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Highlights:

• Eutylone induced dose-dependent CTA and CPP.
• MDMA pre-exposure attenuated eutylone-induced CTA, but it did not impact eutylone-induced CPP.
• Cocaine pre-exposure had no significant effect on eutylone-induced CTA or CPP.
• The weak effects of eutylone history on cocaine and MDMA may be a function of eutylone’s

specific hybrid neurochemical actions on DA and 5-HT.

Abstract: Background: As individual synthetic cathinones become scheduled and regulated by the
Drug Enforcement Administration (DEA), new ones regularly are produced and distributed. One such
compound is eutylone, a novel third-generation synthetic cathinone whose affective properties (and abuse
potential) are largely unknown. The following experiments begin to characterize these effects and how
they may be impacted by drug history (a factor affecting reward/aversion for other drugs of abuse).
Methods: Eutylone was assessed for its ability to induce conditioned taste avoidance (CTA; aversive effect)
and conditioned place preference (CPP; rewarding effect) and their relationship (Experiment 1). Following
this, the effects of exposure to cocaine or 3,4-methylenedioxymethamphetamine [MDMA] on eutylone’s
affective properties were investigated (Experiment 2). Results: Eutylone produced dose-dependent CTA
and CPP (Experiment 1), and these endpoints were unrelated. Pre-exposure to cocaine and MDMA
differentially impacted taste avoidance induced by eutylone (MDMA > cocaine) and did not impact
eutylone-induced place preference. Conclusions: These data indicate that eutylone, like other synthetic
cathinones, has co-occurring, independent rewarding and aversive effects that may contribute to its abuse
potential and that these effects are differentially impacted by drug history. Although these studies begin
the characterization of eutylone, future studies should examine the impact of other factors on eutylone’s
affective properties and its eventual reinforcing effects (i.e., intravenous self-administration [IVSA]) to
predict its use and abuse liability.

Keywords: taste avoidance; place preference; eutylone; MDMA; cocaine; drug history

1. Introduction

The affective properties of drugs known to contribute to drug use and abuse are
impacted by a host of subject (e.g., age, sex, strain) and experiential (e.g., dose, route, drug
combinations) factors, one of which is drug history (i.e., serial interactions). In relation to
drug history, exposure to a drug prior to conditioning attenuates and sensitizes acquisition
of taste avoidance and place preference conditioning, respectively (for reviews and various
associative and non-associative interpretations, see [1–4]). Given that the relative balance
of a drug’s aversive and rewarding effects has been reported to mediate the likelihood of
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its use (see [5–9]), understanding the effects of drug history may be important in predicting
its abuse liability.

This potential impact of drug history is especially relevant to the use and abuse of
synthetic cathinones (derivatives of the naturally occurring stimulant cathinone; see [10,11]).
Several studies report that synthetic cathinone users engage in serial polydrug use (i.e., the use
of multiple drugs across multiple sessions; see [12–14]). For example, Smith and Stoops [15]
noted that users of synthetic cathinones significantly surpass those reporting no lifetime
synthetic cathinone use in the rates of lifetime and past year use of several drugs including
club drugs/hallucinogens (76.6% vs. 64.4%) and barbiturates (58.2% vs. 28.2%), among others.
Further, Fernández-Calderón et al. [16] surveyed individuals attending electronic dance
music (EDM) parties in New York City to identify patterns of use of illicit drugs among this
population and observed that 19.2% of attendees reported engaging in extensive polydrug
use in the past year (the mean number of drugs being 6.4). Of those reporting polydrug use in
the past year, 5.3% of these individuals reported past-year synthetic cathinone use as well (see
also [17,18]).

Synthetic cathinones are a constantly evolving issue as established compounds are
scheduled [19–21] and new ones are introduced in their place [22–24]. One such compound
is eutylone, a novel third-generation synthetic cathinone that has recently emerged in global
recreational drug markets ([25–27]; see also [28–31]). Interestingly, recent reports have
indicated that the use of stimulant drugs such as MDMA, synthetic cathinones (including
eutylone) and cocaine account for a majority of drug use at music festivals and clubs [32–35].
The likelihood of serial use is further increased by the fact that stimulants such as cocaine
and MDMA are often adulterated with (or substituted for) structurally related analogues
such as synthetic cathinones [36,37]. For example, West et al. [37] analyzed trace residues
of discarded drug packing samples from large public events, e.g., EDM festivals, and found
that cocaine and MDMA were some of the most popular compounds along with eutylone,
ethylone and N-ethylpentylone. Further, all three of these synthetic cathinones were found
in combination with MDMA, while eutylone was observed with cocaine.

