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Abstract: In this work, using a Richards-Wolf formalism, we derive explicit analytical relationships to
describe vectors of the major and minor axes of polarization ellipses centered in the focal plane when
focusing a cylindrical vector beam of integer order n. In these beams, the major axis of a polarization
ellipse is found to lie in the focal plane, with the minor axis being perpendicular to the focal plane.
This means that the polarization ellipse is perpendicular to the focal plane, with its polarization vector
rotating either clockwise or anticlockwise and forming “photonic wheels”. Considering that the wave
vector is also perpendicular to the focal plane, we conclude that the polarization ellipse and the wave
vector are in the same plane, so that at some point these can coincide, which is uncharacteristic of
transverse electromagnetic oscillations. In a cylindrical vector beam, the spin angular momentum
vector lies in the focal plane, so when making a circle centered on the optical axis, at some sections,
the handedness of the spin vector and circular motion are the same, being opposite elsewhere. This
effect may be called an azimuthal transverse spin Hall effect, unlike the familiar longitudinal spin
Hall effect found at the sharp focus. The longitudinal spin Hall effect occurs when opposite-sign
longitudinal projections of the spin angular momentum vector are spatially separated in the focal
plane. In this work, we show that for the latter, there are always an even number of spatially separated
regions and that, when making an axis-centered circle, the major-axis vector of polarization ellipse
forms a two-sided twisted surface with an even number of twists.

Keywords: Richards-Wolf formalism; sharp focus; polarization ellipses; cylindrical vector beam; spin
angular momentum; photonic wheels; transverse spin Hall effect; polarization stripe; twisted surface

1. Introduction

Previously, an experimental observation of a polarization Mobius ribbon at the sharp
focus of a vector laser beam generated with a g-plate has been reported [1]. The polarization
Mobius ribbon was shown to make 3 half-twists at the tight focus of an initial optical vortex
with topological charge n = 1, making 5 half-twists at n = 3. A technique for generating exotic
polarization Mobius ribbons has been numerically demonstrated [2], and the generation
of polarization Mobius ribbons upon focusing tilted vector beams has been studied [3].
Alongside one-sided polarization Mobius ribbons, it has been found that paraxial and
non-paraxial vector beams can also form two-sided twist bands with an even number of
twists [4-7].

On the other hand, as far as the spin Hall effect at the focus is concerned [8-10], it has
been shown that with increasing topological charge of vector vortex beams, the number of
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focal regions with alternating spin signs also increases. Such opposite-sign focal regions
occur in pairs, so the general spin of the beams remains zero, meaning that the number
of opposite-sign regions lying on an axis-centered circle is always even. Therefore, by
making a full circle in the focal plane, the polarization ellipse makes an even number of
semi-turns, i.e., an integer number of full turns. Meanwhile, a surface generated by the
major/minor-axis vector of the polarization ellipse is not a one-sided Mobius ribbon, as
was the case in Refs. [1,2], but a two-sided surface with an even number of semi-turns [4].
Such polarization ribbons have been given the name twisted ribbons [4].

The arrangement of polarization ellipses in the focal plane can be derived from an
equation for the coordinates of the major and minor axes of the polarization ellipse proposed
by M. Berry [11]. As a rule, the major and minor axes of polarization ellipses are calculated
numerically. In the meantime, in this work we discuss two examples of vector fields
(a cylindrical n-th order vector field and an azimuthally polarized optical vortex with
topological charge n), for which we derive exact analytical relationships that describe
coordinate distributions of the major and minor axes of polarization ellipses in the tight
focus plane, based on a Richards-Wolf formalism [12].

2. Projections of Strength, Intensity and Spin Angular Momentum at the Tight Focus of
a Light Field

Assume an original light field whose Jones vector is given by

B(9) = expling) ), <1>

where (, @) are the polar coordinates at the beam cross-section, 7 is the integer topological
charge, with the linear polarization vector being directed along the horizontal x-axis.
Projections of the electric and magnetic field vectors at the focus of the original field in
Equation (1) are given by [13]

Ey = #6’1‘"‘? (Lo + ¥ L pyn + €729 _5),

E, = 50 (e 291, 5 — %91y ,.5), ()

