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Abstract: Preparing submicron and nanoscale phosphors with good optical properties for practi-
cal applications is a challenging task for current inorganic long afterglow luminescent materials.
This study utilized commercialized SrAl2O4:Eu2+, Dy3+ phosphors (SAOED) as raw materials and
employed solvents with lower polarity or non-polar solvents for dynamic solvothermal treatment.
The commercialized phosphor’s overall average particle size was reduced from 42.3 µm to 23.6 µm
while maintaining the fluorescence intensity at 91.39% of the original sample. Additionally, the study
demonstrated the applicability of the dynamic solvothermal method to most other commercialized
inorganic phosphors. The experiment produced a high-brightness nano-sized phosphor with a yield
of 5.64%. The average diameter of the phosphor was 85 nm, with an average thickness of 16 nm.
The quantum efficiency of the phosphor was 74.46% of the original sample. The fingerprint imaging
results suggest that the nano-sized phosphors have potential for practical applications.

Keywords: solvothermal treatment; commercial phosphors; top-down; particle size; optical
properties; nanophosphor

1. Introduction

Micron-sized inorganic long afterglow luminescent materials are widely used in
commercial products due to their excellent afterglow properties. Sustained luminescence is
a unique optical process in which the luminescent material continues to emit a long-lasting
afterglow after the end of excitation [1–3] and thus is widely used in security marking
and night vision displays [4]. It is due to their excellent optical and afterglow properties
that afterglow materials are currently playing an indispensable role in applications such
as optical imaging and treatment of tumors [5,6], information anti-counterfeiting [7–9]
and multiple encryption [10–12], photocatalysis [13], fingerprinting, bio-imaging [14],
photovoltaic sensing [15–20], and light-emitting diodes [21].

Inorganic phosphors, especially those doped with rare earths, transition metals, and
main group metals, show unique advantages in high stability, long afterglow time, tunable
luminescence color (broad band from UV to IR), and high photoluminescence quantum
yield (PLQY) due to the unique electronic structure of dopant ions. Since the discovery of
long-afterglow luminescence at the beginning of the 20th century, great progress has been
made in the development of long-afterglow materials. They have been rapidly developed
in the past decade, and as a result, doped inorganic luminescent materials have been widely
reported. Such as the well-known ZnGa2O4:Cr3+, SrAl2O4:Eu2+, Dy3+, Zn2GeO4:Mn2+,
and the newly discovered CsPbBr3:La3+ [22–25]. In addition, more and more persistence
has been reported, encouraged by the rapid development of synthesis techniques and
precision optical instruments. Significant progress has been made in the exploration of
the composition of persistent luminescent materials, persistent luminescent properties,
working principles, and modulation methods [26–30]. Micrometer-scale inorganic long
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afterglow luminescent materials are even more widely used in commercial products because
of their excellent afterglow properties.

SrAl2O4:Eu2+, Dy3+ is a representative of inorganic long afterglow luminescent mate-
rials, first synthesized by Matsuzawa in 1996, which has several outstanding advantages:
stability, high efficiency, and less toxicity [31]. However, the current production process of
commercial SrAl2O4:Eu2+, Dy3+ is based on solid-phase reaction [32–37], which leads to
poor homogeneity and product grain size in the micrometer range, thus limiting the practi-
cal application of SrAl2O4:Eu2+, Dy3+ phosphors in fields such as bioimaging, biomedicine,
and fine chemicals. However, with the advancement of industrial and medical technologies,
there is an urgent need for nanophosphors with good optical properties, uniform particles,
and controllable morphology [17,38].

In this work, we select low-grade or non-polar alkane solvents to treat commercial
SrAl2O4:Eu2+, Dy3+ phosphors by the stirring solvent heat method to maximize the protec-
tion of optical and afterglow properties, as well as verify the general applicability of this
work. At the same time, a certain amount of sub-micron and nano-sized phosphors with
good afterglow properties were prepared and extracted in this work. Compared with other
top-down techniques such as mechanical milling, wet milling, laser ablation, etc., this work
was easy to operate, the product still maintains good optical properties, and it can be simply
dispersed without agglomeration, which is conducive to practical applications. In addition,
the reaction solvent can be recycled after the reaction, which is not only resource-saving
but also environmentally friendly, in line with the theme of green chemistry nowadays.

