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Abstract: Convolutional neural networks (CNNs) have achieved promising results in many tasks,
and evaluating the model’s generalization ability based on the trained model and training data is
paramount for practical applications. Although many measures for evaluating the generalization of
CNN models have been proposed, the existing works are limited to small-scale or simplified model
sets, which would result in poor accuracy and applicability of the derived methods. This study
addresses these limitations by leveraging ResNet models as a case study to evaluate the model’s
generalization ability. We utilized Intersection over Union (IoU) as a method to quantify the ratio of
task-relevant features to assess model generalization. Class activation maps (CAMs) were used as a
representation of the distribution of features learned by the model. To systematically investigate the
generalization ability, we constructed a diverse model set based on the ResNet architecture. A total of
2000 CNN models were trained on the ImageNet subset by systematically changing commonly used
hyperparameters. The results of our experiments revealed a strong correlation between the IoU-based
evaluation method and the model’s generalization performance (Pearson correlation coefficient more
than 0.8). We also performed extensive experiments to demonstrate the feasibility and robustness of
the evaluation methods.

Keywords: generalization evaluation; ResNet; convolutional neural network (CNN); class activation
map (CAM)

1. Introduction

Convolutional neural networks (CNNs) are renowned for their exceptional data repre-
sentation and fitting capabilities, typically exhibiting robust generalization performance
with unseen data. In real-world applications such as autonomous driving and the medical
field, it is crucial to evaluate the model’s generalization ability based on the trained model
and its training data. The generalization ability of a model is defined as the accuracy of the
model using unseen data under independent identically distributed (i.i.d.) conditions [1].
However, the generalization of over-parameterized CNN models is not well understood
theoretically, and there is a lack of precise methods to accurately evaluate this ability. This
leaves the assessment of CNN model generalization as a complex and unresolved issue,
particularly due to the risk of overfitting, where the number of parameters of deep CNN
models often surpass the size of the training dataset [2].

The generalization ability of neural networks is vital for their practical application,
thus necessitating a rigorous evaluation framework [3,4]. If P is the data distribution, the
training data Dtrain = {(xi, yi)}N

i=1 is a set of input–output pairs sampled i.i.d. from P,
where xi represents a sample of data, yi represents the label of the sample, and N represents
the number of training samples. The model is trained on a known training dataset. How-
ever, the test data Dtest are unknown, which is also obtained by independently sampling
from P. Evaluating the model’s performance on unseen data, which is its generalization
ability, requires consideration of both the known training data and the trained model itself.
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Generalization evaluation can be formally defined as µ(f, Dtrain) → AccDtest(f) , where µ is
the evaluation method and f represents the trained model.

A good assessment method should have a strong correlation with the generalization
gap [3,5], a pivotal concept introduced in [1]. The generalization gap represents the model’s
generalization capability, and is the difference in accuracy between a model’s training and
test set performances upon convergence. A narrower generalization gap value indicates a
better generalization ability of the model, while a wider gap suggests poorer generalization.

This paper delves into the generalization evaluation of CNN models, with a focus
on ResNet for image classification, aiming to fill the existing gaps in knowledge. The
methods for assessing the generalization of CNN models can be categorized into two main
groups: theoretical analysis and empirical research. The former relies primarily on tradi-
tional statistical learning theory [6], encompassing concepts such as VC dimension [7] and
margin theory in support vector machines. These theoretical approaches aim to establish
an upper bound for the generalization error of deep neural network models [8,9]. However,
these methods often lack experimental validation on extensive model sets and may not
accurately provide the upper bounds for generalization errors [10]. The latter approach
involves predictive modeling, where the generalization capability is forecasted based on the
characteristics of network model weights [11] or intermediate layer outputs [1]. However,
these methods are typically investigated on small-scale or simplified model sets [3], which
limits their applicability and creates a gap between their findings and real-world tasks.

To overcome these limitations, we used IoU, a well-established metric in the field of
object detection [12–15], as a method for evaluating the generalizability of CNN models,
and constructed a model set to validate its effectiveness. The contributions of this paper
can be summarized as follows:

• We provide a new perspective for evaluating the generalizability of CNN models by
application of IoU. Specifically, we leverage IoU to compute the ratio of task-relevant
features learned by the model as a measure for assessing generalizability. Task-relevant
features are defined as features for the location of the category object in the image.

• A model set of residual network architecture [16] was meticulously constructed, in-
cluding 2000 ResNet models trained on a subset of ImageNet [17]. This extensive
ensemble was developed by methodically varying a set of standard hyperparameters.

• We conducted extensive experiments on the constructed model set and showed that
using IoU as a criterion for evaluating the generalizability of CNN models is effective
and robust.