E, =i"e"?(¢791 1 — € P11 11),

Entering Equation (2) are the functions I, of a single radial variable r:

o
L= 2kf/ sin’ ! (g) cos®V (g) cos!/2(8) A()e= <0, (krsin 0)d6, 3)
0

where k = 27t/ is the wave number of monochromatic light of wavelength A, f is the focal
length of a focusing lens, « is the maximum angle of the incident ray with the optical axis,
which defines the numerical aperture of an aplanatic lens, NA = sin «, ] (&) is the Bessel
function of the first kind and v-th order. A(f) is a real function that defines the radially
symmetric amplitude of the original field, which depends on the incidence angle 6 of an
outgoing ray from the original wavefront converging at the center of the focal plane.
Next, using Equation (2), we can derive all three projections of the SAM vector [14]:

1 *
where w is the angular frequency of light. Hereafter, the constant 1/(8mw) is dropped.
Substituting (2) into (4) yields relationships for projections of the spin density vector
or the spin angular momentum vector at the tight focus for the original field (1):
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Sx = M(r)sing + N(r)sin3¢,

Sy = O(r) cos ¢ + M(r) cos ¢ 4 N(r) cos 3¢,

S; = %(1271 2— D n+2)(12n 2+ D 42 +210,n COSZQD), (5)
M(r) = Iy 1lu—2— Iini1lonya,

N(r) = Iu—1lnt2 = Iny1l2n-2,

O(r) = 2Ipn(Ii,u—1 — I ut1)-

By analogy, we can express the full intensity, I = Iy + I, + L = |Ex|* + |Ey]2 + |E,|* and
its separate components at the focus:

L=1,+ 13, 5+ 12,0 +052¢(Ionlon—2 + Ionloni2) + 112n—2loni2 cosde,

_1ip 172 1
Ly =30, >+ 305, — 1l2n-—2l2n2c0849,
_ 2
L=L, 1+ 1,1 —2hn-1l1,n41c0s2¢,

I=1, 438, s +3B,,+ 5, 1+ 1,1 +c0s2¢(lonlon 2+ lonlonia — 2l u-1l,u11)-

3. Expressing the Field Strength Vector via Vectors of the Axes of the
Polarization Ellipse

Formulae for calculating the polarization singularity indices of vector fields have
previously been reported [11]. Using those formulae, the E-field vector can be expressed
via vectors A and B, which are oriented along the major and minor axes of a polarization
ellipse centered on a given space point:

E=¢7(A+iB), I=|A”+|BJ
AeB =0, |A| > [B|,
= 2arg(EoE),
= r7ierRe (EVETeE )

Re(
- ﬁ|1m(wﬁ),
S = Im(E* x E) = 2(A x B).

In Equation (7), ‘e’ denotes the dot product of vectors, x denotes the cross product,
Re and Im are real and imaginary parts of the number, S simultaneously describes the
SAM vector and the normal vector to the polarization ellipse plane formed by the vectors
A and B, [ is the intensity expressed through projections of the vectors of the polarization
ellipse axes.

We note that the decomposition of the complex field E into the real vectors A and B
is unambiguous, meaning that while not for any decomposition, the vectors A and B are
mutually orthogonal, but for any decomposition, they lie in a perpendicular plane to the
SAM vector, which is the polarization ellipse plane. Remarkably, representation (7) is also
applicable to the light field at the focus defined by Equation (2), making it possible to derive
explicit relationships for the two vectors A and B at the tight focus of field (1). Actually, the
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E-field vector in (2) can be represented in a similar way to (7) by merely separating the real
and imaginary parts:

E = ¢ (A +iB),
Ax = IO n+ P(r)cos2e,
P(r)sin2¢,
F(r)sin ¢,
Q(r)sin2¢,
y —Q(r) cos2¢,
B, = L(r)cos ¢,
P(r) = (yp-2+ bput2)/2, F(r) = hp-1+ L,
Q(r) = (12n+z Izn 2)/2, L(r) = hn-1— liut1,
y=nle+1) -

Of course, the vectors A and B in (8) cannot be guaranteed to form two axes of the
polarization ellipse at point (x, y, z = 0); however, it can be checked whether the derived
projections of vectors in (8) enable obtaining the SAM projections in (5) and (6), because

<

S =Im(E* xE) =2(A x B),
I=|A]*+BJ% ©)
The SAM vector in (9) is perpendicular to the vectors A and B, with its absolute value
being equal to the product of the modules of A and B, multiplied by the sine of an unknown

angle 17 between the vectors:
S| = |A|[B]sin. (10)

From (10) it follows that linear polarization of field (1) at the focus corresponds to the
zero modulus of either vector A or vector B: |S| = |A| = |B| = 0. Equation (8) suggests
that for any topological charge 7, there exists an axis-centered radius r of a circle in the
focal plane (z = 0), such that the following equality holds:

2Q(r0) = Dyuy2 — Iu—2 = 0. (11)

Along this circle in the focal plane, the vector B of the polarization ellipse has only a
longitudinal projection:
By = Q(rg)sin2¢ =0,
By, = —Q(rp) cos2¢ =0, (12)
B, = L(rp) cos ¢.