2. Materials and Methods

A turbid liquid was formed by dispersing 10 g of 40 µm commercial SAOED (Original)
in 250 mL of cyclohexane solvent. The mixture was then stirred for 3 h and ultrasonicated
for 10 min. Next, the mixture was transferred to a 1 L reactor and stirred by adding a
magnet at 150 ◦C for 24 h. After the reaction was complete, the reactor was removed,
and the product was collected by centrifuging the precipitate at 8000 rpm for 10 min.
The precipitate was collected and added to an anhydrous ethanol solvent. It was then
centrifuged at 8000 rpm for 10 min, washed with anhydrous ethanol three times, and
vacuum dried at 60 ◦C for 24 h to obtain the final product (S-phosphor).

The phosphor obtained from the solvent thermal reaction was dispersed in 100 mL
of anhydrous ethanol, stirred for 30 min, and then ultrasonicated for 30 min to separate
the suspended and deposited portions. The suspended portion underwent solid–liquid
separation after being centrifuged at 15,000 rpm for 5 min. The resulting nanophosphor
was dried under vacuum at 60 ◦C for 24 h.

Commercial phosphors were sourced from Guangdong Yueke Xinfa New Material Co,
Guangzhou, China. All reagents mentioned in this article were purchased from Aladdin
Reagent (Shanghai, China) Co. All initial chemicals used in this paper were dried using
molecular sieves (Shanghai Macklin Biochemical Technology Co., Shanghai, China).

The phase identification of the obtained samples was carried out with Ultima IV
X-ray diffractometer. X-ray photoelectron spectroscopy (XPS) (Thermo Scientific K-Alpha,
Waltham, MA, USA) was used for surface element analysis of phosphors. An Al Ka X-ray
source with power of 150 W was used. Energy dispersive analysis (EDS) of phosphor
was performed by JSM-7610Fplus. FE-SEM measurements were performed using FEI
Verios 460 scanning electron microscopy. In order to improve the image quality, the
samples were sputtered with high vacuum. TEM images were obtained using FEI Talos
F200S, acceleration voltage of 200 KV. Selective area electron diffraction (SAED) and lattice
fringe photography were performed using JEOL JEM-F200 HRTEM at 200 kV. Atomic
Force microscope (AFM) images were obtained by Bruker Dimension Icon Atomic Force
microscope. Atomic force microscopy (AFM) is a technique that involves fixing one end of
a pair of microcantilevers, which are sensitive to weak forces. The tip of the other end was
then scanned on the surface of the sample in order to obtain the topographical structure
and roughness information of the sample surface with nanometer resolution. The size



Appl. Sci. 2024, 14, 3929 3 of 15

distribution of the particles was analyzed using the laser size analyzer Mastersizer 3000. The
excitation spectrum, emission spectrum, and afterglow attenuation curve were recorded by
Hitachi F-7000 spectrophotometer, and 150 W xenon lamp was used as excitation source.
The width of excitation and emission slit was 5 nm. When the sample was excited for
3 min, the excitation light of the sample was blocked, and the afterglow of the sample
was measured. For temperature-dependent spectral measurements, the Edinburgh FLS980
was used.

