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Abstract: AbstractsBackground: Frameless robot-assisted deep brain stimulation (DBS) is an innova-
tive technique for leads implantation. This study aimed to evaluate the accuracy and precision of
this technique using the Sinovation SR1 robot. Methods: 35 patients with Parkinson’s disease who
accepted conventional frame-based DBS surgery (n = 18) and frameless robot-assisted DBS surgery
(n = 17) by the same group of neurosurgeons were analyzed. The coordinate of the tip of the intended
trajectory was recorded as xi, yi, and zi. The actual position of lead implantation was recorded as
xa, ya, and za. The vector error was calculated by the formula of

√
(xi − xa)2 + (yi − ya)2 + (zi − za)2

to evaluate the accuracy. Results: The vector error was 1.52 ± 0.53 mm (range: 0.20–2.39 mm) in
the robot-assisted group and was 1.77 ± 0.67 mm (0.59–2.98 mm) in the frame-based group with
no significant difference between two groups (p = 0.1301). In 10.7% (n = 3) frameless robot-assisted
implanted leads, the vector error was greater than 2.00 mm with a maximum offset of 2.39 mm, and
in 35.5% (n = 11) frame-based implanted leads, the vector error was larger than 2.00 mm with a
maximum offset of 2.98 mm. Leads were more posterior than planned trajectories in the robot-assisted
group and more medial and posterior in the conventional frame-based group. Conclusions: Awake
frameless robot-assisted DBS surgery was comparable to the conventional frame-based technique in
the accuracy and precision for leads implantation.

Keywords: frameless robot-assisted surgery; frame; deep brain stimulation; accuracy; Parkinson’s
disease

1. Introduction

Deep brain stimulation (DBS) surgery is an effective treatment for movement disorders
such as Parkinson’s disease (PD), dystonia, and essential tremor [1]. The key of this
procedure is the accurate implantation of electrodes into the intended nuclei, such as the
subthalamic nucleus (STN), the globus pallidus internus (GPi), and the ventral intermediate
nucleus (Vim) to maximize therapeutic benefits and minimize potential side effects. In the
clinic, all techniques for DBS surgery developed through the years had to be evaluated for
accuracy, which can be defined as the radial error in a 2D scan (x and y axes) or as the vector
error in a 3D scan (x, y, and z axes) [2]. The stereotactic frame-based technique for precise
image-guided targeting is the gold standard for electrodes implantation and is most widely
utilized in DBS surgery at present; it can reach an accuracy of 1 to 3 mm in average [3–7].

The robot-assisted technique for neurosurgery has been used for almost 30 years and
has advantages such as an increased accuracy and the property of efficient and reproducible
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access to targets [8]. Robot-assisted surgery has been used as an innovative technique
for DBS and the leads implantation in stereoelectroencephalography (SEEG) in recent
years. Experience in robot-assisted DBS surgery was reported in some centers. The leads
deviations calculated as the vector error were reported to be from 0.76 mm to 1.6 mm in
DBS [9]. Variable implantation techniques among different centers may be responsible for
discrepancies of accuracy, such as (1) the utilization of frame-based or frameless techniques,
(2) different intraoperative imaging modalities (O-Arm, CT, and MRI), (3) different robots
(ROSA, Neuromate, and SurgiScope), and (4) measurements verifying leads positions [9].
In addition, implantation accuracy can be influenced by expertise and proficiency in DBS
surgery, which may result in large interinstitutional variances.

Given the few studies exploring the accuracy of frameless robot-assisted surgery
compared with frame-based technique [10], we aimed to evaluate accuracy and precision
in DBS using these two methods with the same group of neurosurgeons. In addition, the
robot Sinovation SR1 (Sinovation, Beijing, China) used in the study is the first neurosurgery
robot that has passed the national innovation review and is largely used for neurosurgery
in China (Figure 1) [11].
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Figure 1. (A,B) The Sinovation SR1 robot is composed of a robot arm, computer control system, and
display system. (C) Bilateral trajectories were designed to pass through the subthalamic nucleus
(STN) on the Sinoplan 2.0 planning software (Sinovation).