2. Related Works
2.1. Generalization Evaluation Methods Based on Theoretical Analysis

Traditional statistical learning methods are extensively employed to evaluate the gener-
alization performance of CNN models. Bartlett et al. [8] proposed an approach that utilizes
the spectral norm product of the weight matrix as the Lipschitz constant for assessing the
model’s generalization ability. Another study [18] introduced a method that leverages
the average weights of random models to enhance overall model generalization. Addi-
tionally, a separate study [9] delved into the generalization performance by formulating a
loss function predicated on the marginal distribution. This approach specifically targets
the optimization of the statistical properties inherent to the entire marginal distribution,
with a particular emphasis on the ratio of marginal standard deviation to the expected
margin. However, it is important to note that theoretical analyses often necessitate stringent
assumptions, which may limit the applicability of the generalization evaluation methods.
Nagarajan et al. [10] conducted experiments demonstrating the difficulty of accurately
establishing an upper bound for model generalization ability using traditional theoretical
methods. These findings highlight the need for more robust and flexible methodologies to
accurately evaluate the generalization capabilities of CNN models.
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2.2. Generalization Evaluation Methods Based on Modeling Prediction

Several empirical research studies [1,3,5,19,20] have proposed methods for predicting
the generalization ability of neural networks. Jiang et al. [1] utilized quantile statistical
values outputted by specific layers of the model to construct a regression model for pre-
dicting the model’s generalization ability. They constructed small-scale and simplified
model sets to train and validate generalization gap predictive models, such as linear and
logarithmic models. A competition named Predicting Generalization in Deep Learning
(PGDL) was proposed based on this model set to predict the generalization ability of
deep neural network models. This competition promoted research on using experimental
methods to build models to predict the generalization ability of neural network models.
Chuang et al. [19] treated the middle layer of the model as a classifier and selected the
output data of a specific layer to establish a prediction model based on margins for the
model’s generalization ability, employing optimal transmission theory. Schiff et al. [21]
predicted the generalization ability of the model using perturbation response curves, which
captured how a trained model’s accuracy varies with different levels of perturbation in
the input data and introduced two novel measures, the Gi-score and Pal-score, inspired by
economic inequality metrics, to accurately predict generalization capability. These methods
require not only training data but also labeled test data. Although these methods perform
well on PGDL datasets, most of them require training data and have not been verified
on large-scale models. Wei et al. [5] used the derivative of the loss function of the model
parameters, that is, the Jacobian matrix, as a reference for evaluating the generalization
ability of the model. However, this approach required significant computational resources.
Deng et al. [22] used the model’s invariance to transformations of the input data to evaluate
generalization. Then, a more efficient method for generalizability assessment was proposed
which uses the normalized value of the nuclear norm of the prediction matric to evaluate
the generalization ability of a model [20].

Most of these empirical research works have been experimentally verified on simplified
or small-scale model sets, which may lead to inaccurate or poor applicability of the obtained
methods for evaluating model generalization. Jiang et al. [3] used correlation to analyze
generalization evaluation methods on a large-scale model set and found that most methods
have a weak correlation with the true generalization ability of the model.

In summary, the methods for assessing the generalization ability of deep neural net-
work models can be categorized into theoretical analysis-based approaches and empirical
research methods. Theoretical analysis methods, while widely used, often have limited
applicability and struggle to provide accurate upper bounds for model generalization
errors. Empirical research works have proposed various modeling prediction methods,
but many of them rely on modeling and training and lack validation on large-scale and
complicated model sets.

3. Method
3.1. Class Activation Map

Due to the black-box nature of deep neural network models, directly assessing their
generalization ability is challenging. To address these challenges, gaining insights into the
decision-making processes of these models can offer novel approaches for evaluating gen-
eralization. Various methods for explaining the decision-making of neural network models
have been proposed. Among them, the Class Activation Map (CAM) based on the attribu-
tion explanation method is an efficient and accurate approach [23,24]. CAM can quantify
the importance of different positions in the input image to the CNN model’s final output.
In other words, the class activation maps can be used to represent the feature weights
learned by the model at different pixels in the input image. One study [25] suggested that
irrelevant features learned by the network model will decrease the generalization ability
of the model. Drawing from the principle of algorithm stability, it can be inferred that a
model’s generalization capability can be enhanced when it learns greater feature weights
at positions that are pertinent to the task. Class activation map (CAM) [23,24] is a type of
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attribution interpretation method that can calculate the correlation degree of each pixel in
the image with the final prediction of the model.

As depicted in Figure 1, Grad-CAM [24], an evolution of CAM, is utilized to gen-
erate a heat map that graphically represents these correlations. The heat map’s values
are normalized to a scale where 0 signifies the least significant correlation, and 1 denotes
the most substantial correlation. CAM was proposed in the field of image classification,
especially for CNN models, which have good interpretability. It serves as a quantitative
measure of the feature weights across various pixel positions within the image, as well as a
representation of the spatial distribution of these learned features.
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For a given category c, the general calculation method of CAM is as follows:

Mc = ReLU(∑
k

wc
k Fk) (1)

where Mc ∈ Rh×w represents the class activation map of the model for category c. Fk ∈ Rh×w

is the feature map output by the middle layer of the model, and wc
k represents the impor-

tance of the k-th dimension feature map relative to category c. The calculation method of
CAM proposed by Zhou et al. [23] uses the weight parameter of the fully connected layer
after the network convolution layer as wc

k. This method requires adding a global average
pooling layer (GAP), and class activation maps can only be calculated after the last layer of
convolution. The Grad-CAM [24] method uses the gradient mean of the loss function on
the feature map as wc

k. This method can calculate class activation maps at any layer in the
network without modifying the network structure.