Considering that the SAM vector in (9) is perpendicular to the vector B, the longi-
tudinal projection of the SAM vector equals zero, and the SAM vector S lies in the focal
plane. The vector B is of zero length at two points of a circle of radius 7y, namely, at
¢ =m/2and ¢ = 37/2, where B, = 0. Let us analyze in more detail how the SAM vector
varies in the neighborhood of those points. For instance, at angles slightly smaller than
@ = mt/2, the longitudinal projection of the B vector in (12) is positive (L(rp)cos ¢ > 0) at
L(rg) > 0, whereas at angles slightly larger than ¢ = 71/2, the longitudinal projection of the
vector B in (12) is negative (L(rg)cos ¢ < 0). The A vector is not found in the focal plane at
points lying on the circle of radius 7y and hardly changes its direction at angles smaller and
larger than ¢ = 71/2, being predominantly directed along the x-axis, as

Ax = IO,n (1’0) + P(T’o) COSZQO ~ IO,n (1’0) >0,
Ay = P(rg)sin2¢ =~ 0,

A; = F(rg)sing =~ F(ry),

Ion(ro) >> P(r0), Iou(ro) >> F(ro).

(13)

The inequalities in (13) are based on the results reported in Ref. [8]. Then, varying
along the circle of radius ry, the SAM vector will be near opposite to the vertical y-axis
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at angles slightly smaller than ¢ = 71/2, being almost coincident with the vertical y-axis
at angles slightly larger than ¢ = 7t/2. Thus, when moving along a circle of radius ry,
the direction of the SAM vector changes to the opposite upon reaching the point at angle
@ = /2. We note that at the circle point corresponding to ¢ = 7t/2, the SAM vector equals
zero. The change of direction of the SAM vector lying in the focal plane upon passing a
linear polarization point (B = 0) may be termed the transverse spin Hall effect. It should be
differentiated from the longitudinal spin Hall effect [8,9].

If the small axis of the polarization ellipse is zero, i.e., B = 0, then the polarization
ellipse reduces to a segment, i.e., polarization becomes linear. There is no polarization
singularity at this point. When passing through such a point (B = 0), the SAM vector,
which is parallel to the focus plane in this case, changes its sign. Before the point with
liner polarization (B = 0), the SAM vector was directed nearly vertically downwards, i.e.,
the plane of the polarization ellipse is nearly perpendicular to the focus plane, and the
polarization vector is rotating counterclockwise. On the contrary, after the point with linear
polarization (B = 0), the SAM is directed almost vertically upwards in the focus plane, the
plane of the polarization ellipse is perpendicular to the focus plane, and the polarization
vector is rotating clockwise. Both of these polarization ellipses form two “optical wheels”,
where the polarization ellipses are rotated like spokes in a wheel.

In (5), being cos(2¢)-dependent, the longitudinal SAM projection changes sign four
times on making a full circle. Hence, in the focal plane, there are four regions, in two of
which the SAM projection is positive and in the other two negative. The separation of
focal plane regions with different-sign longitudinal SAM components may be called the
longitudinal spin Hall effect [8,9]. Summing up, in this section we demonstrated that given
the initial light field (1), in the focal plane there are circles centered on the optical axis where
the SAM vector lies in the focal plane and changes the direction to the opposite an even
number of times. We have given this effect the name transverse spin Hall effect.

4. Polarization-Twisted Ribbons in the Focal Plane

Assuming initial field (1), let us now choose in the focal plane a different circle of
radius rq, on which the longitudinal projection B, equals zero:

L(r1) = Iipy—1 — I1 041 = 0. (14)

In this case, the vector B lies in the focal plane, while the vector A ‘almost’ lies in the fo-
cal plane and is oriented along the horizontal axis, Equation (13). From (5), it is seen that at
0 < ¢ < 1t/4 the longitudinal SAM projection is positive, S; = (1/2)(In—2 — Iu+2)
(L2 + Iyio +2Ip,cos2¢)>0if I ,_» — I 42 > 0 on the circle of radius r;, whereas
at ¢ = 71/2 the longitudinal SAM projection is negative because 2Iy,, > Ip,—2 + Ip n42.
Hence, at some angle ¢ from the interval 77/4 < ¢ < 71/2, the longitudinal SAM projection
becomes zero:

SZ = 0, 12/,172 + 12,n+2 = 210,,1 CcOos 2(/). (15)

In view of Equation (14), it follows from (5) that on the circle of radius 1, the transverse
SAM projections take a simpler form:

Sx = 2M(r1) sin ¢ cos 2¢, (16)
Sy = —2M(rq) cos @ sin 2¢.