3. Results and Discussion
3.1. Characterization and Optical Properties of S-Phosphor

As can be seen from Figure 1a, the monoclinic diffraction peaks of the reacted phosphor
dominate in the XRD spectra, which were similar to those of the SAOED before the reaction.
It indicates that the crystal structure of the phosphor was not destroyed after treatment.
As shown in Figure 1b, the broad XPS spectra of the solvent-heat-treated phosphor in the
range of 0~1200 eV showed the presence of Sr (3s, 3p, 3d), Al (2s, 2p), O1s, and C1s peaks
in the spectra, which indicated that the product consisted of strontium, aluminum, and
oxygen elements. The results of the XPS analyses indicated that the compositions of the
reacted phosphors were essentially the same as those of the untreated bulk phosphor. EDX
spectroscopy (Figure 1c) further confirmed the chemical composition of the products. The
mass and atomic ratios of the elements of the untreated bulk phosphor and the reacted
phosphor conform to the stoichiometric formula of SrAl2O4. Figure 1f shows HRTEM
images taken on the reacted phosphor. The spacing between neighboring lattice planes was
0.201 nm, which corresponds to the (−2 2 2) crystal planes of Joint Committee on Powder
Diffraction Standards (JCPDS) standard card No. 34-0379.
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Figure 1. (a) X-ray diffraction (XRD) patterns of original phosphors and S-phosphor. (b) X-ray
photoelectron spectroscopy (XPS) pattern of S-phosphor. (c) Energy dispersive analysis (EDS) pattern
of S-phosphor. (d) Selective area electron diffraction (SAED) pattern of S-phosphor. (e) Scanning
electron microscopy (SEM) image of original phosphors. (f) SEM image of S-phosphor.

As can be seen in Figure 1e,f, as well as Figure 2, the overall particle size of the
phosphor was reduced from 42.3 µm to 23.6 µm after solvent heat treatment, and the
change in particle size was obvious. Although the average size cannot be directly reduced
to nanometer size or submicron size, the phosphor size in the submicron size range before
and after the reaction was increased from 0.56% to 3.158% by volume. Compared with
the untreated phosphor, most of the surface corners of the reacted phosphor became
less obvious.
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Figure 2. Size distribution of: (a) Original phosphor and (b) S-phosphor.

As can be seen in Figure 3, the excitation and emission spectra of the phosphor remain
relatively stable in their positions before and after the reaction. The excitation spectrum
consists mainly of excitation bands in the wavelength range of 300–450 nm, with a distinct
peak at 360 nm and a shoulder peak at 420 nm. This indicates that the sample has a good
excitation response to both UV and visible light. On the other hand, the emission spectrum
shows a symmetrical and continuous broadband spectral pattern with the emission peak
clearly located at 512 nm, and the emission intensity of S-phosphor remains at 91.39% of
the original sample. This peak was mainly attributed to the radiative excitation process
between the 4f6 5d1 excited state and the 4f7 ground state of the Eu2+ ion [39]. In addition,
the afterglow decay curves before and after the reaction show a similar trend, and the
afterglow lifetime of S-phosphor was 94.98% of the original sample. This indicates that
the luminescence center of the phosphor and its crystal structure were not significantly
damaged after the dynamic solvent heat treatment.
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Figure 3. (a) Excitation spectra, (b) emission spectra, and (c) afterglow decay curves of original
phosphors and S-phosphor.

In this work, we found that during the reaction process, cracks appeared in the
phosphor blocks and “tore” at the cracks, thus splitting the large-particle block phosphor
into multiple small-particle block phosphors. In the reaction kettle, we added a magnetic
stirrer and stirred while reacting. The block phosphor was constantly subjected to pressure
and solvent washing inside the kettle, and the block produced cracks during the reaction
process. The surface of the untreated strontium aluminate luminescent material was
relatively smooth, and no cracks appeared (Figure 4a). After 1 h of solvent heat treatment,
the surface of the blocks started to become uneven, and cracks started to appear at the edges
(Figure 4b). At 4 h of reaction, the cracks in the blocks became more pronounced (Figure 4c).
When the reaction was carried out for 8 h, cracks appeared in most of the phosphor powder
and even in most of the small particles of phosphor, and the number of cracks increased
dramatically (Figure 4d). At 12 h (Figure 4e), the phosphor surface was covered by a large
number of small irregular particles of phosphor, the powder was eroded significantly, the
cracks turned into grooves, and the “tearing” phenomenon began to appear. At 24 h of
reaction (Figure 4f), the number of cracks in the powder was significantly reduced and was