According to the literature [25] and the algorithm stability principle, the higher the
ratio of task-relevant features learned by the model, the better its generalization. In this
paper, for the image classification task, task-relevant features are defined as the features
that are distributed over the category-specific object’s location.

Figure 2 illustrates the feature distribution learned by the model and the annotated
bounding boxes delineating the category object’s location. The figure is organized into rows,
with the top row depicting the input image processed by the model. The subsequent rows
(second to fourth) correspond to three distinct models, each exhibiting varying levels of
generalization capability. This research employed the concept of the generalization gap to
quantify the models’ generalization performance [1]. The generalization gap values, which
are indicative of the model’s generalization proficiency, are listed in the first column and
were 4.0, 25.0, and 47.1, respectively, with the models’ generalization ability diminishing
from top to bottom. Upon examination of the figure, it is evident that the model with a
robust generalization ability exhibited a high degree of overlap between the learned feature
distribution and the object’s location. The observed trends are characterized as follows: as
the generalization ability diminishes, the learned feature distribution evolves from being
concentrated and encompassing the entire target object, to a pattern where some features
are dispersed outside of the object or are localized to specific areas within it, culminating in
a scenario where the majority of features are localized outside the target object.
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3.2. IoU-Based Generalizability Evaluation Methodology

Building upon the analyses presented in the preceding section, we identified a robust
correlation between the spatial distribution of features within a model and its capacity for
generalization. Consistent with our earlier observations, an increased alignment between
the model’s learned features and the spatial location of the category object within an image
correlates positively with enhanced generalization performance, as indicated by a reduced
generalization gap. In this research, we adopted the IoU metric to quantitatively evaluate
the generalization capability of CNNs for image classification tasks, focusing on the ratio
of task-relevant features.

As illustrated in Figure 3, our methodology commences with the extraction of the
positional distribution of the category-specific object, delineated by its bounding box. Sub-
sequently, we generate class activation maps that illustrate the spatial emphasis of features
within the model’s focus. The model’s learned feature distribution is then delineated on
these class activation maps, employing a threshold to segment and isolate the features that
are most pertinent to the classification task. The penultimate stage uses IoU to calculate the
ratio of task-relevant features, which quantifies the spatial overlap between the model’s
learned feature distribution and the actual positions of the category objects. This IoU value
serves as a proxy for the proportion of accurately localized, task-relevant features, thereby
offering a metric for the model’s proficiency in generalizing from the training dataset to
novel scenarios.

The above computational process can be formally defined as

IoUImg =
∑ AL ∩ AG

∑ AL ∪ AG
(2)
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where AL and AG, respectively, represent the feature distribution learned by the network
and the position distribution of the category object. In the formula, AL is the portion of
the feature distribution that has a weight greater than the threshold value, and AG is the
rectangular bounding box of the corresponding category object in the ImageNet [17], and
are, respectively, defined as follows:

AL(i, j) = I(Mc(i, j), ρ) (3)

I(x, ρ) =

{
1 if x ≥ ρ
0 if x < ρ

(4)

AG(i, j) =
{

1 (i, j)Inside the bounding box
0 (i, j)Outside the target box

(5)

where Mc ∈ Rh×w represents the class activation map of the model relative to category c.
Category c is the model’s classification result of the input image. The value of each element
in Mc is normalized to [0, 1]. In the experiments in this study, the threshold was 0.1. The
value range of IoUImg was [0, 1]. The larger the value, the higher the overlap between the
feature distribution learned by the model and the location of the corresponding category
object, which means a better the generalization ability of the model.
AL in Equation (3) is an irregular region similar to a circle, and we can similarly use its
minimum outer rectangular box to calculate the IoU. In this paper, the calculation using
the minimum outer rectangle is termed IoU-B. In our experiments, we also compared the
performance of these two calculations.
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The IoU value calculated from a single image lacks statistical significance. In actual
tasks, the IoUModel value at the model level is used as an indicator to judge the general-
ization ability of the model. IoUModel is defined as the mean IoU value calculated on all
training images, that is,

IoUModel =
1
N

N

∑
i

IoUImg
i (6)

where N is the training set size, and IoUImg is the IoU value calculated from the i-th data.
In this section, we first discuss the CAM methods, which can be used to calculate

the weights of features learned by the model at different pixels in the input image. Based
on algorithm stability theory and qualitatively analyzing the relationship between the
distribution of features learned by the model and the location of objects, we believe that the
greater the feature weight learned by the model at the location of the category object, the
stronger its generalization ability. Therefore, we used IoU to evaluate model generalization
by calculating the degree of overlap between the feature distribution learned by the model
and the location of the category object in the image.
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4. Model Set Construction
4.1. Construction Method

To verify the effectiveness and accuracy of evaluating model generalization methods,
a comprehensive model set is needed. The two existing model sets for the generalizability
study were constructed on two simplified datasets, CIFAR and SVHN [1,3], which contain
756 and more than 10,000 CNN models, respectively. On the one hand, the image resolution
in the CIFAR and SVHN datasets is only 32 × 32 pixels, with low data dimensions. On the
other hand, the models in these sets mostly consist of around 10 layers with a small scale,
which has a gap with the practical application scenarios. To bridge this gap and achieve a
more precise and exhaustive validation of generalization assessment methodologies, this
study constructed a model set with more than 2000 CNN models trained on the ImageNet
subset by systematically varying commonly used hyperparameters. The models were
developed utilizing the ResNet framework, specifically employing ResNet18, ResNet34,
ResNet50, and ResNet101 architectures, which are prevalent in practical applications. The
model set constructed in this study is comparable to the above two model sets in terms of
quantity. Moreover, the size of the models is larger, and the images used for training are of
higher resolution (with an average resolution of 496 × 387 pixels), aligning more closely
with practical scenarios.