Eutylone is especially interesting in that it is described as “hybrid” in nature, resulting
from chemical modifications to its parent compounds (e.g., methylone; for a discussion,
see [38,39]). While the majority of synthetic cathinones act as monoamine reuptake in-
hibitors or substrate releasers, eutylone acts as a hybrid with reuptake inhibitor properties
at DAT and NET and substrate release activity at SERT [40]. The reuptake inhibition of
eutylone (and other synthetic cathinones) at DAT is consistent with the pharmacological
action of cocaine [41,42], while its action at SERT is akin to that of MDMA [43–45], suggest-
ing that eutylone may have psychostimulant effects and abuse vulnerability comparable to
these and related compounds.

To begin to address the possible serial interactions of eutylone with other drugs that
share, in part, its neurochemical activity, the present study examined the effects of cocaine
or MDMA pre-exposure on the aversive and rewarding effects of eutylone in mice in a
combined CTA/CPP design, which allows for a concurrent assessment of both affective
properties in the same subject (for examples, see [46–50]). In this design, animals are
given access to a novel taste, injected with the drug and then placed on one side of a place
preference chamber, allowing for an assessment of the acquisition of a taste avoidance (index
of the drug’s aversive effects) and a place preference (index of the drug’s rewarding effects).
This design facilitates concurrent assessments of these properties given the ability of animals
to selectively associate the taste with the aversive effects of the drug and environmental
cues with the drug’s rewarding effects (for discussions of selective associations shaped
by evolutionary pressures, see [51–54]). This question was addressed via two studies. In
Experiment 1, male C57BL/6 mice were conditioned with a range of doses of eutylone
(0, 1, 3.2, 10 or 32 mg/kg) to assess its ability to induce taste avoidance and place preference,
indices of its aversive and rewarding effects, respectively). Following determinations of
doses of eutylone effective in inducing these effects, additional male C57BL/6 mice, in
Experiment 2, were exposed to 32 mg/kg (MDMA) or 3.2 mg/kg (cocaine) every 4th day
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(for a total of five injections) prior to CTA and CPP training with eutylone. As noted, such
drug pre-exposure has been reported to impact both the rewarding and aversive effects
of drugs (as measured in place preference and taste avoidance conditioning, respectively),
especially when the drugs share similar neurochemical actions [55–59]. Given that eutylone
is a hybrid compound with both DA and 5-HT activity (see above), it is expected that both
cocaine (DA) and MDMA (5-HT) pre-exposure may impact its affective properties.

2. Experiment 1
2.1. General Methods
2.1.1. Subjects

The subjects were male (n = 40) experimentally naïve C57BL/6 mice bred within the
American University animal research facility. Subjects matured undisturbed until the start
of testing. Starting between post-natal day (PND) 56–84 (8–12 weeks of age), animals were
weighed daily for at least 7 days to index health status and decrease handling stress during
experimental procedures. Subjects were run in two replicates, each of which contained an
equal number of animals (n = 20) with all groups represented (see below). At the outset,
subjects weighed between 20.3 g and 29.2 g (replicate 1: mean = 25.1; SEM = 0.392; replicate
2: mean = 26.1; SEM = 0.404). In both replicates, five groups of subjects (n = 4 per group)
were examined daily. The procedures utilized in the present work adhered to the Guidelines
for the Care and Use of Laboratory Animals [60] and the Guidelines for the Care and Use
of Mammals in Neuroscience and Behavioral Research [61] and were approved by the
Institutional Animal Care and Use Committee at American University.

2.1.2. Apparatus

Subjects were housed four per group in OptiMouse cages (13.5 × 11.5 × 6.1; 75 sq. in).
The animal housing room was kept on a 12 h light/dark cycle (0800–2000 h) and at 23 ◦C.
All training and testing procedures occurred during the lights-on phase of the light cycle.
Unless stated otherwise, food and water were available ad libitum. During CTA training
and testing, animals were transferred to separate individual OptiMouse cages for fluid
presentation in which graduated Nalgene tubes were placed on the side of the cage for fluid
consumption. For CPP assessments, subjects were transferred to one of eight identical three-
chambered CPP systems (68.5 × 21 × 34.5 cm; San Diego Instruments Place Preference
System, San Diego, CA, USA). Each CPP apparatus contained three distinct areas, each of
which was equipped with a photobeam array that recorded time spent in specific locations
within the apparatus. On the left side chamber of the apparatus (28 × 21 × 34.5 cm),
there were white walls and white metal diamond-plate flooring, and on the right side
(28 × 21 × 34.5 cm), there were black walls and black plastic hair-cell textured flooring.
The middle chamber (14 × 21 × 34.5 cm), which was not used for testing, contained grey
walls and metal grid flooring that consisted of metal rods placed approximately 1 cm apart.
All chambers (and the room in which they were contained) were unlit, and a white noise
generator was used to mask background noise that could interfere with conditioning.

