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Abstract: Existing textual attacks mostly perturb keywords in sentences to generate adversarial
examples by relying on the prediction confidence of victim models. In practice, attackers can only
access the prediction label, meaning that the victim model can easily defend against such hard-label
attacks by denying access based on the attack’s frequency. In this paper, we propose an efficient
hard-label attack approach, called WordBlitz. First, based on the adversarial transferability, we train
a substitute model to initialize the attack parameter set, including a candidate pool and two weight
tables of keywords and candidate words. Then, adversarial examples are generated and optimized
under the guidance of the two weight tables. During optimization, we design a hybrid local search
algorithm with word importance to find the globally optimal solution while updating the two weight
tables according to the attack results. Finally, the non-adversarial text generated during perturbation
optimization is added to the training of the substitute model as data augmentation to improve the
adversarial transferability. Experimental results show that WordBlitz surpasses the baseline in terms
of better effectiveness, higher efficiency, and lower cost. Its efficiency is especially pronounced in
scenarios with broader search spaces, and its attack success rate on a Chinese dataset is higher than
on baselines.

Keywords: natural language processing; textual attack; hard label; adversarial samples; model
robustness

1. Introduction

Deep Neural Networks (DNNs) have achieved unprecedented successes in the fields
of text, image, and speech processing. However, their security concerns have attracted
widespread attention. Studies have indicated that DNNs are vulnerable to threats from
adversarial examples [1]. Attackers can mislead the classifier with subtle perturbations
which are imperceptible to humans. Thus, the study of how to generate adversarial
examples is essential in exploring the robustness of DNNs.

In NLP tasks, attackers primarily generate adversarial examples by perturbing key-
words in the input text, which is known as word-level attack. These attacks are broadly
categorized as white-box attacks and black-box attacks based on the information available
to the attacker [2]. In black-box attacks, the attacker can only obtain the output of the target
model, which makes such attacks more challenging. Previous research has mainly focused
on score-based attacks [3], which estimate the importance of words by relying on the class
probabilities or confidence score of the target model. For instance, the importance of each
word in a sentence can be evaluated through the change in model output results after
word deletion. However, it is difficult to obtain the score of target models in real-world
applications. Thus, a few studies have only leveraged the label for attacks, which are
termed decision-based or hard-label attacks [4].
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In recent years, research in deep learning has been evolving towards Large-scale
Language models (LLMs). LLMs are complex and have a high number of parameters;
meaning that attackers sometimes cannot access the output scores of LLMs. Consequently,
we believe that hard-label attacks will become more significant in the future. Existing
research in this area can be categorized based on whether it addresses traditional attacks or
transfer-based attacks.

• Traditional attacks utilize genetic algorithms, word importance, etc., to generate adver-
sarial examples. These methods share a common drawback in that each round requires
random initialization and cannot use the historical attack experience of other texts.
Hence, these attack methods heavily rely on the impact of random initialization [5],
making them are inefficient, as they require frequent access to the target model. The
victim model can simply detect this based on its frequency.

• Transfer-based attacks assume that adversarial examples designed for one victim
model are likely to fool other victim models as well [6]. This characteristic is known
as adversarial transferability. In this approach, a substitute model is trained using the
input and output of the victim model. In this way, a hard-label attack is transformed
into a decision-based attack or white-box attack. The advantage lies of this approach
lies in its high efficiency and less need for access to the victim model. However, the
success rate is sometimes low.

Transfer-based attacks are particularly suitable in the hard-label scenario, where ac-
cess to the victim model is restricted. Numerous recent studies have focused on applying
adversarial transferability to attack DNNs [7]. This research has indicated several chal-
lenges. (1) Structural Disparities in Models: Transfer-based attacks do not work well when
there is a significant structural difference between the victim model and substitute model.
(2) Weaker Classification Performance of Substitute Model: In general, stronger classifiers
lead to better adversarial transferability; however, in the hard-label scenario, the attacker
cannot train the substitute model with enough data due to the limitations on access to the
victim model, meaning that its performance is not as good. (3) Poor Generalization Perfor-
mance of Substitute Model: A number of studies have suggested that the data augmen-
tation can enhance generalization performance and improve adversarial transferability [8].
How to enhance generalization performance with data augmentation remains a challenge.
(4) Adversarial Overfitting Due to Muti-step Attacks: Research has indicated that multi-
step attacks are more likely than single-step attacks to overfit to the parameters of victim
model. Due to the discrete nature of textual data, attack algorithms based on keyword
replacement typically require multiple iterations, which reduces the effectiveness of transfer-
based attacks.