Taking into account the constraints of training duration, the study selected a random
subset of 20 categories from the ImageNet dataset for experimental analysis. The data
encompass a diverse array of categories, including animals, everyday objects, musical
instruments, food items, and transportation-related items. This diversity is further accentu-
ated by the extensive variation in the sizes and shapes of the objects represented within the
dataset. A detailed breakdown of the data categories and their respective quantities used
for model training is delineated in Table 1. For the purpose of determining test accuracy, a
sample of 50 images per category was utilized, culminating in a comprehensive evaluation
across 1000 images.

Table 1. Data categories and quantity information used for model training.

Category Number Category Number

Hair slide 579 Sleeping bag 486
German short-haired pointer 493 Koala 560

Eel 500 Tree frog 683
Brassiere 487 Tibetan mastiff 859
Ostrich 512 Gordon setter 925

Radiator 450 Standard schnauzer 450
Flute 533 Green mamba 472
Tiger 542 Grey whale 421

Cockroach 562 Bagel 545
Speedboat 504 Water jug 610

Total 11,173

In the course of model training, we meticulously fine-tuned a suite of hyperparameters
to generate a diverse array of CNN models. These hyperparameters, which encompass
batch size, learning rate, optimization algorithm, regularization coefficients (weight decay),
model architecture, data augmentation, and the utilization of pre-trained weights from the
ResNet models on the ImageNet dataset, are widely recognized for their influence on the
generalization capacity of machine learning models. Through an exhaustive exploration of
various hyperparameter combinations, we successfully cultivated a spectrum of models
with distinct generalization capabilities.

The hyperparameters for tuning can be formally defined as pi, taking values from
the set Θi, for i = 1, . . ., n, and n denoting the total number of hyperparameter types. In
our study, 7 hyperparameters were selected, so n = 7. The selected hyperparameters were
as follows:
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1. Batch size: It determines the amount of data the model sees at each training step, which
can influence the stability and diversity of the learning updates, thereby impacting the
model’s exposure to the overall data distribution. We hoped to unify the batch size
used for training models with different network architectures, but we were limited by
computing resources, so the maximum batch size we used for training was 64. For the
sake of experimental diversity, we also chose values of 32 and 16 by dividing by 2;

2. Learning rate: It controls the step size the model takes during optimization, with
larger rates potentially causing the model to overshoot minima and smaller rates
leading to slower convergence, both of which can impact the model’s ability to find a
good balance between bias and variance. In our previous experiments, we found that
when the learning rate was 1.25 × 10−3, the model could be trained to convergence
quickly, so we enlarged and reduced the learning rate by 100 times to 1.25 × 10−1 and
1.25 × 10−5 respectively to affect the training process of the model. This results in a
model set with diverse generalization capabilities;

3. Optimization algorithm: It determines the path the model takes to minimize the
loss function, which can influence the convergence speed and the quality of the
solution found, thereby impacting the model’s capacity to learn from the training data
without overfitting. We chose two of the most common and more basic optimization
algorithms: SGD and Adam;

4. Regularization coefficient: It controls the balance between fitting the training data
and maintaining model simplicity, which helps prevent overfitting and encourages
the model to learn more generalizable patterns. We empirically chose regular term
coefficients 2 × 10−4 and 5 × 10−4, and then added 0, i.e., no regular term;

5. Model structure: It determines the complexity and representational capacity of the
model, which directly influences its capability to capture underlying patterns without
overfitting to the training data. Considering the computational resources and training
time, the largest model structure we chose was ResNet101, and we also chose ResNet18,
ResNet34, and ResNet50;

6. Data augmentation: It increases the diversity of the training data, which helps the
model learn more robust features that can better represent the underlying data dis-
tribution, thus improving its performance on unseen data. Data augmentation is a
common way to enhance the generalization ability of a model during training, so we
chose to use or not apply data augmentation for training. In the experiments in this
study, data enhancement was performed by randomly adding image flipping and
color enhancement;

7. Pre-trained weights: They provide a good starting point with learned features from
a vast dataset, which can transfer useful knowledge to new tasks, thereby reducing
the need to learn from scratch and potentially improving the model’s performance
on similar data distributions. In our experiments, we found that using ResNet pre-
training weights on ImageNet significantly affects the training time and generalization
ability of the model, so we chose to use or not apply the pre-training weights.

Table 2 delineates the specific values assigned to each hyperparameter. For each value
of hyperparameters, p ≜ (p1, . . . , pn) ∈ Θ, where Θ ≜ Θ1 × . . . × Θn.