2.1.3. Drugs and Solutions

Racemic eutylone (β-keto-1,3-benzodioxolyl-N-ethylbutanamine) was synthesized
and generously provided by the Drug Design and Synthesis Section, MTMDB, NIDA and
NIAAA and by the NIDA Drug Supply program. Eutylone was dissolved in isotonic saline
(0.9%) and injected intraperitoneally (IP) at 1, 3.2, 10 and 32 mg/kg. Concentration was
held constant, and as such, injection volume was dependent on the eutylone dose group
to which subjects were assigned. Isotonic saline (vehicle) was administered to control
subjects equivolume to the highest dose of eutylone. Each drug (and vehicle) solution was
prepared daily and passed through a 0.2-um filter prior to injection to remove any potential
particulates. Saccharin (Sodium Saccharin, Acros Organics) was prepared as a 1 g/L (0.1%)
solution in tap water.
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2.1.4. Procedure
Combined CTA/CPP Design

1. Water Habituation
Beginning 24 h before experimental procedures, subjects were deprived of water and the

next day were given 30 min access to tap water in the individual plastic testing cages. Animals
were then returned to their home cages immediately following water access, and each testing
cage was cleaned using Sani-Plex 128M, a one-step disinfectant germicidal detergent, between
subjects. The limited fluid access procedure was used to induce water consumption during
subsequent testing sessions and was repeated until animals approached the drinking tube
within 2 s and average water consumption did not change by >0.15 mL for 3 consecutive days.
Water was presented in graduated 50 mL Nalgene tubes that were marked in increments of
0.5 mL, and intake was evaluated by the difference between pre- and post-consumption water
volumes (see Figure 1, Experimental Timeline).
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Figure 1. Experimental Timeline for subjects undergoing the combined conditioned taste avoidance
(CTA)/conditioned place preference (CPP) procedure. On drug days, animals were given saccharin
followed by a drug injection and placed on the drug–paired side (DPS). On saline days, animals were
given water access followed by a vehicle (saline) injection and placed on the non–drug–paired side
(Non–DPS). Created with BioRender.

2. CPP Pre-Test

Following stabilization of water consumption, subjects were given 30 min access to
water in the test cages before being placed in the middle grey chamber of the CPP chamber
and allowed to freely explore for 15 min. Animals were immediately returned to their home
cages following the session. To determine if there were initial side preferences for each
replicate, a paired samples t-test on the absolute time spent on the white side vs. absolute
time spent on the black side during the 15 min testing period was conducted and indicated
an unbiased apparatus (replicate 1: t = −1.463, p = 0.160; replicate 2: t = −1.446, p = 0.164).
Although statistically unbiased, there were three animals that spent more than 65% of the
15 min testing time on one side of the apparatus during the Pre-Test suggestive of a strong
natural bias and therefore were excluded from the statistical analysis of place preference
and taste avoidance conditioning (although still run in the behavioral assessments). As
mentioned above, the middle chamber was not used in conditioning (i.e., not paired with
drug or saline) and, as such, was not used in the calculation of side preferences. Between
animals, each chamber was thoroughly cleaned using Sani-Plex 128M.
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3. CTA/CPP Conditioning