To address the above issues, we propose a hard-label attack method named WordBlitz
that jointly leverages word importance and adversarial transferability. First, we train a
substitute model with limited training data from the victim model and extract the word
importance. Then, the Attack Parameter Set (APS), including the candidate pool and word
importance, is constructed from the substitute model based on adversarial transferability.
Subsequently, adversarial examples are generated and optimized from the APS by a hybrid
local search algorithm. Meanwhile, the APS is updated based on the attack result. Further-
more, we utilize the text generated in previous attacks in data augmentation to enhance the
generalization of the substitute model. WordBlitz effectively addresses the issues of poor
transferability caused by model structural difference, poor classification and overfitting
due to multi-step attacks, and the need for improved universality of attack algorithms with
respect to victim models. Our contributions are as follows:

• We propose a transfer-based attack method for the hard-label scenario and change
the target of transferability from label to word importance. This approach provides a
heuristic method to initialize the attack parameter set from the substitute model.

• We introduce an efficient perturbation strategy relying on the attack parameter set.
The attack parameter set enables quick searching for optimal results, and is updated
with the attack results to leverage historical experience.
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• We propose a data augmentation method for the substitute model by utilizing the text
generated in the perturbation, which improves the adversarial transferability from
history. Hence, our approach performs more significantly in broad search spaces, such
as Chinese datasets.

2. Related Work

Score-based Attacks. Earlier studies employed the score-based attack method, in
which attackers can obtain the class probabilities or confidence score of victim model.
Most of these first find important words which highly impact the confidence score of the
victim model; these keywords are then replaced with candidate pool. For example, Li
et al. [9] selected and masked the vulnerable words with a masked language model. Then,
BERT (Bidirectional Encoder Representations from Transformers) was used to predict
the masked words and generate adversarial examples. Similarly, Garg and Ramakrish-
nan [10] presented BAE, which replaces and inserts tokens in the original text by masking
a portion of the text and leveraging BERT-MLM to generate alternatives for the masked
tokens. Li et al. [11] proposed a contextualized adversarial samples generation model and
produced fluent outputs through a mask-then-infill procedure. Maheshwary et al. [12]
introduced a query-efficient attack strategy which jointly leverages an attention mechanism
and locality-sensitive hashing to reduce the query count. Lee et al. [13] focused on using
Bayesian optimization to improve attack efficiency. Unlike the strategies, other works
have used optimization procedures to craft adversarial inputs. For example, Alzantot
et al. [14] proposed a population-based optimization algorithm to fool well-trained senti-
ment analysis and textual entailment models.

Decision-based Attacks. Only a few existing attack methods are decision-based.
Zhao et al. [15] first proposed a perturbation method in the continuous latent semantic
space. Ribeiro [16] rewrote sentences following semantically equivalent adversarial rules.
Maheshwary et al. [5,12] leveraged a population-based optimization algorithm called
HLBB to craft plausible and semantically similar adversarial examples, only relying on the
top label predicted by the target model. Ye et al. [4] proposed a gradient-based hard-label
method named TextHoaxer that estimates the gradient directly from the virtual randomly
sampled directions in the embedding space rather than from concrete candidate words.
Yu et al. [17] proposed TextHacker, which adopts a hybrid local search algorithm and
estimates the word importance from history to minimize perturbation. Due to the strict
query budget constraints in hard-label scenarios, decision-based attack methods need to
show improved attack efficiency. However, these methods typically suffer from low attack
efficiency, requiring frequent access to the output results of the victim model. For example,
the HLLB method that uses genetic algorithms cannot utilize historical attack experience,
while TextHacker employs a random initialization strategy. Hence, when the query budget
is low, the attack success rates significantly decrease. Improving attack efficiency is a key
research issue that needs to be addressed.

Transfer-based Attacks. Transfer-based attacks set the victim model as the target model
and assume that adversarial examples can transfer between different models. These methods
rely on the training data from the target model. Vijayaraghavan and Roy [18] trained a substi-
tute model to mimic the decision boundary of the target classifier, then generated adversarial
examples against the substitute model and transferred them to target model. However, the
adversarial transferability is sometimes poor, resulting in a low attack success rate. Therefore,
a few studies have explored the factors affecting this issue [7]. Most related works explain
transferability from a model perspective, claiming that the decision boundary [19], model
architecture [20], or generalization performance of the substitute model [21] significantly
influence the adversarial transferability. Another consideration is that the attack algorithm
may impact the adversarial transferability. Xie et al. [8] found that multi-step attacks tends to
generate more overfitted adversarial perturbations with lower transferability than single-step
attacking. Wang et al. [22] explained this based on the interactions inside adversarial perturba-
tions. Motivated by these studies, a few researchers have aimed to improve the transferability.
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For example, Wang et al. [23] introduced data augmentation to improve the generalization
performance of the substitute model and enhance the transferability.