In order to ensure that the model is trained to convergence, we established specific
stopping conditions. These conditions were as follows:

1. The training loss function value should be below a threshold, which was set at 0.1. We
used the cross-entropy loss function for this evaluation.

2. The model’s accuracy on the training set needs to exceed a threshold of 0.95.
3. The loss function value decreases for two consecutive batches while the test error rate

increases, which indicates overfitting and signals the need to stop training.
4. The training process should not exceed 150 epochs. This condition ensures that the

training can be completed within a limited time frame. For more implementation
details, see Appendix A.
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The first two termination conditions are to ensure that the model can converge, and
the last two conditions ensure that training ends within a limited period. We saved one
or two models for each set of training parameters. The training process stops when any
two of the first three conditions are met or directly when the fourth condition is met. We
repeated the experiment twice for each set of parameters. In theory, |Θ| × 2 × 2 = 3456
models can be generated, but taking into account the time factor, we utilized four GTX
2080ti GPUs and dedicated nearly 30 days to train a total of over 2100 models. Eventually,
we selected 2000 models that achieved a training accuracy greater than 80% to comprise
our model set. Within this set, 500 models were chosen for each network structure. The
reason for this choice is that the training of these models is near convergence, which aligns
well with the actual application scenario. Only a small number of models did not converge,
for example, the training accuracy of the model after training 150 batches was only 20%.

Table 2. Hyperparameters used in model training.

Hyperparameter Value Range

Batch size {16, 32, 64}
Learning rate

{
1.25 × 10−1, 1.25 × 10−3, 1.25 × 10−5}

Optimization algorithm {Adam, SGD}
Regularization coefficient

{
0, 2 × 10−4, 5 × 10−4}

Model structure {ResNet18, ResNet34, ResNet50, ResNet101}
Data augmentation {True, False}
Pre-trained weights {True, False}

4.2. Model Distribution

The construction of a high-quality dataset is fundamental to the investigation of
methodologies for assessing model generalization capabilities. The distribution of these
capabilities is a critical metric for evaluating the dataset’s quality.

A box plot, a versatile graphical tool, provides a comprehensive statistical summary of
the data distribution, delineating critical aspects such as central tendency and dispersion.
Specifically, it captures the median; the interquartile range (IQR), which includes the central
50% of the data; and the lower (Q1) and upper (Q3) quartiles corresponding to the 25th
and 75th percentiles, respectively. The plot also highlights potential outliers, represented as
individual points beyond the whiskers that extend to 1.5 times the IQR from the quartiles.
Collectively, these elements offer a succinct yet informative overview of the variability and
central tendency of the generalization gap values across the spectrum of model architectures
within the established dataset.

Figure 4 illustrates the distribution of generalization capabilities across various struc-
tural models within the curated dataset. The generalization gap was employed to quantify
the generalization ability of each model. Upon scrutiny of Figure 4, it becomes evident that
the generalization gap values exhibited a wide range, signifying considerable heterogeneity
in the generalization capabilities of the constituent models. Furthermore, the consistency
in the distribution of generalization capabilities across different model architectures pre-
cludes the confounding effects of structural variance on the validation of the generalization
assessment methodology.

Figure 5 illustrates the quantity distribution of the models across various ranges of
generalization gaps. The results depicted in the figure reveal that the majority of models
were concentrated within the extremes of very small or very large generalization gaps,
while only a few models exhibited intermediate values. This distribution pattern can be
attributed to the training termination conditions employed during the model training
process, which aimed to achieve convergence. Converged models tend to demonstrate
either minimal or substantial generalization gaps. A small generalization gap indicates pro-
ficient generalization to unseen data, whereas a large gap suggests overfitting, wherein the
model incorporates task-irrelevant features from the training data, resulting in impressive
performance on the training set but notable degradation on new data. Models displaying
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intermediate generalization gap values are in a transitional state, indicating that they have
not yet attained the optimal balance between bias and variance. Such models may benefit
from additional training. In summary, the quantity distribution of models across different
generalization gap ranges, as depicted in Figure 5, signifies that the majority of models in
the dataset had reached a state of convergence. This achievement serves as a foundation
for the subsequent methodological investigations into assessing model generalization capa-
bility and validating the methodology’s efficacy. Furthermore, this distribution validates
the efficacy of the established training termination conditions, ensuring both the quality
and efficiency of model training.
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In conclusion, this chapter introduced a large-scale model set that addresses the
limitations of existing sets. The diverse range of generalization abilities and consistent
distribution across different model structures make this model set valuable for studying
and validating generalizability methods.

5. Experimental Analysis
5.1. Evaluation Metric

In this study, the Pearson correlation coefficient was selected as the criterion to check
the effectiveness of using IoU to evaluate model generalization capabilities. The correlation
between IoU and the model’s generalization ability, which is also referred to as the general-
ization gap, was used to assess the effectiveness of the method. The Pearson correlation
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coefficient is a widely used measure of linear correlation between two sets of data. It is
calculated as the ratio of the covariance of the two variables to the product of their standard
deviations and ranges from −1 to 1. A correlation coefficient closer to 1 or −1 indicates a
stronger correlation between the two variables.

rxy =
∑n

i=1 (xi − x)(yi − y)√
∑n

i=1(xi − x)2
√

∑n
i=1(yi − y)2

(7)

where n represents the sample size, and x and y are the mean values of random variables
x and y, respectively. In the following experiment, the main objective was to calculate
the correlation coefficient between the IoU and the model’s generalization gap. If there
is a significant correlation between these two factors, it demonstrates the effectiveness
of the evaluation method. A strong correlation would indicate a high accuracy of the
evaluation approach.