On the first day of conditioning (Day 1), subjects were placed in their individual test
cages in groups of eight and given 30 min access to a novel saccharin solution. After saccha-
rin access, subjects were assigned to conditioning groups such that saccharin consumption
among groups was comparable. Subjects were assigned to one of five drug groups and
subsequently injected IP with either saline or 1, 3.2, 10 or 32 mg/kg of racemic eutylone.
Concentration was held constant, and as such, injection volume was dependent on the
eutylone dose to which subjects were assigned. The dose range used in the present study
is based on the work of Glatfelter et al. [40] in which doses of 0, 3, 10 and 30 mg/kg of
eutylone administered subcutaneously were used to induce locomotion in male C57BL/6
mice. This resulted in a total of five groups, i.e., Groups E0, E1, E3.2, E10 and E32, where
the letter indicates eutylone and the number indicates drug dose (n = 7–8 per group). A
power analysis indicated that n ≥ 7 is appropriate to detect significant differences with
the anticipated effect sizes and with α = 0.05 and power (1 − β) = 0.8. Following drug
injections, subjects in each drug group were assigned in a counterbalanced fashion to their
preferred or non-preferred side (i.e., half placed on their preferred and half placed on their
non-preferred) as defined in the Pre-Test as the side in which the mouse spent the most
time for 30 min. Subjects were then returned to their home cages, and the test cages and
place preference chambers were sanitized prior to the next set of animals. On the next day
(Day 2), they were given 30 min access to water in the test cages, injected with vehicle and
placed on the opposite side of the place preference chamber for 30 min. This two-day cycle
was repeated for a total of four cycles.

4. CPP Post-Test and CTA Two-Bottle Test

Subsequent to four conditioning cycles (Day 9 of testing), subjects were given 30 min
access to tap water, placed in the center chamber and allowed to freely explore all three
chambers for 15 min. Time spent on the DPS and Non-DPS was recorded to determine the
percentage of time spent on each side. Following the CPP Post-Test (Day 10), animals were
placed in plastic test cages and given 30 min access to both saccharin and tap water in a
two-bottle avoidance test with no subsequent injections. The two-bottle test was used in
the present study given its increased sensitivity that may detect effects not seen during CTA
acquisition (see [62–65]). In this test, animals are not forced to choose between consumption
and avoidance as they are given a choice between the drug-paired solution and a neutral or
safe fluid (e.g., water). During the two-bottle test, one bottle was offered (saccharin or water)
and once sampled by the animal, it was removed, and the second bottle was presented.
After both bottles were sampled, they were placed simultaneously on their respective sides
of the cage for 30 min and then consumption of both solutions was measured. Both the order
of presentation and side placement were counterbalanced across animals. Once testing
concluded, animals were returned to their home cages and given ad libitum water access.
The percentage of saccharin consumed was calculated by dividing saccharin consumption
by total fluid consumption (volume of saccharin + volume of water) and multiplied by 100.

5. Statistical Analysis

The percentage change in saccharin consumption (Trial 1 − Trial 4/Trial 1 × 100 = percentage
change across CTA) during CTA acquisition was analyzed using a one-way ANOVA with the
between-subjects factor of Dose (0, 1, 3.2, 10, 32 mg/kg). The percentage of saccharin consumed
on the two-bottle avoidance test and percentage time on the DPS on the CPP Post-Test were
analyzed using a one-way ANOVA with the same between-subjects factor. In the case of a
significant interaction, multivariate analyses were assessed followed by Bonferroni-adjusted
multiple comparisons.

The relationship between the percentage of saccharin consumed on the two-bottle
test and the percentage of time spent on the DPS on the CPP Post-Test for each dose was
determined for mice injected with eutylone using Pearson correlation coefficients. Statistical
significance was set to p < 0.05.
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2.2. Results
2.2.1. Conditioned Taste Avoidance

The one-way ANOVA on the percentage change in saccharin consumption (from Trial 1 to
Trial 4) showed a significant effect of Dose [F(4, 35 = 8.272, p < 0.001] (see Figure 2; top panel).
Animals injected with 1 and 3.2 mg/kg of eutylone did not differ from the controls (all ps > 0.05),
while those injected with 10 or 32 mg/kg of eutylone had a significantly greater percentage
decrease than the controls (all ps < 0.05). Further, animals injected with 10 or 32 mg/kg had
significantly greater decreases in saccharin than those treated with 1 mg/kg (all ps < 0.05).
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with vehicle (0) or eutylone at 1, 3.2, 10 or 32 mg/kg. * 10 and 32 mg/kg significantly differed from
vehicle and 1 mg/kg; (Middle): Mean (±SEM) percentage saccharin consumed on the two-bottle test
for subjects injected with vehicle (0) or 1, 3.2, 10 or 32 mg/kg eutylone. * 10 significantly differed
from vehicle. + 32 mg/kg significantly differed from vehicle, 1, 3.2 and 10 mg/kg; (Bottom): Mean
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with vehicle (0) or 1, 3.2, 10 or 32 mg/kg eutylone. * 3.2 and 32 mg/kg significantly differed
from vehicle.
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2.2.2. Two-Bottle Test