Appl. Sci. 2024, 14, 3929 5 of 15

not obvious; the powder became uneven, and rough “pits” appeared. Scanning electron
microscopy (SEM) analysis of the “cracked” parts of the powder (Figure 4g,h) revealed
that the fracture was uneven, the surface was rough, and irregular grooves appeared,
similar to the phenomenon of wall cracked. In addition, a large number of submicron-sized
phosphors were agglomerated at the cracked area (Figure 4i).
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Therefore, this work proposes a mechanism for the fragmentation of phosphor powder
(Figure 5); with the beginning of the solvothermal reaction, part of the large-size phosphor
powder was gradually eroded and peeled off from the smooth surface of the powder by
the influence of high-temperature and high-pressure conditions and stirring in the reaction
kettle, and the corners of the powder diamonds also gradually became smooth. As the
reaction proceeded, the surface of the powder became rougher and rougher, and cracks
began to appear, gradually cracking. At the same time, some of the stripped small-sized
phosphor was attached to the surface of the block. As the reaction continued, the large-sized
powder was “torn” into small-sized particles, which ultimately led to a reduction in the
overall particle size of the phosphor.
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In order to explore the applicability of this solvent heating method to the same phos-
phor with different particle sizes, SAOED with 6.32 µm, 24.6 µm, and 61.2 µm particle
sizes were also subjected to cyclohexane solvent heating in this work. The emission spectra
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(Figure 6a) show that the optical properties of SAOED with different particle sizes were
weakened to a certain extent after solvent heat treatment, which corresponds to the reduc-
tion of the overall particle size from 6.32 µm to 4.86 µm (Figure 6b), 24.6 µm to 12.6 µm
(Figure 6c), and 61.2 µm to 45.8 µm (Figure 6d). The commercial Sr4Al14O25 phosphor
with 20 µm particle size and the commercial Sr2MgSi2O7 phosphor with 20 µm particle
size were also taken to explore the universality of this solvent-heating method for different
phosphors with the same particle size. It can be found that, after solvent-heating treatment,
the optical properties of the two were weakened compared with those of the commercial
phosphors before the treatment (Figure 6e,f), and the changes in the particle size were
consistent with the results of the previous experiments. The changes in particle size were
also consistent with the previous experimental results, and the overall average particle size
after the solvent thermal reaction was reduced compared with that of the untreated com-
mercial phosphor. Moreover, the volume percentage of submicron size increased compared
with that before the reaction (Figure 6g,h). Therefore, it can be seen that the solvothermal
method in this work is universal.
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As the reaction proceeded, the surface of the bulk phosphor was continuously washed
by the solvent under high temperature, high humidity, and high pressure, in which the
surface morphology of the bulk changed continuously during the reaction, so the powders
were analyzed by field emission scanning electron microscopy (FESEM) after the solvent
heat treatment at different times. It can be seen that the surface of the untreated strontium
aluminate luminescent material was relatively smooth (Figure 7a). At 4 h of solvent heat
treatment, the surface of the block started to become rough and uneven, and a number of
small-sized (<2 µm) phosphor particles were attached to the surface (Figure 7b). At 12 h of
treatment, grooves different from the previously discussed tearing surface appeared, and
the direction of the grooves showed regularity, while the corners of the blocks began to
become less obvious (Figure 7c). When treated for 18 h, part of the needle-like morphology
phosphor began to adhere to the surface of the grooves of the large-grained bulk phosphor
(Figure 7d). Further increasing the treatment time to 24 h (Figure 7e), it was found that
the surface of the large-particle chunks had basically been covered by the small-sized
and needle-shaped phosphors. As the experiment proceeded to 48 h (Figure 7f), the
needle phosphors appeared to agglomerate and formed uniformly covered cluster needle
structures on the block phosphor surface. It was found that the surface of the bulk phosphor
will be eroded by the solvent, and with the increase of the experimental time, in the middle
and late stages of the reaction, the surface of the block will gradually generate nano-sized
special features and the present experiment mainly generates needle-like special features
and some flaky special features.
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3.2. Characterization and Optical Properties of Nanophosphor