3. Methodology
3.1. Formula Descriptions

To make the definitions more comprehensible, we provide some formula explanations
about textual classifiers and adversarial samples.

Textual classifier. A textual classifier can be defined as a function F : X → Y which
maps an input textual set X to a label set Y, where Y is a set of labels, for example, {positive,
negative} or a more extensive set of labels.

Adversarial samples. Attackers aim to adding a small perturbation e in the original
text x to generate an adversarial example x′. Here, x′ misleads the classifier F such that
F(x) 6= F(x′); meanwhile, the generated x′ should be imperceptible. A series of metrics
can be adopted to achieve this goal, such as ‖ε‖ < δ, where δ is a threshold used to limit
the size of perturbations.

3.2. Framework

The structure of WordBlitz is shown as the main framework in Figure 1, which revolves
around the Attack Parameter Set (APS). WordBlitz consists of two modules, namely, Adversarial
Initialization and Perturbation Optimization, along with a data augmentation process. The
APS is constructed from the pretrained substitute model and updated based on the attack result
on the target (victim) model. It aims to save the importance weights of each word in the input
text and candidate pools. The adversarial examples are generated and optimized relying on
the APS. In detail, the input text is first sent to the adversary initialization module. We replace
vulnerable words with the weight table in APS to quickly generate the initial adversarial
example. Next, the initial adversarial examples enter the perturbation optimization module,
where hybrid local search operations are used to find the optimal result. Finally, the generated
non-adversarial samples are used for data augmentation of the substitute model to improve its
generalization and classification performance while enhancing the adversarial transferability.

Figure 1. The framework of WordBlitz.
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3.3. Construction of the APS

The APS is the fundamental component of WordBlitz, including a candidate pool and
Attack Weight Table (AWT). The candidate pool provides similar words for replacement to
generate adversarial examples. Within the AWT, the position weight table documents vulnera-
ble keyword weights, while the candidate table documents replacement word weights from
candidate pool. To enhance the perturbation efficiency, we initialize the position weight table by
training a substitute model. The entire construction process comprises three stages: constructing
the candidate pool, training the substitute model, and initializing the AWT.

3.3.1. Candidate Pool

The candidate pool is constructed based on language features and common attack
methods. In the case of English, we utilize near-synonyms to form a candidate pool,
which is then employed to generate perturbation through near-syn. For Chinese, we
construct the candidate pool using shape-close characters, near-phonetic words, and split-
character dictionaries, which are respectively utilized to generate perturbation with pinyin,
glyphs, and character splitting. For a given word xi, its candidate pool is donated by
C(xi) =

(
x̂0

i , x̂1
i , · · · , x̂m

i
)
.

3.3.2. Substitute Model

We set the victim model as the target model f . Due to the unstable efficiency of random
or constant initialization, it is essential to devise a heuristic method to initialize the position
weight table reasonably and achieve efficient perturbation on keywords. Similarly, the word
weights of the attention mechanism should accurately capture each word’s extent of influence.
Hence, we train a BiGRU model with an attention mechanism as the substitute model f ′ in
order to initialize the position weight table in the AWT. These words can then be perturbed
using the word importance. The training data are obtained from the input and output of the
target model f . The input text X = (x1, · · · xi, · · · , xn) is first encoded by the BiGRU to obtain
the hidden state H = (h1, · · · hi, · · · hn), with the i-th hidden state hi computed as follows:

hi = BiGRU(xi, hi−1). (1)

Then, the attention matrix α = (α1, · · · , αi, · · · , αn) is calculated with H, with αi formulated a

ui = tanh(Wword hi + bword ), (2)

αi =
exp

(
u>i ui

)
∑n

j=1 exp
(

u>j uj

) , (3)

where Wword is the weight of a one-layer MLP, bword represents the bias, and ui is a hidden
state of hi. The final vectors of the input text X are denoted

s =
n

∑
i=1

αiui. (4)

After the fully connected layer and softmax layer, the probability distribution p for classifi-
cation is obtained. We use the negative log-likelihood of the correct labels as the training
loss L, formulated as

p = softmax(Wfc · s + bfc), (5)

L = −∑
k

log pkj, (6)

where Wfc represents the weight of fully connected layer, bfc is the bias, k is the amount of
input text, and j is the label of X. The whole structure of f ′ is shown in Figure 2.
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The substitute model f ′ is pretrained with only a small amount of training data obtained
from the target model f . After each round of the attack, the generated non-adversarial text is
utilized for data augmentation to update the parameters of f ′ with the aim of improving the
adversarial transferability.