The change of sign of the longitudinal SAM projection (1) means that at the focus,
we observe a longitudinal spin Hall effect. When making a full circle of radius rq, the
longitudinal SAM component changes sign four times at any number n. We conclude that
at small values of the angle ¢, surfaces of the polarization ellipses centered on the circle of
radius rq in the focal plane almost lie in the focal plane, “looking” along the optical axis.
At an angle at which S, = 0 (15), the polarization ellipse surfaces are perpendicular to the
focal plane. At an angle somewhat larger than the angle in (15), the polarization ellipse
surfaces get tilted oppositely, “looking” in the opposite direction to the optical axis. Hence,
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on a full circle centered on the optical axis lying in the focal plane, a surface constructed
from the polarization ellipses “looks” twice along the optical axis (with the major axis
directed almost along the x-axis), “looking” twice in the opposite direction to the optical
axis (then, the ellipse major axis is directed oppositely to the x-axis). At “twis” points,
which occur four times on the circle, defined by condition (15), the polarization plane
“look” perpendicularly to the optical axis. Thus, we have shown that the longitudinal spin
Hall effect is associated with the presence of two-sided polarization-twisted ribbons at the
focus [4], unlike a one-sided polarization Mobius strip [1,2]. The number of twists of the
twisted ribbon should coincide with the number of regions of alternating-sign longitudinal
spin. Below, this conclusion is validated by the numerical simulation. We note that the
number of areas with the spin of a different sign and the number of turns of the polarization
ribbon is the same (in total, 4) and do not depend in this case on the topological charge of
the linearly polarized optical vortex (1).

5. Other Types of Light Fields for Which Projections of Polarization Ellipses at the Focus
Can Be Analytically Derived

5.1. Cylindrical Vector Fields
The Jones vector in the original plane of a cylindrical vector beam of n-th order (n is

an integer) is given by:
_ [ cosng
Bo) = (Sond ). @)

Relationships for the E-vector projections onto the focal plane from the original field
in (17) have been known [8,12]:

Ey =i"1(Iy, cosng + I ,_p cos(n —2)¢),
Ey = i”’l(IO,n sinng — Ip ,_psin(n —2)¢), (18)
E, =2i"l1,,_1cos(n—1)¢.

In (18), the integrals I;,, are defined by (3). Field projections in (18) can be expressed
via projections of vectors A and B using Equation (8), then:

E =¢7(A +iB),

Ay =Igpcosng + I ,_pcos(n—2)g,
Ay = Iy, sinng — I, _psin(n —2)g,
A; =0,

By =0, 1)
B, =0,

B, =2 ,,_1cos(n—1)g,

r=n-17.

From (19), the vectors A and B lying in the polarization ellipse plane are seen to be
mutually orthogonal: AB = 0. Considering that Iy, > I ,-1, the A vector corresponds
to the polarization ellipse major axis, with the B vector corresponding to the minor axis.
Considering that the B vector has just a longitudinal projection, it is perpendicular to the
focal plane. Meanwhile, with the A vector having just transverse projections, it lies in the
focal plane. At the same time, the spin density vector S perpendicular to the two above-said
vectors is described by the projections:

Sx =4I ,_1 cos((n —1)¢) Iy, sin(ng) — I, sin((n — 2)9)],
Sy = —4Iy,_1cos((n —1)@)[Ip, cos(ng) + I o cos((n —2)¢)], (20)
S, =0.