In order to separate these small-sized and nano-sized phosphors from the surface
of the block, after solvent-thermal reaction, the phosphors were further processed by
ultrasonication and centrifugation. The scanning electron microscope images showed that
the small-sized phosphors were relatively uniform in size, numerous, and with a greatly
reduced particle size (Figure 8a). The powders were in the form of clusters, similar to coral
structures, and were all similar to coral structures (Figure 8b,c). The average length of the
needle-like structure on the coral structure was about 568 nm, and the average diameter
was about 63 nm, while the average length of the lamellar structure was about 300 nm
(Figure 8d). At the same time, the length and diameter of the separated and extracted
needle phosphors were less than 100 nm, and the morphology was approximately the
same (Figure 8e). This indicates that the uniform size of the nanofluorescent needles can
be extracted by solvent heat. The surface of the bulk phosphor after the isolation of the
nanospecific morphology was rough and covered with grooves (Figure 8f), which was
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similar to the morphology at 12 h of reaction (Figure 7c), which can be added to prove that
the small-sized special morphology was reattached and agglomerated on the surface of the
bulk powder in the middle and late stages of the reaction.
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(a,b) Overall morphology of block phosphor. (c,d) Surface morphology of block phosphor. (e) Needle
phosphor extracted by ultrasound. (f) Block phosphor after extraction of needle phosphor.

During the previous experiments, after the operations of ultrasonication and cen-
trifugation, the submicron-size and nanosize phosphors in the products were extracted,
which had needle-like morphology with some flake-like morphology. In the XRD spectrum
(Figure 9a), the monoclinic diffraction peaks of the small-sized phosphors were dominant,
similar to those of the commercial SAOED before the reaction. It indicates that the crystal
structure of the nanophosphor was not destroyed after treatment, but the summit appears
broadened, which was due to the small size effect of the particles. The EDS spectra (see
Figure 9b) further confirmed the chemical composition of the final products. The mass and
atomic ratios of the elements of the untreated bulk and nanopowder phosphors conform to
the stoichiometric formula of SrAl2O4.

Wide XPS spectra showed (Figure 9c) the presence of Sr (3s, 3p, 3d), Al (2s, 2p),
O1s, and C1s peaks in the spectra, suggesting that the extracted product consisted of the
elements strontium, aluminum, and oxygen. The results of the XPS analyses indicated that
the composition of the nanophosphors was essentially the same as that of the untreated
commercial bulk phosphor.
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spectra of the nanophosphor; (c) X-ray photoelectron spectroscopy (XPS) spectra of the nanophosphor;
(d) lattice fringes of the nanophosphor (insets are diffractograms); (e–g) HRTEM images of the
nanophosphor; (h,i) atomic force microscopy (AFM) images of the nanophosphor.

HRTEM images taken of the nanofluorescent powders were adjacent to their lattice
plane spacing of 0.3115 nm, corresponding to the (−2 1 1) crystal plane of JCPDS standard
card No. 34-0379 (Figure 9d). Transmission electron microscopy (Figure 9e–g) and AFM
analysis (Figure 9h,i) observations showed that the product nanopins or nanosheets (PLNSs)
were very thin, and the nanopins were well dispersed, whereas most of the PLNSs were in
the form of irregular flakes and prone to agglomeration, with an average particle size of
86 nm and an average thickness of about 15 nm.

To demonstrate the feasibility of preparing nano-sized phosphor through this experi-
ment, we extracted the nano phosphor from the original commercial bulk phosphor and
compared its weight with that of the phosphor obtained in this experiment. The experiment
demonstrates that the weight of the nano phosphor in the pristine bulk phosphor was
0.2675 g, while the weight of the nano phosphor obtained by solvent heat treatment was
0.8314 g. This confirms the successful preparation of the nano phosphor with a yield
of 5.64%.