... ...

Input Text

BiGRU Layer

Dense Layer

Softmax

Word Attention Layer

... ...

Label Y

1x

X

2x
nx

1 2 n

Word Attention Layer

Figure 2. Structure of the substitute model f ′.

3.3.3. AWT Matrix

To perturb the keywords efficiently, we attempt to identify the replaced priority of
words in both the sentence and candidate pool. These two priorities are stored in a position
weight table and a candidate weight table, respectively.

• Position Weight Table Wp =
(

wp
1 , · · · , wp

i , · · · , wp
n

)
. Each word and word position

in the sentence influences the classification result. Thus, perturbing words with
higher importance has a significant impact on the overall semantics. Considering
that the word weight in an attention mechanism reflects the contribution of each
word in a sentence, we initialize the position weight table Wp approximately with
α = (α1, · · · , αi, · · · , αn) from the substitute model f ′; then, Wp is updated based on
the result of hybrid local search in order to better adapt to the target model f .

• Candidate Weight Table Wc =
[
Wc

1 , . . . , Wc
i , . . . , Wc

n
]
. We construct Wc to store the

substitution scores of each word in the candidate pool. The matrix has the shape
(n, m + 1), where n represents the number of words in the sentence and m + 1 denotes
the number of words in each candidate pool. Wc is initialized with all ones and
updated based on the hybrid local search results.

3.4. Adversary Initialization

WordBlitz generates the initial adversarial examples in adversary initialization based on
the APS. We design a WordSubstitution operator to substitute keywords in a sentence. To
narrow down the search space, we replace words based on their wp

i ranking within the top
50% with random words in the candidate pool. For Xt at the t-th iteration, we perturb it based
on Wp and the candidate pool C to craft a new text Xt+1, which can be denoted as follows:

Xt+1 = WordSubsitution(Xt, C, Wp). (7)

Iteration is repeated until Xt+1 is an adversary or reaches the maximum number T.

3.5. Perturbation Optimization

We apply the hybrid local search algorithm [24] for perturbation optimization. Hybrid
local search is a kind of population-based algorithm which is effective for combinational
optimization problems. It usually contains two key components, namely, LocalSearch and
Recombination. The LocalSearch operator searches for a better one from the neighborhood
of each solution to approach the local optima, while the Recombination operator crosses over
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the existing solutions to accept non-improved solutions, helping it jump out of local optima.
Inspired by TextHacker [17], we utilize an additional components called WeightUpdate in
WordBlitz to allow it to learn from history.

3.5.1. LocalSearch

For an adversarial example Xadv
t at the t-th iteration, we randomly sample several (at

most k) less important words x̂jt
i ∈ Xadv

t from Wp with probability pi:

pi =
1− σ

(
wp

i

)
∑n

i=1

[
1− σ

(
wp

i

)] (8)

where σ(x) = 1/(1 + e−x) is the sigmoid function. This reduces excessive gaps and makes
the probability more reasonable. Then, each chosen word x̂jt

i is equally substituted with the

original word x̂0
i or a candidate word x̂jt+1

i in C(xi) based on probability pi,jt+1 to generate
a new text Xadv

t+1. Here, pi,jt+1 is calculated as follows:

pi,jt+1 =
σ
(

wc
i,jt+1

)
∑m

jt+1
σ
(

wc
i,jt+1

) . (9)

We accept Xadv
t+1 if it is still adversarial; otherwise, we add it to set D for data augmentation

and return Xadv
t . LocalSearch utilizes Wp and Wc to substitute less important words with

the original word or a candidate word, with the aim of optimizing the perturbation from
the k-neighborhood of Xadv

t .