2. Methods
2.1. Study Population

We included 35 patients (14 males and 21 females, mean age 61.7± 10.2 years) with PD
who accepted DBS surgery in our single-center from June 2020 to March 2021. Among these
patients, 18 patients (7 males and 11 females, mean age 65.3 ± 7.0 years) accepted conven-
tional frame-based DBS and 17 patients (7 males and 10 females, mean age 57.8 ± 11.8 years)
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accepted frameless robot-assisted Sinovation SR1 (Sinovation, Beijing, China) DBS surgery
by a same group of neurosurgeons. We used a uniform procedure for these two techniques
in order to decrease system bias. All patients were deemed appropriate candidates for
STN-DBS or GPi-DBS after comprehensive preoperative assessments by professional neu-
rologists. The selection of target—either the GPi or STN—was reached by a standard of care
interdisciplinary screening and discussion [12]. The study was approved by the Hospital
Ethics Board, and informed consent was provided by all patients prior to surgery.

2.2. Conventional Frame-Based DBS

The preoperative examination included 3D T1 weighted images (T1w, voxel size
1 × 1 × 1 mm), 3D T2 weighted images (T2w, 0.67 × 0.67 × 0.67 mm), magnetic reso-
nance venogram (MRV), and quantitative susceptibility mapping (QSM) images (voxel size
0.5 × 0.5 × 1), which were scanned on a 3 Tesla magnet (United Imaging Healthcare, 3.0,
Tesla, uMR 770, China) several days before the surgery. Patients with severe tremors were
on medication or injected with diazepam to eliminate motion artifacts when scanning. On
the day of surgery, the CT scan (voxel size 0.49 × 0.49 × 1, Siemens, Erlangen, Germany)
was obtained for patients who were head-mounted in a conventional stereotactic Cosman–
Roberts–Wells (CRW) frame. The neurosurgeon imported all of these images into the
StealthStation navigation system (Minneapolis, MN, USA) and fused preoperative MRI
with the CT scan using the rigid-body co-registration. Targets were visually selected on
QSM in the anterior commissure (AC)–posterior commissure (PC)-based coordinate system
in the Framelink software (S7, Fusion, Medtronic, Minneapolis, MN, USA) on the Stealth-
Station navigation system, and trajectories were designed through an appropriate gyrus,
avoiding the intracranial vessels and the ventricular walls. The patients were operated
on in a semi-sitting position and under local anesthesia during the procedure of leads
implantations. The left electrode was usually implanted first, and then the right electrode.
We manually transferred the stereotactic coordinates to the CRW aiming bow. The leads
placement (3387, Medtronic) was simulated and rectified using the phantom base prior
to implantation. The distal contact at the junction of substantia nigra pars reticulata and
inferior border of STN and the second contact was exactly at the junction of zona incerta
and dorsolateral area of STN. After the burr hole craniotomy, the lead was implanted
through a rigid guiding tube using a microdriver (Alpha Omega, Nazareth, Israel). We
did not perform microelectrode recording (MER) as we used a novel MRI sequence of
quantitative susceptibility mapping to perform preoperative planning, which can clearly
delineate borders of the STN and GPi. In addition, macrostimulation was intraoperatively
performed to test sensory and motor thresholds, and to observe ameliorations of symptoms
and adverse events. If the amelioration was unsatisfactory or adverse events occurred at
a low amplitude, the lead depth would be adjusted by the microdriver or the lead path
would be readjusted. For patients who could not cooperate with macrostimulation, intra-
operative O-Arm images were scanned to verify lead placements. The lead was anchored
with a lead-anchoring system (Stimlock, Medtronic) after macrostimulation, and steps were
repeated on the other side. The rechargeable pulse generator (ACTIVA◦RC, Medtronic,
Minneapolis, MN, USA) was placed in a subcutaneous pocket under general anesthesia in
a subsequent process.