Hence, we can see that the situation that we observed for field (1) just on a circle of
radius ry, for field (17), occurs in the whole focal plane. What is more, the field at the focus
is linearly polarized when cos(n — 1)¢ = 0, i.e., at angles ¢, = 71(1/2+p)/(n — 1), where
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p=0,1,2,... At angles somewhat smaller than ¢, the projection of the vector B is positive
if I ,_1 > 0, whereas at angles somewhat larger than ¢,, the projection of the vector B is
negative. At the same time, the A vector lying in the focal plane hardly changes. We can
infer that the spin density vector S, which also lies in the focal plane, on passing the angles
@p changes the direction to the opposite. Thus, in the focal plane of field (17), there is no
longitudinal spin Hall effect, but there is a transverse spin Hall effect. In other words, on
an axis-centered circle of arbitrary radius in the focal plane, there are 4(n — 1) regions such
that the transverse spin components have an alternating sign in the neighboring regions.
Besides, lying on this circle are 4(n — 1) points at which light is linearly polarized (the B
vector equals zero) and the transverse spin also equals zero, S| = 0. So, when making
a full axis-centered circle of any radius lying in the focal plane, the polarization ellipse
always remains perpendicular to the focal plane, with the polarization vectors rotating
in the ellipse plane like spokes of a wheel. Thus, field (17) produces at the tight focus a

“photonic wheel” effect [15]. A remarkable finding is that while traversing the focal plane,

the light wave is not transversely polarized, as the wave vector and polarization ellipse
lie in the same plane. In summary, we found the following unique polarization properties
of the cylindrical vector field (17) in the focus plane: (a) the longitudinal component of
the SAM density vector is zero throughout the whole focus plane (i.e., the longitudinal
spin Hall effect does not arise in the focus plane); (b) the SAM vector lies in the focus
plane S |, and the major axis of the polarization ellipse A also lies in the focus plane; thus,
the polarization ellipse itself is perpendicular to the focus plane and its minor axis B is also
perpendicular to the focus plane (optical wheels); (c) the wave vectors of the light field
(17) are perpendicular to the focus plane (laminar energy flow) and lie in the plane of the
polarization ellipses (i.e., the polarization vector can coincide with the wave vector in a
certain moment of time).

5.2. An Azimuthally Polarized Optical Vortex

Below, we analyze another example of an original vector light field that allows obtain-
ing analytical relationships for projections of the major and minor axes of the polarization
ellipse at the tight focus. An original azimuthally polarized optical vortex of topological
charge n is described by the Jones vector:

_ . —sing
B(9) = expling) (20 ). @

A specific feature of light field (21) is that at its tight focus, the longitudinal projection
of the E-vector equals zero. At the center of a linearly polarized light field (21), there is a
V-point polarization singularity where the linear polarization vector is uncertain. For the
V-point polarization singularity, the Poincare-Hopf index is n = 1, which means that when
making a full circle about the beam center in the original plane, the linear polarization
vectors make a full turn.

According to Richards-Wolf theory [12], all projections of the E-vector onto the focal
plane take the form [16]:

jn+1

Ey=" ey I”(P[1¢R()+e—l¢T(r)}

Ey = mfP[ lfPR( _e*"PT ]

E, = o, (22)
R(r) = (Ioyt1 + Ius1),

T(r) = (loy—1+ Ipu—1)-
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The first two equations in (22) can be rearranged to Equation (7) by explicitly ex-
pressing projections of vectors of the major and minor axes of a polarization ellipse in the
focal plane:

E =¢7(A +iB),
Ay = %[R(r) CF)S(?I +1)e+T(r) c.os(n —1)¢],
Ay = 5[R(r)sin(n+1)¢ — T(r)sin(n — 1)¢],

¥

Az = ?/ ] ) (23)
By = 5[R(r)sin(n+1)¢ 4 T(r) sin(n — 1)¢],
By = [—R(r)cos(n+ 1)+ T(r) cos(n — 1)g],
Bz - 0,
ry=@n+1)7.
Putting nn = 1, (23) is rearranged to:
Ayq = %[R(r) cos2¢ + T(r)],
Ay = IR(r)sin2¢,
A, =0,
By1 = 5R(r)sin2¢, @)
By = 5[—R(r) cos2¢ + TJ,
B, = 0.

The dot product of the vectors A and B equals: AB = RTsin(2n¢)/2, suggesting that
these vectors form the polarization ellipse axes only at n = 0 (azimuthal polarization). At
other values of n, although lying in the focal plane, the A and B vectors are mutually
orthogonal only on circles of certain radius when either R(r) = 0, or T(r) = 0, or at angles
¢ =rmp/(2n),p=0,1,2,... From (24) we find that a C-point of circular polarization at the
tight focus center has the index Ic = 2, because upon making a circle around the optical axis,
the polarization ellipse major axis makes four half-turns, as projections of the A vector in
(24) depend on the double azimuthal angle.