3.5.2. WeightUpdate

In order to better highlight the important words in the sentence and candidate pool,
we update the word importance Wp and Wc with Xadv

t and Xadv
t+1 using the following rules:

Rule1: For each replaced word x̂j+1
i in C(xi), if Xadv

t+1 is still adversarial, it means that x̂j+1
i

has a positive influence on the adversary. Its weight is increased with reward rc as

w′ci,jt+1
= wc

i,jt+1
+ rc (10)

or reduced as
w′ci,jt+1

= wc
i,jt+1
− rc. (11)

Rule2: For each operated word and its position i, if Xadv
t is still adversarial, it means

that the position i has less influence on the adversary. Thus, its weight is decreased with
negative reward −rp as

w′pi =
n− rp

n
wp

i (12)

or increased as
w′pi =

n + rp

n
wp

i , (13)

where n is the number of words in sentence X.

3.5.3. Recombination

LocalSearch can find a better adversarial example; however, it is likely to result in
local optima. Recombination can effectively address this issue. We randomly combine two
randomly sampled texts Xa =

(
xa

1, xa
2, · · · , xa

n
)
∈ P t and Xb =

(
xb

1, xb
2, · · · , xb

n

)
∈ P t to

generate a recombined text Xc =
(
xc

1, xc
2, · · · , xc

n
)
. Each word xc

i in Xc is randomly sampled

from
{

xa
i , xb

i

}
based on their weights in Wc. We repeat this operation O/2 times and return
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all samples, where O is the number of input adversarial examples. Then, we select fitness
based on the modified number and semantic similarity with the USE [25]. In summary,
Recombination accepts non-improved solutions in order to avoid local optima.

3.6. DataAugmentation

Due to limited access to target model, we train the substitute model f ′ with sparse data.
This results in poor classification and generalization performance of f ′, in turn leading to poor
adversarial transferability. Considering that there are a large amount of texts generated over
multiple iterations, we design a DataAugmentation operator that adds those generated texts
which are non-adversarial to the training data of f as data augmentation to make it stronger.
This adjustment enables APS to remember the features of the target model, thereby enhancing
the adversarial transferability.

3.7. The Whole Algorithm

The overall algorithm of WordBlitz is summarized in Algorithm 1. It comprises four
fundamental steps: Construct APS (lines 4–8 in Algorithm 1, detailed in Section 3.3), Adversary
Initialization (lines 10–16 in Algorithm 1, detailed in Section 3.4), Perturbation Optimization
(lines 18–31 in Algorithm 1, detailed in Section 3.5), and Data Augmentation (lines 33–37 in
Algorithm 1, detailed in Section 3.6).

Algorithm 1 The WordBlitz Algorithm
1: Input: Input text X, target model f , query budget T, Population Size S, maximum number of local search N,

attention weight α, similarity threshold ε, perturb rate threshold ε, the set of samples for DataAugmentation
Dda

2: Output: Attack result and adversarial example
3: . Construct APS (line 4–8)
4: for each word xi in X do
5: Construct the candidate pool C(xi)
6: Ypre = f (Xpre)

7: Train substitute model f ′ with
{

Xpre, Ypre
}

8: Initialize Wp with Attention Weight α in f ′; Initialize Wc with all 1’s . Initialize APS
9: . Adversary Initialization (line 10–16)

10: X1 = X, Xadv
1 = None

11: for t = 1 to T do
12: Xt+1 = WordSubstitution(X1, C, Wp) . Detailed in Section 3.4
13: if f (Xt+1) 6= f (X) then
14: Xadv

1 = Xt+1; break . Initialization succeeds
15: if Xadv is None then
16: return False, None . Initialization fails
17: . Perturbation Optimization (line 18–31)
18: P1 =

{
Xadv

1
}

19: for i = 1 to S− 1 do
20: Xadv

i+1 = LocalSearch
(
Xadv

i , C(xi), Wc, Wp); P1 = P1 ∪
{

Xadv
i+1
}

21: t = t + S− 1; g = 1
22: while t ≤ T do
23: P g = P g ∪ { Recombination (P g, Wc)} . Detailed in Section 3.5.3
24: for each text Xadvg in Pg do
25: Xadv = Xadvg

26: for i = 1 to N do
27: Xadv

i+1 = LocalSearch
(
Xadv

i , C(xi), Wp, Wc) . Detailed in Section 3.5.1
28: WeightUpdate

(
Xadv

i , Xadv
i+1 , Wp, Wc, f

)
. Update APS based on attack result, detailed in Section 3.5.2

29: P g = P g ∪
{

Xadv
N+1

}
; t = t + N

30: Construct P g+1 with the top S fitness based on the Modified Number and USE
31: Record the global optimal Xadv

best based on the Modified Number and USE
32: . Data Augmentation (line 33–37)
33: Construct Dtext with all generated Text Xge in Perturbation Optimization
34: for each Xge in Dtext do
35: if Xge is non-adversarial then
36: Dda = Dda ∪