5.2. Experimental Results
5.2.1. Comparison Experiments

In this section, we used the Pearson’s correlation coefficient of the constructed model
set to verify the validity of the model generalizability assessment approach. This rigorous
analysis ensures the effectiveness and accuracy of the assessment methodology.

The IoU values of the feature distribution and object position for all models in the
proposed model set, as well as the generalization gaps of each model, were computed in
this study. For calculating the class activation maps, the Grad-CAM method implemented
in Captum [26] was used. In this study, three comparison methods were selected, namely
Spectral Norm [8], Nuclear Norm [21], and Effective Invariance (EI) [22]. Since the original
Spectral Norm method cannot be directly applied to CNN models, the implementation
approach described in reference [3] was used. The details of these methods can be found in
Appendix B.

Table 3 delineates the correlation coefficients between the generalization assessment
methods and generalization gap across various ResNet architectures. Each row corresponds
to a distinct ResNet architecture, with the final row summarizing the results across all the
models. The columns indicate the model subsets with training accuracies exceeding specific
thresholds. Ideally, all methods should correlate positively with a model’s generalization
capacity, which is inversely proportional to its generalization gap. Consequently, a negative
correlation between the methods and generalization gaps is anticipated. The effectiveness
of an assessment method is indicated by a smaller absolute correlation coefficient value.
The most promising results within each category are emphasized in bold.

The analysis from Table 3 reveals a strong correlation (absolute value > 0.8) between
IoU and the IoU-B method and the generalization gap, e.g., the model’s generalization
capacity. Due to the potential noise introduced by using the minimum bounding box in the
IoU-B calculations, the correlation between IoU-B and the generalization gap was weaker
than that of IoU. Spectral Norm had almost no correlation with the generalization ability of
the model, which means that this method is not suitable for generalizability assessments
of deep neural network models. Nuclear Norm was the least computationally intensive
and most efficient, but its correlation with the generalization ability of the model was weak.
The correlation between EI and the generalization ability of the model was second only
to the IoU-based method, but its computation was computationally intensive as it needs
to process the input and its multiple transformed versions. In summary, the evaluation
method in this paper using IoU to calculate the ratio of task-relevant features had the
highest accuracy and is computationally efficient.

As training accuracy thresholds rise, the correlation between the evaluation methods
and model generalization is strengthened. This trend arises because lowering the threshold
broadens the spectrum of model accuracies without altering the generalization ability
range, thus complicating model differentiation. For instance, models with training accu-
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racies of 96% and 86%, and respective test accuracies of 93% and 83%, yielded identical
generalization gaps of 3%. However, achieving the same IoU value for these models is
implausible due to the inherent differences in their class activation maps.

Table 3. Correlation coefficients between different valuation methods and the model generaliza-
tion gap.

Accuracy Threshold ≥95 ≥90 ≥85 ≥80

ResNet18

Spectral Norm 0.0592 0.0330 0.0429 0.0451
Nuclear Norm −0.3243 −0.2874 −0.2793 −0.2273

EI −0.6577 −0.6550 −0.6539 −0.6462
IoU-B −0.8587 −0.8556 −0.8466 −0.8358
IoU −0.9144 −0.9096 −0.8996 −0.8911

ResNet34

Spectral Norm 0.0579 0.0324 0.0421 0.0424
Nuclear Norm −0.4963 −0.4934 −0.4695 −0.4432

EI −0.7316 −0.7339 −0.7324 −0.7303
IoU-B −0.8207 −0.8205 −0.8139 −0.8085
IoU −0.8273 −0.8252 −0.8183 −0.8149

ResNet50

Spectral Norm 0.0574 0.0322 0.0416 0.0410
Nuclear Norm −0.5610 −0.5478 −0.5063 −0.4649

EI −0.7676 −0.7638 −0.7642 −0.7614
IoU-B −0.8140 −0.8135 −0.8131 −0.8040
IoU −0.8171 −0.8129 −0.8125 −0.8054

ResNet101

Spectral Norm 0.0574 0.0323 0.0417 0.0401
Nuclear Norm −0.5707 −0.5599 −0.5211 −0.489

EI −0.7963 −0.8021 −0.8056 −0.8076
IoU-B −0.8426 −0.8417 −0.8402 −0.8399
IoU −0.8571 −0.8540 −0.8523 −0.8520

Total

Spectral Norm 0.0204 0.0198 0.0195 0.0195
Nuclear Norm −0.4668 −0.4554 −0.4357 −0.3898

EI −0.7413 −0.7419 −0.7425 −0.7398
IoU-B −0.8110 −0.8116 −0.8070 −0.8005
IoU −0.8248 −0.8228 −0.8200 −0.8159

Among models with varying architectures, the IoU’s correlation with generalization
ability was consistent. Notably, the ResNet18 model demonstrated significantly higher cor-
relation coefficients, potentially attributable to its simpler architecture and enhanced class
activation map generation. The ResNet101 model also showed slightly higher correlation
coefficients than the ResNet34/50 models, which may be influenced by the limited sample
size and associated randomness in the training process.