At the tight focus, field (21) has just a longitudinal SAM vector projection:

S. = 2Im (EE,) = 2(AxBy — A,By) = (Tz(r) - R2(r)> /2. (25)

With the longitudinal SAM vector projection in (25) being @-independent, it changes
sign or equals zero on circles of certain radius. So, the intensity distribution at the focus has
radial symmetry: I(r) = |A|* + |B|* = (R?(r) + T%(r)) /2. In the focal plane, on a circle of
radius r; on which an equality R(r;) = T(r2) holds, field (21) is linearly polarized because
the longitudinal SAM component in (25) equals zero, S, = 0. However, considering that
the vectors A and B are mutually orthogonal and form polarization ellipse axes only at
certain rays tilted at angles ¢ = p/(2n), p =0, 1, 2, ..., when sin(2n¢) = 0, it is exactly
under these conditions that the B vector equals zero and field (22) is linearly polarized.
At R(r)T(r) cos(2ng) = 0, the vectors A and B have the same absolute value, which
occurs on axis-centered circles with radii such that either R(r) = 0 or T(r) = 0, or at angles
@=rm/@n)+mp/(2n),p=0,1,2,...and field (22) is circularly polarized (C-line polarization
singularity). On the axis-centered circles in the focal plane for which |T(r)| > |R(r)|,
the spin density S, is positive and, vice versa, on circles where |T(r)| < |R(r)|, the spin
density is negative. Thus, we have shown that at the tight focus of field (21), the sign of
the longitudinal spin component S; is alternating. Assuming a positive S; on some radius
in the focal plane, we find that with increasing radius, S, is decreasing before becoming
zero and then negative with further increasing radius. Such a behavior pattern of the
longitudinal SAM component is a manifestation of a radial longitudinal spin Hall effect. It
is of interest to analyze the behavior of the polarization ellipse surface in the focal plane
(A; = B; =0). As we are moving away from the optical axis along the radial variable, we
find the polarization ellipse surface to be "looking" in the optical axis direction as far as
S; > 0. Meanwhile, at S, = 0, the polarization ellipse shrinks to a segment (it is exactly
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where the ellipse surface experiences a twist). Finally, after traversing the S, = 0 point, we
find that S; < 0, meaning that the polarization ellipse surface is "looking" in the opposite
direction to the optical axis.

6. Numerical Modeling

In this section, based on Richards-Wolf formalism [12], we derive projections of the
E-vector for some original light fields and intensity patterns at the tight focus. Next, using
Berry formulae (7) for the same light fields, we calculate the coordinates of the major and
minor axis vectors of the polarization ellipses centered in the focal plane. The wavelength
is 532 nm, and the numerical aperture is NA = 0.95.

In Figure 1, depicted as a vertically elongated, inhomogeneous yellow-and-red ring,
there is an intensity pattern at the tight focus for the original field (1) at n = 3. The white color
marks the maximum intensity, yellow marks medium intensity, red marks low intensity
and black marks zero intensity. In compliance with Equation (6), the on-axis intensity in
Figure 1 is seen to be zero. Equation (6) also suggests that the intensity pattern should have
two maxima on a near-circular ring located on the vertical or horizontal axis, depending
on the sign of the expression in the round braces, which is multiplied by cos(2¢). The
maximum intensity values (marked white) in Figure 1 are seen to be located on the vertical
axis; hence, we infer that the expression in (6) that is multiplied by cos(2¢) is negative.
Although the on-axis intensity is zero, the near-axis transverse amplitude of field (2) can

effectively be expressed as
( Ey > ~ —e 12,1 < ; > . (26)

0.75 1
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-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

Figure 1. Intensity distribution (a slightly elliptical white-yellow-red ring) and projections of polariza-
tion ellipses onto the focal plane for the original field (1), describing a horizontally linearly polarized
optical vortex (n = 3). In-ellipse arrows mark the direction of the major axis of the polarization ellipse.
Blue ellipses correspond to the left-handed circular polarization and negative longitudinal SAM
projection (S; < 0), with red ellipses corresponding to right-handed circular polarization and positive
longitudinal spin (S; > 0).

Relationship (26) suggests that in the optical axis vicinity, the light is near right-handed
circularly polarized. In Figure 1, inside the light-colored intensity ring, the polarization
ellipses are near circular and marked red, indicating the right-handed circular polarization.
From Figure 1, on a full circle around the optical axis, the major axis of the ellipses within
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the intensity ring is seen to rotate by 27, implying that Ic = 1. The same conclusion can be
drawn from Equation (26), as near the optical axis in the focal plane, the topological charge
equals 1 (atn = 3).