2.3. Frameless Robot-Assisted Surgery

Preoperative MRIs were performed in line with the frame-based method and were
imported to the Sinoplan 2.0 planning software (Sinovation, Beijing, China), which was
installed in the robot system. After fusing these images, targets were selected, and bilateral
trajectories were designed (Figure 1). On the day of surgery, five bone screws as fiducial
marks were implanted into the skull under local anesthesia and a preoperative 3D CT scan
was performed (voxel size 0.49 × 0.49 × 1 mm) to allow frameless registration later. In the
operating room, the Sinovation SR1 robot (Sinovation, Beijing, China) was secured with the
patient’s head via the frame, which was herein used as a fixed connection device. Then, the
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3D CT scan was imported to the robot system and was fused with the preoperative planning
using the six-degree-of-freedom transformation. Patients were also operated in a semi-
sitting position and under local anesthesia during the procedure of leads implantations.
The frameless registration was performed through the mechanical contact of the robot
probe with five fiducial markers, and the registration accuracy was allowed to decrease
below 0.50 mm (Figure 2). A microdriver (Alpha Omega, Nazareth, Israel) with a guiding
tube was installed onto the robot arm. Bilateral entry points were marked in a sterile
circumstance using the guiding tube through the command movement of the robot arm.
After the scalp incision and burr holes were drilled, the dura was perforated using the
bipolar electrocautery. Then, the guiding tube was manually placed in alignment with
the planned trajectory at a predefined depth to the target through the robot arm. The
lead (3387, Medtronic, Minneapolis, MN, USA) was manually implanted after the guiding
tube penetrated the parenchyma. Macrostimulation was performed analogous to the
conventional frame-based method when the electrode was implanted. If macrostimulation
is satisfactory, the lead was anchored with a lead-anchoring system (Stimlock, Medtronic,
Minneapolis, MN, USA) and steps were repeated on the other side. The pulse generator
was placed in a subcutaneous pocket the same day.
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Figure 2. Implanting bone screws and frameless registration. (A) Bone screws were implanted under
local anesthesia. (B–D) Frameless registration by the mechanical contact of the tip of the robot probe
with bone screw markers.

2.4. Implantation Accuracy

The position of electrodes was verified by the postoperative 3D CT scan (voxel size
0.49 × 0.49 × 1 mm) performed on the day after surgery. The postoperative CT scan was
fused with preoperative MRI in the planning software to verify leads positions by the same
neurosurgeon, and this can help the neurosurgeon to select stimulation contact and adjust
stimulation parameters later. The stimulator was turned on one week after the surgery,
and the parameters were adjusted three months later. The accuracy of lead implantation
was calculated as the vector error using the formula of

√
(xi − xa)2 + (yi − ya)2 + (zi − za)2.

The tip of the trajectory represented the position of the intended target, and coordinates
were recorded as xi, yi, and zi, which represented medial-lateral, anterior-posterior, and
superior-inferior distances relative to the midpoint of AC-PC line, respectively. The center
of the distal contact of the lead was regarded as the actual lead position and was recorded
as xa, ya, and za (Figure 3).
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Figure 3. (A–D) The fusion image of postoperative CT scan with preoperative quantitative suscepti-
bility mapping to display final electrodes positions. Red artifacts (high-density contacts on CT scans
were manually set to red) were final positions of contacts of leads. The center of the distal contact
(yellow dot) was recorded as xa, ya, and za to represent the actual position of leads. The tip of the
planned trajectory (blue dot) was recorded as xi, yi, and zi to represent the intended position of leads.
The vector error was calculated by the formula of

√
(xi − xa)2 + (yi − ya)2 + (zi − za)2. (E) The model

of a Medtronic 3387 quadripolar lead has four contacts (the distal contact: contact 0) (F) The enlarged
view of the planned trajectory (red) and the actual lead implantation (white). The actual distal contact
is contact 0.

2.5. Statistical Analysis

The vector error and deviations, including medial-lateral (|xi − xa|), anterior-posterior
(|yi − ya|), and superior-inferior (|zi − za|) distances, were recorded as means ± stan-
dard deviation. Comparisons of the vector error and directional deviations between the
frame-based technique and the frameless robot-assisted technique were evaluated using
independent-samples t-tests. Deviations and vector error between the left and right brain
hemispheres in the two methods were also compared with independent-samples t-tests.
Given leads deviations over 2.00 mm are considered meaningful, and the proportion of
vector error surpassing the 2.00 mm versus values within the clinically accepted standard
(≤2.00 mm) between two groups was analyzed with the χ2 test [13,14]. A paired-samples
t-test was used to analyze the coordinate difference between the intended position and the
center of actual distal contact of the lead (xi vs. xa, yi vs. ya, and zi vs. za). The statistical
analysis was performed using the R studio software (Version 1.1.383, Boston, MA, USA)
with a p < 0.05 for significance.