As the model layer depth increased, the correlation coefficient of IoU and the general-
ization gap slightly diminished, whereas the EI correlation coefficient exhibited a slight
rise. This trend is attributed to the use of a dataset with merely 20 categories in this study,
contrasting with EI’s typical application in models with around 1000 categories. The limited
category scope represents a constraint in this study.

5.2.2. Model Selection Experiments

The generalizability evaluation method can be used for model selection. Given two
models Model1 and Model2, the IoU values of the two models are IoUModel

1 and IoUModel
2 .

If IoUModel
1 > IoUModel

2 , then Model1 is considered to have a stronger generalization ability
than Model2, and accordingly, the model with a stronger generalization ability can be
selected. In the model set, pairwise combinations were made, and the IoU was used to
select models with stronger generalization abilities. Then, the correctness of the selection
was counted.

Table 4 presents the results of the model selection experiments, and compares the
model selections using IoU within identical network structures (first four rows) and across
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different structures (last row). The high accuracy rate of the IoU-based model selection
underscores the method’s effectiveness and feasibility. Despite the significant impact of
training data quality on model generalization, the IoU metric, calculated using the model’s
predicted category, remained robust even with low-quality, noisy data. This suggests that
the IoU can effectively identify models with superior generalization capabilities, even when
training data are suboptimal.

Table 4. The accuracy of using IoU to select models with strong generalization ability.

Accuracy Threshold ≥95 ≥90 ≥85 ≥80

ResNet18 76.10% 75.74% 75.14% 74.67%
ResNet34 73.81% 73.25% 72.83% 72.57%
ResNet50 72.78% 72.30% 72.01% 71.71%

ResNet101 76.67% 76.28% 76.00% 75.77%
Total 74.36% 74.18% 73.97% 73.82%

5.3. Validity Testing

In this section, a comparison experiment was performed to calculate the correlation co-
efficients between the IoU value of the trained models and the randomly initialized models
and their generalization ability, respectively. The weight values of the random models were
all randomly initialized. For the ResNet18, ResNet34, ResNet50, and ResNet101 network
architectures, 50 random models were generated for each, resulting in a total of 200 random
models. The trained models were obtained using the model set constructed in this study.

Table 5 reveals a robust correlation between the IoU values and the generalization
capabilities of trained models. In contrast, the correlation between the IoU values for
randomly initialized models and their generalization was negligible, resembling random
chance. This comparative analysis validates the use of IoU as a reliable metric for assessing
the generalizability of ResNet models.

Table 5. Comparison of the correlation between IoU and model generalization ability between trained
and randomly initialized models.

ResNet18 ResNet34 ResNet50 ResNet101 Total

Random Model −0.1544 0.1820 0.2246 −0.0585 −0.0094
Trained Model −0.8911 −0.8149 −0.8054 −0.8520 −0.8159

5.4. Robustness Testing
5.4.1. CAM Method Replacement Testing

To thoroughly validate the evaluation approach by calculating the ratio of task-relevant
features using IoU values, we used GradCAM++ [27] and SmoothGradCAM++ [28] to
recalculate the IoU of the ResNet18 models, and calculated the correlation between IoU
and the generalization gap.

Table 6 displays the experimental findings, highlighting a consistent strong correlation
between computed IoU values and the generalization gap across different CAM calculation
methods, including GradCAM, GradCAM++, and SmoothGradCAM++. This suggests
that the IoU-based evaluation approach is largely invariant to the CAM method chosen,
underscoring its robustness in assessing model generalization.

Table 6. The correlation between IoU and generalization gap based on using different CAM calcula-
tion methods on the ResNet18 models.

Accuracy Threshold ≥95 ≥90 ≥85 ≥80

IoU (Using GradCAM++) −0.9127 −0.9105 −0.9004 −0.8879
IoU (Using SmoothGradCAM++) −0.8872 −0.8873 −0.8731 −0.8582

IoU (Using GradCAM) −0.9144 −0.9096 −0.8996 −0.8911
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5.4.2. Bounding Box Replacement Testing

To ease the manual bounding box annotation efforts, we employed a saliency detection-
based approach to generate pseudo-labels, thereby eliminating the need for manual editing.
Specifically, we utilized the MCCL algorithm [29] to produce a saliency map, which was
subsequently binarized to create a mask for IoU (Intersection over Union) calculations. To
calculate the IoU in this case, we denoted the non-zero portion of the saliency map as AG
in Equation (4). Figure 6 illustrates the method’s effectiveness through a comparison of the
original image, labeled frames, and the corresponding saliency map.
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Figure 6. Examples of generated saliency maps and original manually labeled bounding boxes
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Table 7 presents the correlation between generalization gap and IoU derived from
the manually labeled bounding boxes and automatically generated saliency maps for
the ResNet18 models. The findings indicate that a robust correlation persisted between
generalization gap and IoU, albeit slightly diminished when using saliency maps compared
to manual bounding boxes. This attenuation is attributed to the inherent limitations
of saliency maps in precisely delineating the spatial extent of the subject category. As
illustrated in Figure 6, while columns a and b exhibited accurate saliency mapping, the
precision deteriorated across columns c, d, and e, culminating in column e’s failure to
identify the objects within the image.