{
Xge, f

(
Xge
)}

. Construct set for data augmentation
37: DataAugmentation( f ′, Dda)
38: if Similarity

(
Xadv

best, X
)
< ε and PerturbRate

(
Xadv

best, X
)
< ε then

39: return success,Xadv
best . Attack succeeds

40: return False,None . Attack fails
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4. Experiments

We conducted extensive experiments on three English datasets to validate the effec-
tiveness of WordBlitz. In order to validate its applicability on different languages, we also
conducted experiments on three Chinese datasets and additionally incorporated a language
model optimized for Chinese.

4.1. Experimental Setup

Victim Models. We adopted TextCNN [26], LSTM [27], and BERT [28] as the English
victim models, while adopting TextCNN, BERT, and ERNIE [29] as the Chinese victim
models. In addition, to verify the attack effect of WordBlitiz on LLMs, we added ChatGLM3-
6B [30] as a common victim model.

Baselines. We used two hard-label attack methods, HLBB [5] and TextHacker [17], as
our baselines. HLBB uses a population-based algorithm to generate adversarial examples,
while TextHacker perturbs the text based on word importance and hybrid local search.

Evaluation Metrics. The evaluation metrics included two aspects, namely, attack
effectiveness and perturbation cost. Attack effectiveness encompasses the attack success
rate, attack stability, and attack efficiency, while perturbation cost includes the semantic
similarity and perturbation ratio. We provide detailed descriptions of these metrics in the
corresponding sections.

Datasets. We adopted three English datasets (IMDB [31], Yelp [32], and MR [33]) and
three Chinese datasets (Waimai, OnlineShopping, and hotels from ChnSentiCorp) for text
classification. These datasets are commonly used for sentiment classification tasks; each
data point consists of a user review, and each review is labeled as either “positive” or
“negative”. As perturbing keywords in the reviews can effectively change their sentiment
polarity, these datasets are widely used in experiments involving adversarial examples.
Table 1 provides detailed information about the datasets.

Table 1. The details of datasets.

Dataset Language Total Number of Samples Desctription

IMDB English 50,000 Movie Reviews
Yelp English 94,000 Reviews from Yelp
MR English 10,662 Movie Reviews

Hotel Chinese 10,000 Hotel Reviews
Waimai Chinese 18,000 Reviews for Take-out Food

Online_Shopping Chinese 60,000 Reviews for Online Shopping

4.2. Evaluation of Attack Effectiveness

We first conducted evaluations using the above datasets on the models under the
same query budget of 2000. The evaluation metrics were the attack success rate (Succ, %),
perturbation rate (Pert, %), and semantic similarity (Sim, %) as evaluated with Universal
Sentence Encoder [25]. Tables 2 and 3 show the results on the English and Chinese datasets,
respectively.

As shown in Table 2, WordBlitz performs better than HLBB and TextHacker. HLBB
exhibits the weakest attack efficiency due to its reliance on a population optimization algo-
rithm, which cannot learn from history; meanwhile, its inability to calculate candidate word
importance leads to a higher perturbation rate. TextHacker introduces word importance
and updates it from history to generate and optimize the adversarial examples. Therefore,
its attack efficiency is higher than that of HLBB. WordBlitiz constructs the APS and initial-
izes it based on the adversarial transferability rather than random initialization, enabling it
to generate adversarial examples more quickly. Thus, it achieves a higher attack success
rate and semantic similarity with lower perturbation across almost all of the datasets and
victim models. Taking the results of attacks on BERT as an example, WordBlitz outperforms
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the others in terms of attack success rate by clear margins of 0.3–7.9%, and improves the
perturbation rate by 0.1–1.7% and semantic similarity by 2.6–3%.

Table 2. Evaluation on attack effectiveness on English datasets.

Model Attack
IMDB Yelp MR

Succ. Pert. Sim. Succ. Pert. Sim. Succ. Pert. Sim.