The one-way ANOVA on the percentage of saccharin consumed on the two-bottle test indi-
cated that there was a main effect of Dose [F(4, 35) = 20.401, p < 0.001] (see Figure 2: middle panel).
While subjects conditioned with 1 or 3.2 mg/kg did not differ from the controls (all ps > 0.05),
those injected with 10 or 32 mg/kg consumed a significantly lower percentage of saccharin than
those injected with the vehicle (all ps < 0.05). Subjects injected with 32 mg/kg also had a signifi-
cantly lower percentage of saccharin consumed than subjects injected with 1, 3.2 or 10 mg/kg
(all ps < 0.05).

2.2.3. Conditioned Place Preference

The one-way ANOVA on the percentage of time spent on the drug-paired side (DPS)
indicated that there a significant main effect of Dose [F(4, 32 = 4.509, p = 0.005]. Subjects
conditioned with 3.2 and 32 mg/kg of eutylone spent a significantly greater percentage of
time on the DPS than vehicle animals (all ps < 0.05) (see Figure 2, bottom panel). Subjects
conditioned with 1 or 10 mg/kg did not differ from the controls (all ps > 0.05).

2.2.4. CTA/CPP Relationship

Analysis of the relationship between percentage of saccharin consumed on the two-
bottle test and percentage of time spent on the DPS during the CPP Post-Test revealed no
significant relationship at any dose (see Figure 3 below).
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2.3. Discussion

Eutylone induced significant dose-dependent CTA (at 10 and 32 mg/kg) and CPP (at
3.2 and 32 mg/kg), and these effects were not correlated indicating they are independent
and dissociable. The fact that eutylone was effective in induced taste avoidance and place
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preference conditioning is consistent with prior work with rats (although avoidance was
stronger in rats than mice, effects consistent with other work in which mice and rats
have been compared; see [48,66–69]; see below). Although there are few studies that
have examined the relationship between taste avoidance and place preference, the data
that have been collected appear to be mixed. For example, Turenne et al. [70] did not
report a relationship between morphine-induced taste avoidance and place preference
in a serial taste/place conditioning procedure (e.g., CTA was conducted followed by
CPP conditioning); however, they did find a significant positive relationship between
amphetamine-induced CTA and CPP at the highest dose administered. Verendeev and
Riley [71] also reported a relationship with animals conditioned with the highest dose
of amphetamine (but not lower doses) in the combined CTA/CPP design, although the
relationship under their experimental parameters was opposite to that described by Turenne
et al., i.e., subjects that showed greater decreases in saccharin consumption were less likely
to display a place preference. Similar to Turenne et al., Verendeev and Riley reported no
relationship with morphine at any dose tested. In relation to the synthetic cathinones, King
et al. [72] found a significant inverse relationship for females conditioned with 1.8 mg/kg
of MDPV but not at any other dose (and no relationships with males at any dose). Further,
we recently demonstrated that for eutylone’s parent compound methylone, there was
no significant relationship when collapsed across dose (r = 0.1853; p = 0.2230), but when
examined by dose, there was a significant inverse relationship at the 5.6 mg/kg dose, i.e., as
CPP increased, CTAs decreased (r = 0.6324; p = 0.0086) [48]. Such a relationship is similar to
that reported by King et al. and Verendeev and Riley. Despite the few occasions in which a
significant relationship is reported, the general consensus (i.e., in roughly 75–80% of cases)
is that there is no significant correlation between CTA and CPP, supporting the notion that
taste avoidance and place preference are independent, co-occurring stimulus properties of
drugs. In cases where significant correlations are seen, this may be a function of chance
occurrences when conducting multiple comparisons. Importantly, such assessments must
be done with the synthetic cathinones (and other drugs) to determine the outcome of
such analyses and under what conditions significant relationships occur given that it may
provide insight into the nature of reward and aversion for drugs of abuse (for a discussion,
see [71]).

The rewarding and aversive effects and their dissociation reported above are consistent
with other drugs of abuse (for a review, see [7,9]), including synthetic cathinones [48,69,72].
Given the data demonstrating effective doses of eutylone in taste and place conditioning,
Experiment 2 assessed the potential interaction of compounds neurochemically related
to eutylone. Specifically, mice were exposed to either cocaine or MDMA prior to taste
avoidance and place preference conditioning with eutylone to examine potential changes
in its affective properties.