Temperature-dependent emission spectra were carried out for the product nanofluo-
rescent powder at 45 Kintervals between 100 and 460 K with xenon excitation (Figure 10a).
In the emission spectrum, two bands were observed at 440 to 525 nm. This is due to the
presence of two sites available for Sr2+ ions in monoclinic crystalline SAOED, and both sites
occur in the same number in the lattice [40]. The emission intensity at shorter wavelengths
is slightly lower due to energy transfer. At room temperature, the emission at 445 nm
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was quenched, and only the longer wavelength emission was observed. However, in the
present work, the emission spectra show a blue shift with increasing temperature. The
reason for this may be that at higher temperatures, more electrons were populated on the
high-energy excited state subenergy levels, but the non-radiative leaps at the intersection
of excited and ground states in the configuration coordinate diagram were reduced. As
a result, the intensity of the high-energy emission peaks increased, and the intensity of
the low-energy emission peaks decreased. Also, due to the convolution of the peaks, the
blue-shifted behavior was observed with increasing temperature.
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Due to the electron–phonon interaction between the ground and excited states of the
luminescent center at high temperatures, the emission intensity decreases with increasing
temperature. It was assumed that the non-emissivity knr can be expressed as [41]

Knr = Aexp(−∆E/kT) (1)

where A is a constant, k is the Boltzmann constant, and ∆E is the activation energy of the
thermal quenching process. Therefore, the emission intensity decreases as the probability
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of non-radiative jump increases with increasing temperature. From Equation (1), the lower
the value of ∆E, the faster the non-radiative rate at a given temperature [42]. In addition,
the Arrhenius equation can be used to characterize the temperature quenching of the
study [43].

I(T) = I0/[1 + Cexp(−∆E/kT)] (2)

where I0 and I(T) are the initial intensity and the intensity at a given temperature T,
respectively, and C is a constant. Comparing the emission intensities (Figure 10b) with
temperature in the range of 325 to 460 K, the ∆E of commercial SAOED and nanophosphor
were obtained as 0.067 and 0.061 eV, respectively, and there was no doubt that the activation
energies of unreacted commercial SAOED were higher than that of the nanophosphor,
which suggests that the latter’s thermal stability has been improved while being more
sensitive to thermal effects.

In order to visualize the optical strength of the two, the phosphor quantum efficiency
test was performed by exciting the phosphor at 370 nm (Figure 10c). The quantum efficiency
is the ratio of the number of photons produced per second by the phosphor to the number
of incident quanta at a particular wavelength. The quantum efficiency can be calculated for
the resulting nanosheets by the following equation [44]:

η =
ε

α
=

∫
LS∫

ER −
∫

ES
(3)

In the formula, ε is the number of photons emitted by the sample; α is the number of
photons absorbed by the sample; LS is the emission spectrum of the sample; ES is the excita-
tion spectrum of the standard light source, and ER is the excitation spectrum of the sample
without the sample in the integrating sphere. After calculation, the absorption efficiency of
nanosheet strontium aluminate is 23.40%, while the absorption efficiency of commercial
strontium aluminate luminous powder is 31.86%. The quantum efficiency of nanosheet
strontium aluminate luminescent powder was lower than that of commercialized bulk
strontium aluminate luminescent powder, and the level of quantum efficiency essentially
reflects the luminescence intensity of luminescent powder; therefore, the luminescence
intensity of nanosheet luminescent powder was also slightly lower than that of commer-
cialized strontium aluminate luminescent material. The results were shown to correspond
to the intensity of the emission peaks of both in the fluorescence spectrogram (Figure 10d).