In Figure 1, the yellow ellipse-shaped intensity pattern is seen to be fringed with
inner and outer red ellipses. A closer look at the inner red intensity ellipse reveals that
the polarization vectors are marked blue at the top and bottom and red on either side. So,
we infer that the longitudinal SAM component, S, within the intensity ring is negative
at the top and bottom and positive on either side. Therefore, there are four regions with
opposite-sign spin, which is a manifestation of the longitudinal spin Hall effect. Vice versa,
the outer red intensity ellipse is fringed with red arrows of polarization at the top and
bottom and blue arrows on either side. So, in the outer red intensity ellipse, the longitudinal
SAM component, S; is positive at the top and bottom and negative on either side, also
showing that there are four regions with the opposite-sign spin.

Moving along the edge of the yellow intensity ellipse, we find that at the boundary
where the red arrows change to the oppositely directed blue ones, the major axis vector of
the polarization ellipse experiences an abrupt flip-over in 3D space. When making a full
circle around the optical axis, the major axis vector forms a 3D two-sided strip with an even
umber of ‘lip-overs’, equal to the number of regions with the opposite-sign longitudinal
spin. Such a strip with an even number of half-turns is called a polarization-twisted
ribbon [6].

In addition, it is seen from Figure 1 that upon moving along the ellipse around its
center, approximately half-way in the yellow intensity pattern, the direction of the major
axis of polarization ellipse changes to the opposite six times at uniform 60-degree intervals.
Thus, farther from the optical axis in the focal plane, the polarization singularity index of
field (1) equals Ic = 3, being equal to the topological charge (n = 3) of the original field in (1).

Making note of the four blue arrows at the top of the internal red intensity ellipse in
Figure 1, we can see that they twice change their direction to the opposite. Considering
that the four blue-arrow polarization ellipses are narrow, we infer that the polarization
ellipses are nearly perpendicular to the focal plane. Their blue color means that the minor
axis of the polarization ellipse is opposite to the optical axis, whereas the SAM vector is
near vertical and almost in the focal plane (being slightly negatively tilted relative to the
optical axis). Hence, for two of the four blue arrows, the spin vector S is directed nearly
vertically upwards, being directed downwards for the other two. Such a spatial separation
of focal regions with the oppositely directed transverse spin S (upwards and downwards
in Figure 1) may be called a transverse spin Hall effect. Such reasoning based on Figure 1
agrees well with the theoretical conclusions from Equation (13).

Figure 2 depicts an intensity pattern (squeezed white-yellow-red ring) in the focal
plane from the original cylindrical second-order vector beam of Equation (17) at n = 2.
From (18), the intensity at the focus is seen to depend on cos(2¢), leading to two intensity
maxima on the horizontal axis (marked white in Figure 2). Note that at the center, instead
of an intensity null, there is an intensity minimum proportional to the term I in (18).
From (18), it follows that there are two zero-intensity points on the vertical axis, because
at ¢ = /2 and ¢ = 3n/2, field (18) has the only non-zero projection: Ex = i(Ip9 — Iy2),
which becomes equal to zero at In, — Ir o = 0. At these points of field (18), there are V-point
polarization singularities where polarization is uncertain. From Figure 2, it can be seen that
when making a full circle around these two points, the linear polarization vector rotates
by 27, similar to azimuthal polarization. That is, the said two V-points have the indices +1
(upper) and -1 (lower). At n = 2, the initial field (17) has an on-axis V-point with the index
2, which spits at the focus into two V-points, with the sum of their indices being equal to
zero. It would seem that the polarization singularity index should not conserve upon tight
focusing. However, when making a circle of a larger radius, the seeming contradiction is
eliminated. When making a full circle along the outside (red) intensity ellipse, the linear
polarization vectors make two full turns (four semi-turns); because of this, the field index
in Figure 2 equals 2, coinciding with the original field index.
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From Figure 2, the polarization vectors are seen to lie in the longitudinal planes and
perpendicularly to the focal plane (forming photonic wheels), meaning that only linear
polarization vectors (the major axes of polarization ellipses) lie in the focal plane. In Figure 2,
blue arrows are seen to prevail in the upper right and lower left quadrants, with red arrows
dominating the upper left and lower right quadrants. Red arrows mark the right-handed
circular polarization, with the spin vector S in the focal plane being directed predominantly
downwards. Blue arrows mark the left-handed circular polarization, with the spin vector
directed mainly upwards. Thus, in the focal spot plane, we observe alternating regions of
upwards- and downwards-directed transverse spin vectors, which is a manifestation of the
transverse spin Hall effect. When moving along the intensity ellipse contour in the focal
plane, we find that the polarization arrows are partly directed with and partly against the
motion direction. Meanwhile, for same-color arrows, this suggests that the spin vector S is
alternatively directed inwards and outwards of the ellipse. If two same-direction arrows are
of different colors, the spin vector S is directed inwards for one and outwards for the other
(different-color) circle. Such a behavior pattern of the spin vector can be called a transverse
(radial) spin Hall effect. When moving along an axis-centered circle, we encounter arrows
perpendicular to the circle. If two given arrows are different colors, the spin vector S is
tangentially directed along the motion in one of them, being directed oppositely in the
other. For two same-color, oppositely directed arrows, their respective spin vectors are
directed with and against the motion-handedness. This effect may be called a transverse
(azimuthal) spin Hall effect.
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0.00

