.
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Figure 7. Predicted RUL curves for rails with different damage under different operating conditions:
(A) RUL prediction curve for stripping off the blocks from rails under operating condition 1; (B) RUL
prediction curve for Wave abrasion from rails under operating condition 2; (C) RUL prediction curve
for fish scale injury from rails under operating condition 3; (D) RUL prediction curve for stripping off
the blocks from rails under operating condition 4.
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To verify the effectiveness of RSA in improving model performance through ablation
experiments, the models involved in the experiments include CNNBiLSTM networks with
an RSA mechanism added to verify the effectiveness and necessity of this mechanism
and the combination of CNN-BiLSTM and a traditional SA mechanism to experience the
advantages of using the RSA mechanism. The MAE and RSME results of each model in
this comparison experiment are shown in Tables 3–6.

Table 3. Evaluation metrics for ablation experiments under operating condition 1.

Model Evaluation Metrics Injury Type

Wave abrasion fish scale injury stripping off the blocks

CNNBiLSTM
MAE 0.0873 0.0947 0.0919
RMSE 0.1133 0.1230 0.1176

CNNBiLSTM-SA
MAE 0.0566 0.0719 0.0714
RMSE 0.0797 0.1030 0.0967

CNNBiLSTM-RSA
MAE 0.0456 0.0546 0.0507
RMSE 0.0647 0.0773 0.0711

Table 4. Evaluation metrics for ablation experiments under operating condition 2.

Model Evaluation Metrics Injury Type

Wave abrasion fish scale injury stripping off the blocks

CNNBiLSTM
MAE 0.0919 0.0967 0.0939
RMSE 0.1185 0.1234 0.1247

CNNBiLSTM-SA
MAE 0.0721 0.0851 0.0752
RMSE 0.0907 0.1254 0.1025

CNNBiLSTM-RSA
MAE 0.0498 0.0615 0.0574
RMSE 0.0703 0.0849 0.0744

Table 5. Evaluation metrics for ablation experiments under operating condition 3.

Model Evaluation Metrics Injury Type

Wave abrasion fish scale injury stripping off the blocks

CNNBiLSTM
MAE 0.0900 0.0958 0.0930
RMSE 0.1173 0.1205 0.1172

CNNBiLSTM-SA
MAE 0.0708 0.0832 0.0739
RMSE 0.0915 0.1179 0.0947

CNNBiLSTM-RSA
MAE 0.0497 0.0589 0.0562
RMSE 0.0665 0.0790 0.0758
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Table 6. Evaluation metrics for ablation experiments under operating condition 4.

Model Evaluation Metrics Injury Type

Wave abrasion fish scale injury stripping off the blocks

CNNBiLSTM
MAE 0.0897 0.0957 0.0929
RMSE 0.1140 0.1218 0.1172

CNNBiLSTM-SA
MAE 0.0689 0.0739 0.0723
RMSE 0.0960 0.0947 0.1043

CNNBiLSTM-RSA
MAE 0.0472 0.0571 0.0535
RMSE 0.0647 0.0765 0.0698

Tables 3–6 show that the MAE and RMSE of the CNNBiLSTM-RSA network are lower
than those of the CNNBiLSTM-SA network without residual connection and those of the
CNNBiLSTM network without added attention mechanism. This proves that the RSA
mechanism predicts better than the traditional SA mechanism. Meanwhile, both RSA and
SA improve the model prediction ability.

In order to verify the stability of the model presented in this paper, the model is trained
independently for several cycles, and the fluctuation range of its MAE and RMSE on the
test set is very small, thus proving that the model has stability.

Moreover, the IEEE PHM 2012 challenge dataset is used to validate the generalization
ability of the presented method. The dataset comes from the data collected by the PRONOS-
TIA experimental platform for bearings running under different operating conditions
through to the state of complete failure [38].

The sampling frequency of this experimental platform is 25.6 kHz, which is collected
every 10 s, and the adoption time is 0.1 s each time, so the length of each sample is 2560.
The details of this dataset are demonstrated in Table 7.

Table 7. The original vibration signal information of the bearing in the PHM2012 is under different
working conditions.

Operating
Conditions Load (N) Speed (rpm) Bearings Sample Length

conditions 1 4000 1800 Bearing 1–1~1–7 2560
conditions 2 4200 1650 Bearing 2–1~2–7 2560

Consistent with the experimental procedure described above, data from six other
bearings under the same operating conditions were used for testing a particular bearing in
order to make the division of the training set and test set consistent for each experiment.
The network parameters and average metrics are kept consistent with the above, while
the percentage of continued service life is used as the network output. In order to verify
the generalization ability, the prediction RUL method of this paper is compared with other
traditional bearing prediction methods, and the results are shown in Table 8. The presented
model shows better prediction accuracy than those of traditional bearing prediction meth-
ods in most cases. It is also verified that the model presented in this paper has a certain
generalization ability and achieves the life prediction of bearings.

Table 8. Comparison of RMSE results using different methods for some bearings.

Model Evaluation Metrics B1–5 B2–5

CNN RMSE 0.126 0.139
LSTM RMSE 0.114 0.121
CNN-LSTM RMSE 0.911 0.925
CNNBiLSTM-RSA RMSE 0.078 0.069
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The above experiments show that the MAE and RMSE of the method proposed in this
paper are lower than the existing state-of-the-art lifetime prediction methods. This shows
that the model proposed in this paper is higher than the existing state-of-the-art methods in
terms of prediction accuracy. Meanwhile, the experiments on the IEEE PHM 2012 challenge
dataset [38] show that the model is highly adaptable to different datasets and has good
generalization ability.

4. Conclusions

The RUL prediction of rails is crucial for the safe operation of heavy-duty trains. In
order to achieve an accurate prediction of rail RUL, a method based on a CNNBiLSTM-RSA
model is presented in this paper. In the suggested framework, the vibration signals are
used as inputs after preprocessing, and the feature extraction capability of CNN is fully
exploited. The bidirectional features of the data are captured using BiLSTM, which are
combined to improve the feature extraction capability to a significant extent. Then, the RSA
mechanism is used to search for important information in long sequences to improve the
expressive power of the network. In particular, residual concatenation is also employed in
the networks to simplify the training of the network and alleviate the overfitting problem.
The effectiveness of the algorithm was verified through this study using data collected
from a railway site located in China. The experimental results show that the presented
CNNBiLSTM-RSA model has better performance than the traditional data-driven methods
in terms of prediction accuracy.

This study takes into account the characteristics and complexity of the rail vibration
signal of heavy railways to construct CNNBILSTM-RSA which can accurately predict the
rail RUL and carry out rigorous experimental verifications. The CNNBILSTM-RSA can
accurately predict the RUL of rails and has been rigorously verified in the experiments. It
plays an important role in promoting the intelligent fault diagnosis method. The results of
this paper can be used as a basis for further exploration of new research ideas. The current
railway operation and maintenance of rail replacement mostly rely on statistics using the
total volume of traffic and other traditional ways. This paper provides a new approach to
railway operation and maintenance and represents a step toward diversifying the process
with intelligent new attempts and effective supplements.

Although the method is very accurate for rail RUL prediction, pre-training with
unsupervised data can improve the model performance and reduce the training time,
which will be carried out in the future.
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