Afterglow performance is an important indicator of the optical properties of phosphors,
and in this work, it was observed that the afterglow decay curves of the samples contained
two processes (Figure 10e): a fast-decay phase and a slow-decay phase. The fast decay
stage is a stage in which the electron inventory inside the luminescent center Eu2+ is short,
and thus, a rapid decrease in the afterglow intensity occurs; the slow decay stage was
caused by the Dy3+ ions, which provide a deeper trap energy level in the SAOED, and
the electrons were trapped in the process of irradiation of excitation source, and after the
excitation source was cut off, the trapped electrons were slowly released, slowing down
the rate of decrease in the afterglow intensity of the sample.

The afterglow decay curves of SAOED bulk luminescent materials, as well as nanophos-
phors, were fitted using Equation (4):

Y = Y0 + A1exp(−t/t1) + A2exp(−t/t2) (4)

where Y is the photoluminescence intensity; Y0, A1, A2 are the material correlation constants;
t is the desired afterglow time; and t1, t2 are the fitting parameters related to the phosphor
decay rate, which correspond to the two decay processes. From the results, it can be seen
that the fluorescence brightness of the nano phosphor was 53.06% of the original sample
(Figure 10d), and the afterglow lifetime was 74.47% of the original sample, but it was still
better compared with the afterglow performance of other nano-sized phosphors obtained
by the top-down method [25,45].
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Similarly, we studied the variation of afterglow intensity with temperature by ramping
up from 100 K to 460 K at 45 K intervals (Figure 10f). When the temperature was less
than 150 K, the afterglow intensity was weak due to the lower temperature and weaker
thermal perturbation; subsequently, when the temperature increases to 325 K, the process
of trapping and releasing electrons becomes more and more active with the increase of tem-
perature, and thus the afterglow intensity shows a linear increase in this temperature band;
when 320 K–460 K, the afterglow intensity shows a linear decay relationship (Figure 10g),
which was due to the thermal disturbance caused by the ambient temperature. Induced
thermal disturbances were too strong, and internal carrier storage in different traps became
difficult. In this case, electrons escape or are lost, and thus, the emission intensity of the
afterglow becomes weaker. In addition, the nanosheet afterglow intensity varies linearly
with the ambient temperature, which can be applied to fiber optic sensing materials.

3.3. Nanophosphor Fingerprint Imaging Applications

In this work, the experimenter pressed the finger on A4 paper (Figure 11a) and
a door handle (Figure 11d), and it was difficult to see the fingerprint details with the
naked eye in both cases. The nanophosphor obtained by the solvent heat treatment was
applied to the pressed area, and the complete fingerprint image could be seen after turning
on (Figure 11b,e) and off (Figure 11c,f) the UV light, and the clean ridges and edges
could be observed by the naked eye, and some unique texture details (core, bifurcation,
termination, pores, and islands) could be well observed after magnification of some areas
of the fingerprint photo. It was demonstrated that the nanophosphor obtained in this work
shows great potential for practical applications in the visualization and detection of fast
fingerprint identification.
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4. Conclusions

In this study, we successfully reduced the average particle size of commercialized
phosphor from 42.3 µm to 23.6 µm without compromising its optical properties. The
fluorescence intensity was maintained at 91.39% of the original sample using the dynamic
solvent–thermal method with low-polar or non-polar solvents to treat micrometer-sized
commercialized phosphors. We also observed the change in particle size without affect-
ing its optical properties. The method was applicable to most inorganic long afterglow
luminescent materials. We propose the related mechanism for the first time.
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Nanophosphors with good afterglow properties were prepared using a one-step
solvothermal method. These nanophosphors have great potential for practical applications
in visualization and rapid fingerprinting. The average diameter and thickness of the
nanophosphors were 85 nm and 16 nm, respectively. The quantum efficiency of the
nanophosphors was 74.46% of that of the original sample. The high temperature and high
pressure generated by the direct thermal treatment of solvents and stirring ensure their great
potential for biological applications. The relationship between the photoluminescence and
afterglow emission intensity of the material was linear with respect to ambient temperature,
indicating potential application in temperature-sensing materials.
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