3. Experiment 2
3.1. General Methods

Unless otherwise specified, the strain of animals, housing conditions and the spe-
cific training procedures (CTA/CPP) utilized here were identical to those described for
Experiment 1 (see above).

3.1.1. Subjects

The subjects were male (n = 96) experimentally naïve C57BL/6 mice. Starting between
post-natal days (PND) 56–84 (8–12 weeks of age), animals were weighed daily for a mini-
mum of 6 days to index health status and reduce handling stress during the subsequent
experimental procedures. They were run in two replicates, each of which had an equal
number of animals (n = 48 total/replication) and represented all drug groups. For each
replicate, six groups of subjects (n = 8 per group) were assessed daily. Subjects weighed
between 21.6 g and 29 g (replicate 1: mean = 25.8; SEM = 0.197; replicate 2: mean = 24.2;
SEM = 0.198) at the start of experimental procedures.
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3.1.2. Drugs and Solutions

Cocaine hydrochloride and MDMA hydrochloride were synthesized and generously
provided by the National Institute on Drug Abuse (NIDA) Drug Supply Program and were
dissolved in isotonic saline (0.9%) and injected subcutaneously (SC) at 32 and 3.2 mg/kg,
respectively. These doses were based on prior work reporting that each is effective in
inducing taste avoidance (for cocaine, see [73–76]; for MDMA, see [58,77–79]) and that
both attenuate taste avoidance following their pre-exposure (for cocaine, see [80,81]; for
MDMA, see [77]). Concentration for the cocaine solution was 2 mg/mL and for MDMA was
0.5 mg/mL. Controls were administered equivolume saline SC during pre-exposure.

Racemic eutylone was synthesized and generously provided by the Drug Design and
Synthesis Section, MTMDB, NIDA and NIAAA and by the NIDA Drug Supply program.
Eutylone was dissolved in isotonic saline (0.9%) and injected IP at 3.2, 10 and 32 mg/kg.
Concentration was held constant, and as such, injection volume was dependent on the
eutylone dose group to which subjects were assigned. This dose range is based on the
results of Experiment 1. Isotonic saline (vehicle) was administered to controls, equivolume
to that administered for the high dose eutylone group.

3.1.3. Procedure

Water Habituation and Cocaine/MDMA Pre-Exposure

At the beginning of experimental procedures, mice were deprived of water for 24 h
before being transferred to individual plastic cages and given 30 min access to tap water
delivered in 50 mL Nalgene tubes. The mice were given 6 days to habituate to the limited
fluid-access procedure. On the 7th day of limited access, mice were matched on water
consumption and assigned to three groups (n = 32 for each group) such that average
consumption was comparable among groups. Approximately 5 h after fluid access, mice
were removed from their home cages and transferred to a separate room where they were
injected SC with vehicle, cocaine or MDMA before being returned to their home cages. For
the following 3 days, mice received 30 min water access but no injections. This procedure
of vehicle, cocaine or MDMA exposure followed by 3 recovery days was repeated for a
total of five cycles over the course of 20 days (see Figure 4; Experimental Timeline; for other
work utilizing this procedure, see [58,77,81,82]).
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Figure 4. Experimental Timeline for subjects exposed to vehicle, cocaine or MDMA every 4th day (for
a total of 5 injections) prior to undergoing a combined conditioned taste avoidance (CTA)/conditioned
place preference (CPP) procedure. On conditioning days, animals were given saccharin followed by a
drug injection and placed on the drug–paired side (DPS). On saline days, animals were given water
access followed by a saline injection and placed on the non–drug–paired side (non–DPS). Created
with BioRender.
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Combined CTA/CPP Design

1. CPP Pre-Test

Animals were assessed for initial side preferences (see Experiment 1). Paired samples
t-test on the absolute time spent on the white side vs. absolute time spent on the black
side during the 15 min testing period indicated a biased apparatus (t = 2.582, p = 0.013)
for replicate 1 and unbiased apparatus (t = −0.881, p = 0.383) for replicate 2. To maintain
comparable experimental conditions, both replicates were run using a biased procedure
(see below). Additionally, four animals spent more than 65% of the 15 min testing time
on one side of the conditioning chamber during the Pre-Test and were excluded from the
statistical analysis (although still run in all behavioral assessments).