From the results of this experiment, it can be seen that the use of pseudo-labels
(saliency maps) to calculate the ratio of task-relevant features is still valid. This alleviates
the dependence on manually labeled bounding boxes.

Table 7. The correlation between generalization gap and IoU calculated based on manually labeled
bounding boxes and automatically generated saliency maps from the ResNet18 models.

Accuracy Threshold ≥95 ≥90 ≥85 ≥80

IoU (using saliency map) −0.8465 −0.8425 −0.8322 −0.8215
IoU (using bounding box) −0.9144 −0.9096 −0.8996 −0.8911

6. Conclusions

This study presents a new perspective on evaluating the generalization ability of
CNN models by using IoU, which addresses the issue of poor accuracy and applicability
of CNN model generalization evaluation methods for the task of image classification.
The method, based on the ResNet architecture, leverages IoU to quantify the ratio of
task-relevant features within the model’s learned feature set. Task-relevant features are
identified through Class Activation Maps (CAMs), focusing on the object’s location within
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an image. To validate our method, we trained 2000 ResNet models on a subset of ImageNet,
providing a robust dataset for generalization analyses.

Our findings underscore the method’s effectiveness and accuracy, with the IoU calcu-
lations only requiring training data and a trained model, thereby enhancing computational
efficiency. This approach not only evaluates model generalization but also aids in selecting
optimal models and tuning hyperparameters. The method’s robustness was evidenced by
its minimal sensitivity to variations in CAM algorithms. However, it should be noted that
the reliance on bounding box annotations for the IoU calculation presents a limitation.

In conclusion, the IoU-based method offers a promising framework for evaluating
CNN model generalization in image classification tasks. The extensive model set developed
in this study lays a solid foundation for future research. While current practices necessi-
tate manual bounding box annotations, future work will explore automated annotation
techniques to address this limitation.

Author Contributions: Conceptualization, Q.Z.; methodology, A.D.; software, A.D.; validation, A.D.
and Y.D.; resources, Q.Z.; data curation, A.D.; writing—original draft preparation, A.D.; writing—
review and editing, Y.D.; supervision, Q.Z.; All authors have read and agreed to the published version
of the manuscript.
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Appendix A

To ensure that the models are trained within a feasible timeframe, we established
a cap on the number of training epochs. Our experimental observations revealed that
90% of the models met the termination criteria within the initial 50 epochs. Consequently,
we set the upper limit at 150 epochs, which is threefold higher than the base threshold.
We performed a detailed statistical analysis on the training loss and accuracy for models
terminated at the 150-epoch mark. As depicted in Figure A1, the loss and accuracy curves
for a selection of models trained for 150 epochs exhibited a stabilizing trend over the last
20 to 10 epochs. Moreover, we computed the relative change in loss and accuracy over
the final 10 epochs relative to the entire training duration for these models. The findings
suggest that the variation in both loss and accuracy during the last 10 epochs is minimal
(less than 1%). These outcomes confirm that a 150-epoch training regime is adequate to
ensure the thorough completion of the training process.
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Appendix B

Below, we briefly describe the generalization evaluation methods compared in our
work. We denote the model as f .

Spectral Norm [8]. This method evaluates the generalizability of the model using the
product of the spectral norm of the layer weights multiplied by the sum over layers of the
ratio of Frobenius norm to the spectral norm of the layer weights [3].

SpectralNorm(f) =
∏d

i=1∥Wi∥2
2∑d

j=1
∥Wj∥2

F

∥Wj∥2
2

γ2 (A1)

where d is the number of layers in the model f . W is the weight matrix of the model. ∥W∥2
2

denotes the square of the spectral norm of the tensor W, and ∥W∥2
F denotes the square

of Frobenius norm of the tensor W. γ is the 10th percentile of the margin values on the
training set.

Nuclear Norm [21]. This method uses the normalized value of the nuclear norm of
the prediction matrix to evaluate the generalization ability of a model.

NuclearNorm(f) =
1
N

[
∥P∥∗√

min(N, K) · N

]
(A2)

where N is the number of samples in the training set, and K is the number of classes. ∥P∥∗
is the nuclear norm of P. P ∈ RN×K denotes the prediction matrix of f on the training set,
and Pi,: is the softmax vector of i-th sample (i.e., Pi,: = so f tmax(f(xi))).

Effective Invariance (EI) [22]. This method evaluates the generalization ability of a
model by quantifying its invariance to transformations of the input data.

EI(x, T(x), f) =
{√

p̂t · p̂ i f ŷt = ŷ;
0 otherwise.

(A3)

where x is the input sample in the training set. T(x) represents the transformation of
x, including 3 rotationally transformed angles (90

◦
, 180

◦
, and 270

◦
). The EI value is the

average of the values calculated for the three rotation angles. p̂t is the predicted softmax
vector of the model for the transformed input sample, and p̂ is the predicted output of the
model for the original input sample. ŷt and ŷ are the model’s classification results for the
transformed and original input samples, respectively.
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