3. Results

DBS surgery was successfully performed in all 35 patients on bilateral sides (n = 70 leads).
We manually adjusted the depth (1–2 mm) using the microdriver on six leads in the robot-
assisted group (17 patients) and on five leads in the frame-based DBS group (18 patients)
because tremor and muscle rigidity were unsatisfactorily improved or side effects such as
paraesthesia, myoclonus, and dysarthria occurred at a low voltage during macrostimulation.
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These leads were not included in the analysis of accuracy and precision, because the decision
to adjust leads was made according to clinical response and could not reflect the accuracy
of respective implantation methods. Intraoperative complications such as intracranial
pneumatosis, intracranial bleeding, and electrode dislocation were not observed. Patients in
both groups had a satisfactory amelioration of tremor or rigidity during macrostimulation.

The mean vector error between the intended target and actual distal contact of the lead
was 1.52 ± 0.53 mm (range: 0.20–2.39 mm) in the robot-assisted group and 1.77 ± 0.67 mm
(0.59–2.98 mm) in the frame-based group. The mean directional deviations between the
planned and final lead positions are summarized in Table 1. No significant difference was
observed in the vector error (p = 0.1301) and deviations of coordinates (x, y, and z) between
the robot-assisted group and the frame-based group. However, both the mean values and
standard deviations of the vector error and deviations of coordinates (x, y, and z) in the
frameless robot-assisted group were smaller than the values calculated in the frame-based
group (Table 1). Techniques used in DBS surgery were significantly associated with the
proportion of vector error > 2.00 mm and ≤2.00 mm (p = 0.0255, χ2 test). In 10.7% (n = 3)
frameless robot-assisted implanted leads, the vector error was larger than 2.00 mm with a
maximum offset of 2.39 mm, and in 35.5% (n = 11) frame-based implanted leads, vector
error was larger than 2.00 mm with a maximum offset of 2.98 mm (Figure 4).

Table 1. Contact deviations and vector error of final leads from the planned position (mm) in
two groups.

∆xm ∆ym ∆zm Vector Error

Robot-assisted 0.79 ± 0.65 0.80 ± 0.49 0.64 ± 0.48 1.52 ± 0.53
Frame-based 0.99 ± 0.79 1.01 ± 0.51 0.64 ± 0.54 1.77 ± 0.67

p value ns ns ns ns
“ns” in the table represents no significant difference.
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In addition, a statistical significance was observed for the mean value of yi vs. ya
on bilateral sides in the robot-assisted group, which indicated that the final position of
leads was more posterior than expected. In conventional frame-based group, there was
a statistical significance for the mean value of xi vs. xa and yi vs. ya on the bilateral sides
(Figure 5). This indicated that the actual position of leads was more posterior and medial
than the planned trajectory on the bilateral sides in the frame-based group (Figure 6). In
both the robot-assisted group and the frame-based group, the vector error and deviations
of coordinates (x, y, and z) between the left and right sides were not significantly different
for the actual and planned leads positions (Table 2).
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assisted technique. The final position of leads was more posterior and medial than the planned
position using the frame-based technique.
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Table 2. Comparisons of deviations and vector error on the left and the right side (mm) in two groups.

Robot-Assisted
p Value

Frame-Based
p Value

Left Side Right Side Left Side Right Side

∆xm 0.65 ± 0.78 0.91 ± 0.50 ns 0.90 ± 0.76 1.11 ± 0.85 ns
∆ym 0.91 ± 0.49 0.71 ± 0.50 ns 0.97 ± 0.52 1.05 ± 0.52 ns
∆zm 0.55 ± 0.45 0.71 ± 0.51 ns 0.61 ± 0.54 0.68 ± 0.56 ns

Vector error 1.53 ± 0.61 1.52 ± 0.48 ns 1.67 ± 0.66 1.88 ± 0.69 ns
“ns” in the table represents no significant difference.