2. CTA/CPP Conditioning

During conditioning, subjects from each pre-exposure condition were assigned to
one of four conditioning groups such that saccharin consumption among groups was
comparable. Immediately following saccharin access, they were injected IP with the vehicle
or 3.2, 10 or 32 mg/kg of racemic eutylone. This resulted in a total of 12 experimental
groups, i.e., V0, V3.2, V10, V32, C0, C3.2, C10, C32, M0, M3.2, M10 and M32 where
the first letter indicates the pre-exposure condition (vehicle, cocaine or MDMA) and the
number indicates the dose of eutylone (0, 3.2, 10 or 32 mg/kg) (n = 7–8 for each group).
A biased training procedure was employed during conditioning such that each animal
was placed on its non-preferred side following drug injections. Chambers were sanitized
between animals.

3. CPP Post-Test and CTA Two-Bottle Test

The CPP Post-Test and Two-Bottle Test were conducted as described in Experiment 1.

3.1.4. Statistical Analysis

Cocaine

To assess whether cocaine pre-exposure affected body weight and fluid consumption,
a 2 × 5 mixed model ANOVA with the between-subjects factor of Pre-exposure Drug and
the within-subjects factor of Injection Day was run separately for each measure.

Percentage change in saccharin consumption (from Trial 1 to Trial 4) during CTA
acquisition was analyzed separately for each dose using a two-way ANOVA with the
between-subjects factors of Pre-Exposure Drug (Vehicle or Cocaine) and Conditioning Drug
(vehicle or eutylone). Percentage saccharin consumed on the two-bottle avoidance test and
percentage time on the DPS on the CPP Post-Test were analyzed for each dose using a two-
way ANOVA with the same between-subjects factors. In the case of a significant interaction,
univariate analyses were assessed followed by Bonferroni-adjusted multiple comparisons.

MDMA

Effects of MDMA on body weight and water consumption during pre-exposure were
assessed as described for cocaine. Percentage change in saccharin consumption (from Trials
1–Trial 4) during CTA acquisition as well as percentage saccharin consumed on the two-
bottle test and percentage time on the DPS on the CPP Post-Test for MDMA-pre-exposed
subjects were analyzed as described above.

Statistical significance was set to p < 0.05.

3.2. Results
3.2.1. Cocaine Pre-Exposure
Body Weight and Water Consumption during Pre-Exposure

The 2 × 5 mixed model ANOVA on body weight during pre-exposure revealed a
main effect of Injection Day [F(4, 248) = 117.518, p < 0.001] but not of Pre-exposure Drug
[F(1, 62) = 0.029, p = 0.865] (see Figure 5; left panel). There was no significant interaction
of Injection Day × Pre-exposure Drug [F(4, 248) = 0.237, p = 0.917]. The 2 × 5 mixed
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model ANOVA on water consumption during pre-exposure indicated that there was a
main effect of Injection Day [F(4, 248) = 8.395, p < 0.001] but not of Pre-exposure Drug
[F(1, 62) = 0.007, p = 0.935] (see Figure 5; right panel). There was no significant interaction
of Injection Day × Pre-exposure Drug [F(4, 248) = 0.803, p = 0.524]. For both body weight
and water consumption, the main effect of Injection Day is due to both indices increasing
across pre-exposure (regardless of pre-exposure condition).
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Conditioned Taste Avoidance

For all doses, the two-way ANOVAs on the percentage change in saccharin consumption
revealed that there was a main effect of Conditioning Drug [all values of F(1, 28) > 4.890, all
p values < 0.035], but not of Pre-exposure Drug [all values of F(1, 28) < 0.169, all p values > 0.684].
There was no significant interaction of Pre-exposure Drug × Conditioning Drug [all values
of F(1, 28) < 2.889, p = 0.100]. Regardless of pre-exposure, all subjects conditioned with euty-
lone significantly decreased saccharin consumption relative to control subjects (p < 0.05) (see
Figure 6; left panels).

Two-Bottle Test

For animals injected with the 3.2 mg/kg dose of eutylone, the two-way ANOVA on
the percentage of saccharin consumed on the two-bottle test revealed no main effects of
Conditioning Drug [F(1, 28) = 0.045, p = 0.834] or Pre-exposure Drug [F(1, 28) = 2.954,
p = 0.097] (see Figure 6; top right panel). Further, there was no significant interaction of
Pre-exposure Drug × Conditioning Drug [F(1, 28) = 1.720, p = 0.200]. For animals injected
with 10 and 32 mg/kg eutylone (see Figure 6; middle and bottom right panels), the two-
way ANOVA revealed a main effect of Conditioning Drug [all F values (1, 28) = 15.493, all
p values < 0.001]. At the 10 mg/kg dose, there was no main effect of Pre-exposure Drug
[F (1, 28) = 0.913, p = 0.347]; at the 32 mg/kg dose, there was a significant main effect of
Pre-exposure Drug [F(1, 28) = 4.687, p = 0.039). There was no significant interaction of
Pre-exposure Drug × Conditioning Drug [all F values (1, 28) < 1.331, all p values > 0.258]
at either the 10 or 32 mg/kg dose. Regardless of pre-exposure, subjects conditioned with
eutylone consumed a significantly lower percentage of saccharin than the controls (p < 0.05).