—0.25 1

—0.50 1

—0.75 1

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

Figure 2. Intensity pattern (squeezed white-yellow-red ring) across the tight focus from the original
cylindrical second-order vector beam in (17) at n = 2 and polarization ellipse projections onto the
focal plane. In-ellipse arrows show the direction of the polarization ellipse major axis. Note that
with the polarization ellipses being perpendicular to the focal plane, their projections on the plane
coincide with the arrows. Blue arrows mark left-handed circular polarization, and red ones mark
right-handed circular polarization. The axes are plotted in microns.

Figure 3 depicts intensity patterns across the focal spot generated by the initial field
(21) at n = 1, with white-yellow areas marking the maximum intensity and violet-black
areas showing the minimum intensity. In view of Equation (22) and putting n = 1, field
(21) is seen to produce an on-axis C-point of right-handed circular polarization, with its
polarization singularity index being equal to Ic = 2. Upon moving anticlockwise around
the optical axis, the major axis vector of the polarization ellipse in Figure 3 makes four half-
turns, or two full turns. When compared to the polarization singularity index for V-point
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in the original plane (n = 1), a larger singularity index value at the focus for the C-point
(Ic = 2) is due to the fact that while in the original plane, the optical vortex topological
charge (n = 1) has no effect on the singularity index of field (21), in the focal plane, the
optical vortex changes the polarization pattern topology, increasing the polarization index
value by 1 thanks to extra phase jumps by 7.

0.75 A1
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0.00 A

—0.25 A

—0.50 A

—0.75 A

-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75

Figure 3. An intensity pattern (marked white-yellow-red) at the focus of an azimuthally polarized
field in (21) at topological charge n = 1 and a pattern of polarization ellipse distribution in the focal
plane. The green arrows inside the ellipses mark the major axis vector. Red ellipses mark right-
handed elliptic polarization (S, > 0), and blue ellipses mark left-handed elliptic polarization (S, < 0).
The axes are plotted in microns.

Moving away from the optical axis along an arbitrary radius, the major axis vector of
the polarization ellipse in Figure 3 will form a non-closed strip in 3D space with half-turns
found at distances of linear polarization.

7. Conclusions

The following optical polarization effects have been theoretically and numerically
shown to occur at the tight focus of a linearly polarized optical vortex with topological
charge n. When moving along a full circle around the optical axis in the focal plane, the
major axis vectors of the polarization ellipse have been shown to make 21 half-turns. That s,
in a vector field composed of the major axis vectors of the focal-plane-centered polarization
ellipses, the polarization singularity index equals the topological charge of the original
optical vortex. Irrespective of the topological charge, four regions have been found to
occur in the focal plane in which the longitudinal SAM projection has an alternating sign,
demonstrating a longitudinal Hall effect. We have shown that on moving along a closed,
axis-centered (circular or elliptic) contour, the major axis vector of the polarization ellipse
generates, in a 3D space, a two-sided twisted ribbon with an even number of half-turns,
by analogy with a twisted ribbon in Ref. [6]. In the focal plane, regions have been found
to occur in which the transverse spin vector projections located in the focal plane have an
alternating handedness relative to the circular motion handedness. This is a manifestation
of an azimuthal transverse spin Hall effect. We have also demonstrated that upon moving
on a circle, the transverse spin vector projections on the circle radii can be alternatively
directed either from or to the center, which is a manifestation of a radial transverse spin
Hall effect.
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The results obtained in this work can be employed for nanostructuring polarization-
sensitive materials [17-21], for magnetization and data recording based on the inverse
Faraday effect [22-25], for manipulating microparticles [26-28] as well as in optical mi-
croscopy [29-31].
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