4. Discussions

Most DBS surgeries are completed on the basis of stereotactic frame at present, which
remains the mainstream operation in the world, and this is closely related to its application
history, abundant evidence, and advantages. Robot-assisted surgery is an innovative
technique for leads implantation in DBS procedure. Data on the accuracy of robot-assisted
DBS are limited, and there are discrepancies in certain techniques, which can lead to
interinstitutional variances. In this study, we report for the first time awake frameless
robot-assisted DBS surgery using the Sinovation SR1 robot (Sinovation, Beijing, China),
which is composed of a robot arm, computer control system, and display system, analogous
to the ROSA and Neuromate.

The accuracy is defined as the proximity degree of a measured value to the expected
value and is indicated as the mean error. Precision is defined as the degree of coincidence of
the measured values when this value is repeatedly measured in the same condition and is
usually expressed as the standard deviation of the error [15]. In this study, the vector error
of the robot-assisted DBS was 1.52 ± 0.53 mm, which met clinical standards of the accuracy.
Some centers simply regarded 3 mm as the standard for reimplanting leads, and most
studies considered that an accuracy of below 2 mm was ideal for leads placement [16,17].
Holl et al. reported that a deviation of the lead from the intended nuclei beyond 2 mm may
induce suboptimal clinical efficacy [18]. Our results are comparable to those obtained using
other robot techniques. De Benedictis et al. reported that the accuracy of leads placement
using ROSA by the vector error was 1.60 mm for DBS [19]. Varma et al. evaluated the
precision of frameless Neuromate-assisted DBS surgeries in 49 patients and reported a
mean accuracy of 1.7 mm [20]. Though our results did not reach a higher accuracy, such
as a submillimeter grade, their accuracy may further increase along with upgrades of the
robot system because Sinovation SR1 is the first-generation robot of Sinovation.

Our results confirm that the accuracy of robot-assisted DBS is equal to results of the
conventional frame-based technique with no significant difference in the vector error be-
tween the robot-assisted group and the frame-based group. The smaller standard deviation
of the vector error in the robot-assisted group compared to the frame-based group indicated
a higher precision of robot-assisted technique in electrodes implantation. This can also be
demonstrated with the results of a smaller proportion of vector error (10.7%) surpassing
the 2 mm threshold in the robot group. The χ2 test proved that the techniques used in
DBS surgery were significantly associated with proportions of vector error > 2.00 mm and
≤2.00-mm. In addition, our results using the robot-assisted technique were also comparable
to results in other centers using the conventional frame-based technique. In 13 patients
with movement disorders who accepted Cosman–Roberts–Wells (CRW) frame-based DBS
surgeries, a mean of 1.53 ± 0.16 mm vector error was reported for intraoperative CT to
verify final lead positions [21], which was similar to the accuracy in our robot-assisted
group. Martin Jakobs et al. also reported an accuracy of 2.1 ± 0.6 mm in frame-based DBS
surgeries in a large cohort of patients by intraoperative MRI scans, which was higher than
our results [22]. Though we have extensive experience with the conventional frame-based
system, we did not obtain a higher accuracy of leads placement in the frame-based group
than for the robot-assisted group. Our own experience using this innovative frameless
robot-assisted technique for DBS was considerable and convincing. Our accuracy and
precision may further improve with the upgrade of the robot system and neurosurgeons’
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familiarity with this technique. In our experience, the innovative frameless robot-assisted
leads implantation offers many advantages: more comfort for patients with no setting of
a heavy frame, a shorter operation time, a reliable reproducibility of the position for the
arm on a given trajectory, allowing easier adjustments for a trajectory, and avoiding the
need to manually set up coordinates. In addition, the robotic technique also has limitations,
including a high cost, slow acceptance and popularization, the requirement of many team
members, and a long learning curve. However, the economic burden related to surgeons
and patients may decrease with the reduction in operation time and simplification of the
operation procedure. Meanwhile, for the frame-based technique, lengthy procedures and
longer operation times are challenging for the patient and may create additional costs.