TextCNN
HLBB 74.0 4.2 85.3 67.1 7.6 86.2 71.1 13.2 84.3

TextHacker 77.8 3.0 85.6 75.4 6.4 82.5 78.3 11.1 82.1
WordBlitz 78.3 3.1 87.1 75.9 6.3 86.4 78.9 11.8 84.0

LSTM
HLBB 72.1 4.1 86.4 61 6.6 85.3 68.3 11.2 83.5

TextHacker 76.2 3 84.9 65.4 5.5 84.8 75.2 11.2 82.9
WordBlitz 76.9 3 86.8 66 5.3 86.6 75.5 10.7 84.8

BERT
HLBB 77 4.8 84.1 57.1 8.2 84.6 65.8 11.6 85.2

TextHacker 81.5 3.4 83.1 63.2 6.7 82.2 73.1 11.4 83.6
WordBlitz 81.9 3.3 85.7 63.5 6.5 85.2 73.7 10.9 85.4

ChatGLM3
HLBB 36.4 7.1 83.6 35.2 8.4 86 35.6 12.2 81.7

TextHacker 37.3 6.2 84.2 35.9 7.3 83.4 36.1 11.3 82.3
WordBlitz 40.4 5.9 85.1 39.8 7 86.1 37.9 11.5 83.6

The bold number denotes the best performance value for each dataset.

Table 3. Evaluation of attack effectiveness on Chinese datasets.

Model Attack
OnlineShopping Waimai Hotel

Succ. Pert. Sim. Succ. Pert. Sim. Succ. Pert. Sim.

TextCNN
HLBB 43.5 20.7 79.2 46.1 19.5 81.3 47.2 20.4 81.0

TextHacker 52.3 19.1 80.4 54.2 18.1 79.9 55.8 19.4 79.1
WordBlitz 59.8 18.5 81.5 60.4 18.3 83.2 62.1 18.5 82.4

BERT
HLBB 39.4 18 81.9 43.9 19.2 81.7 41.5 19.1 81.6

TextHacker 50.2 17.9 81.1 52.6 19.9 81.3 53.2 18.3 80.3
WordBlitz 60.1 17.4 83 60.3 18.9 83.8 59.6 17.6 81.9

ERNIE
HLBB 41.6 19.2 80.8 42.5 20.3 82.6 44 18.9 81.7

TextHacker 50.4 18.6 80.2 51.8 19.6 81 54.1 18.6 81.2
WordBlitz 58.9 18.3 82.5 59.4 19.4 82.9 60.4 17.8 83.3

ChatGLM3
HLBB 32.5 18.9 79.3 33.7 18.4 81.2 31.8 17.6 81.4

TextHacker 32.7 18.3 81.6 35.1 19.7 79.4 34.3 18 80.2
WordBlitz 34.3 17 82.4 35.7 18.1 81.5 36.8 17.4 83

The bold number denotes the best performance value for each dataset.

Unlike the English scenario, there are more attack types in the Chinese candidate pool,
which leads to a broader search space. This situation challenges the attack efficiency. As
shown in Table 3, the gap between the three methods is more significant on the Chinese
datasets. WordBlitz and TextHacker, which can perturb vulnerable words based on word
importance, are more efficient than HLBB. In particular, WordBlitz initializes the APS based
on transferability rather than random initialization, allowing it achieve a 1.6–9.1% higher
attack success rate than TextHacker and a 1.8–20.7% higher success rate than HLBB. These
results show that WordBlitz performs better on complex languages.

4.3. Stability Evaluation

To consider the influence of random seeds on the three tested methods, we validated
their stability by conducting repeated experiments on the Yelp and Hotel datasets with the
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BERT model. For the stability evaluation, we used the coefficient of variation γ, which can
be formulated as

s =

√√√√ 1
N − 1

N

∑
i=1

(zi − z̄)2, (14)

γ =
S
z̄

, (15)

where s is the standard deviation, zi represents each value in the sample, N is the size
of sample, z̄ is the mean of the sample, and γ describes the relative stability. A lower γ
indicates greater stability of the data. Table 4 illustrates the results, showing that WordBlitz
has best attack stability on both the English and Chinese datasets.

Table 4. Stability evaluation with the BERT model.

Attack
English:Yelp Chinese:Hotel

γ (Succ.) γ (Pert.) γ (Sim.) γ (Succ.) γ (Pert.) γ (Sim.)

HLBB 0.0195 0.0259 0.0075 0.0307 0.0298 0.0093
TextHacker 0.0092 0.0188 0.0057 0.0175 0.0274 0.0071
WordBlitz 0.0050 0.0152 0.0042 0.0117 0.0226 0.0056

The bold number denotes the best performance value for each dataset.