In this study, similar results for deviations in medial–lateral, anterior–posterior, and
superior–inferior directions were discovered in the two groups. In addition, the results
suggest that final leads positions were more medial and posterior than expected on the
bilateral sides, which was consistent with the previous study on frame-based stereotactic
surgery [23]. In the robot-assisted group, actual leads positions were more posterior than
planned positions (Figure 6), and this was consistent with Alice Goia’s result, which also
indicated a more posterior position of the final leads [15]. The leakage of cerebrospinal fluid
may explain the tendency of posterior deviations when using these two techniques because
brain parenchyma and leads tend to shift in the posterior direction due to the supine
position when patients undergo the postoperative CT scan [23]. The medial deviations
observed in the frame-based group may be due to the gravity of the device for guiding
implanting such as the microdriver, and the lateral tilt angle of the planned trajectory can
make the tip of the cannula more medial due to the gravity of the guiding device.

However, frameless systems are conceptually closer to robot-assisted procedures, and
perhaps a comparison with the latter would have been highly interesting. To date, the
stereotactic frame for image-guided targeting remains the gold standard for functional
stereotactic operations, and most DBS surgeries were still completed using the stereotactic
frame, especially in China. Given that we compared the frameless robot-assisted technique
with the conventional frame-based procedure in this study, factors that may influence
the accuracy of these two techniques should be analyzed. The lack of quality control
mechanisms could be one of the factors that influences the accuracy of frame-based DBS.
However, a phantom base can help surgeons manually rectify small mechanical errors
prior to leads implantations. The deviations deriving from mechanical errors are unascer-
tainable and are usually rectified depending on the surgeon’s judgment through the naked
eye. Because the aiming bow is usually adjusted in most leads’ implantations due to the
puncture angle in the frame-based group, accuracy and reliability can be impaired from
the surgeon’s subjective decisions (human errors). In addition, procedures of attaching,
locking, and wedging mechanical devices, for which surgeons may be neglectful, lack
appropriate quality control. Furthermore, errors can arise from manually setting up co-
ordinates, especially when leads are re-implanted and coordinates need to be repeatedly
adjusted. Conversely, the robot arm can be commanded to efficiently move between entry
points when entry points and targets are selected and the fiducial registration is finished,
and this can decrease mechanical errors and human errors. This capability is especially
advantageous for adjusting the position of electrodes. It is worth noting that the robotic
system in this study is only as a positioning tool to then carry out a manual implantation
of the instruments and electrodes. Human errors also existed in the robotic system when
we manually implanted the instruments and electrodes. In addition, some mechanical
errors exist in the robotic system; its inherent accuracy and precision can be improved by
calibration algorithms and reducing human errors.

In addition, the wear and deformation of metallic devices for lead implantation can
influence accuracy and reliability over time. The maintenance of a conventional frame-
based system is more complicated than the robot system. In the frame-based system,
the head frame, screws, phantom base, microdriver, and aiming bow are required to be
repeatedly autoclaved after each surgery. However, only a few parts, such as the screws,
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microdriver, and instrument holders need to be autoclaved in the robot system because the
robot itself has no direct contact with the patient during surgery. The long heat exposure
and unintended bump on the mechanical devices may create deformation, wear, and
dullness, which could be the cause for a lower precision in the frame-based group in this
study. However, a more considerate and reliable maintenance of the robot system in the
long term may maintain a higher degree of accuracy and precision for leads implantations
than the frame-based system.

Some limitations need to be noted in this study. First, we calculated the vector error
through comparing the position of the distal contact of final electrodes with the planned
position of the tip of electrodes to study accuracy and precision. Medtronic 3387 electrode
has a dead space at its tip that can slightly influence its accuracy. However, we calculated
the vector error in a same method in the robot-assisted group and the frame-based group,
which can counteract this influence when we compare results in two groups. In addition,
some surgeons considered that the radial error was a more appropriate measurement to
study the accuracy compared to the vector error because the depth of leads may be adjusted
depending on the results of macrostimulation. Leads can be inadvertently advanced or
retracted when they are deployed and secured, and this can influence the accuracy that is
not related to stereotactic methods [2,9]. Second, this study mainly focused on the accuracy
of lead placement under different systems and lacks the observation and statistics of clinical
data. In our future research, we will further study the stimulation parameters and clinical
outcomes in these two groups of patients using different systems for leads implantations,
so as to further confirm the advantages of frameless robot-assisted DBS surgery.

5. Conclusions

In this study, the awake frameless robot-assisted DBS surgery was comparable to the
conventional frame-based technique in the accuracy and precision of leads implantations.
The robot-assisted DBS can be an alternative to purely mechanical guidance systems.
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