4.4. Efficiency Evaluation

In practice, the victim model can easily defend attacks based on their anomalous
access frequency, which challenges the efficiency of attack methods. It is obvious that the
query budget of the victim model is highly related to the efficiency. Hence, we validated
the efficiency of the three methods using different query budgets, taking attacks on the
IMDB and Waimai datasets with BERT model as an example. Figure 3 shows the results.

Figure 3. Efficiency evaluation with the BERT model.

It can be observed that the success rate of all three attack methods decreases with
decreasing query budget, with the change from 1500 to 1000 being more obvious. Taking
the IMDB dataset as an example, HLBB exhibits the highest deterioration in attack success
rate, reaching up to 7.7%. This can be attributed to its reliance on extensive random
substitutions for searching adversarial examples instead of memorizing word importance.
Consequently, it is only suitable for scenarios with loose query restrictions. TextHacker
experiences a lower decline of 3.1% due to its ability to remember word importance using
a weight table. However, because the weight table is randomly initialized, its accuracy
decreases significantly when the query budget is strictly limited. WordBlitz demonstrates
the most consistent performance, with only a marginal decrease of 1.9% in attack success
rate compared to the other methods. Even under the strictly limited query budget (≤1000),
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it is able to achieves a remarkable success rate of 79.2%, which is due to the improvement
in adversarial transferability with data augmentation. The experimental results on the
Chinese Waimai dataset are similar, with the gap between the three methods being even
more significant due to the broader search space of Chinese candidate pool, which requires
high efficiency.

4.5. Ablation Study

To verify the influence of the DataAugment (DA) components in WordBlitz, we
conducted an ablation study on BERT using the Waimai dataset with a query budget of
2000. We removed the DA component to validate its contribution. The results are shown
in Table 5. The ablation experiment demonstrates that WordBlitz with DA has better
performance than the version without DA. This shows the superiority of the DataAugment
component, which learn more knowledge of the target model from history and enhances
the adversarial transferability.

Table 5. Ablation study of the DataAugmentat (DA) component of WordBlitz, using the Waimai
dataset on BERT.

Victim Model Attack Method
Waimai

Succ. Pert. Sim.

BERT
WordBlitz without DA 58.1 19.2 82.5

WordBlitz with DA 60.3 18.9 83.8
The bold number denotes the best performance value for each dataset.

4.6. Case Study

Table 6 shows adversarial sample cases generated by WordBlitz when attacking BERT.
When attacking English texts, we used synonyms to replace the key words ’brilliant’ and
’moving’. When attacking Chinese texts, we used homophones to replace the key word ’香’.
By perturbing a small number of key words, WordBlitz was able to successfully change the
output labels.

Table 6. Case study of WordBlitz.

Language Example Label

Original Brilliant and moving acts by Tom Courtenay and Peter Finch. Pos
English Adversarial Showy and emotional acts by Tom Courtenay and Peter Finch. Neg

Original 太香 (xiāng, delicious)太大了，全是肉,嘴唇都撑裂了。 Pos
Chinese Adversarial 太响 (xiǎng, noisy)太大了，全是肉,嘴唇都撑裂了。 Neg

The red words denotes the replaced word. The bold words denotes the word which is used for replacement.

5. Conclusions

This paper proposes an efficient hard-label attack method called WordBlitz for gener-
ating high-quality adversarial samples with a strictly limited query budget. WordBlitz uses
an Attack Parameter Set (APS) to remember word importance, which is initialized with
a substitute model based on adversarial transferability. Then, adversarial examples are
generated and optimized with the APS. Meanwhile, the APS is updated based on the attack
results. This method overcomes the issue of low efficiency caused by random initialization.
Experimental results show that WordBlitz achieves high efficiency and effectiveness, partic-
ularly on more complex languages. Compared to baselines, WordBlitz has a higher attack
success rate and lower perturbation costs, especially in scenarios where query budgets are
strictly limited. This means that it can be applied to real-world scenarios. In addition, the
results of an ablation study prove that the DataAugment module improves the adversarial
transferability.
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In the future, we intend to further explore methods leveraging adversarial transfer-
ability to make our methods more general against other large-scale language models which
are more robust. Ultimately, our goal is to reveal the flaws of textual classifiers in terms of
adversarial robustness in order to make future models more robust. We think that there are
two potential approaches. (1) In observing the generated adversarial samples, we found
that their word frequency distribution and word weight distribution changed greatly. These
features could be used to construct a detector to identify adversarial samples. (2) Because
Chinese adversarial examples use features such as phonemes and glyphs, adding these
features to train a robust model may be a potential defense. In future research, we will
further explore such defense methods to improve the robustness of neural networks.
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