Conditioned Place Preference

For animals injected with 3.2 mg/kg eutylone, the two-way ANOVA on the percentage
of time spent on the DPS during the CPP Post-Test revealed no main effect of Conditioning
Drug [F(1, 27) = 1.916, p = 0.178] or Pre-exposure Drug [F(1, 27) = 1.234, p = 0.276] (see Figure 7;
top panel). There was no significant interaction of Pre-exposure × Conditioning Drug
[F(1, 27) = 0.344, p = 0.563]. For animals injected with 10 and 32 mg/kg, the two-way ANOVA
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revealed a main effect of Conditioning Drug [all F values (1, 27) > 8.576, all p values < 0.003], but
not of Pre-exposure Drug [all F values (1, 27) < 2.043, all p values > 0.164] (see Figure 7; middle
and bottom panels). There was no significant interaction of Pre-exposure × Conditioning Drug
[all F values (1, 27) < 0.686, all p values > 0.415] for either the 10 or 32 mg/kg dose. Regardless
of pre-exposure, subjects conditioned with eutylone spent a significantly greater percentage of
time on the DPS than the controls (all p values < 0.05).
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Figure 6. Mean (±SEM) percentage change in saccharin consumption (left) and percentage saccharin
(±SEM) consumed (right) for animals pre-exposed to cocaine or vehicle and conditioned with
3.2 (top), 10 (middle) and 32 (bottom) mg/kg of eutylone during CTA acquisition (left) and on the
two-bottle test (right). * Subjects injected with 3.2, 10 and 32 mg/kg (collapsed across pre-exposure
conditions) significantly differed from controls.
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Figure 7. Mean (±SEM) percentage of time spent on the drug-paired side (DPS) for mice pre-exposed
to cocaine or vehicle and conditioned with vehicle or 3.2 (top), 10 (middle) or 32 (bottom) mg/kg
of eutylone. * Subjects injected with 10 and 32 mg/kg (collapsed across pre-exposure conditions)
significantly differed from vehicle.

3.2.2. MDMA Pre-Exposure

Body Weight and Water Consumption during Pre-Exposure

The 2 × 5 mixed model ANOVA on body weight during pre-exposure revealed a
main effect of Injection Day [F(4, 248) = 126.471, p < 0.001] but not of Pre-exposure Drug
[F(1, 62) = 0.448, p = 0.506] (see Figure 8; left panel). There was no significant interaction
of Injection Day × Pre-exposure Drug [F(4, 248) = 0.272, p = 0.896]. The 2 × 5 mixed
model ANOVA on water consumption during pre-exposure indicated that there was a
main effect of Injection Day [F(4, 248) = 8.533, p < 0.001] but not of Pre-exposure Drug
[F(1, 62) = 0.035, p = 0.851] (see Figure 8; right panel). There was no significant interaction
of Injection Day × Pre-exposure Drug [F(4, 248) = 0.212, p = 0.932]. For both body weight
and water consumption, the main effect of Injection Day is due to both indices increasing
across pre-exposure (regardless of pre-exposure condition).
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Conditioned Taste Avoidance

For subjects injected with 3.2 and 10 mg/kg of eutylone, the two-way ANOVA on
the percentage change in saccharin consumption revealed a main effect of Condition-
ing Drug [all F values (1, 28) > 6.286, all p values < 0.018], but not of Pre-exposure
Drug [all F values (1, 28) < 0.914, all p values > 0.347]. There was no significant inter-
action of Pre-exposure Drug × Conditioning Drug for either the 3.2 or 10 mg/kg dose
[all F values (1, 28) < 3.769, all p values > 0.062]. Regardless of pre-exposure, subjects con-
ditioned with 3.2 and 10 mg/kg of eutylone significantly decreased saccharin consumption
relative to controls (p < 0.05; see Figure 9, top and middle left panels). For subjects injected
with 32 mg/kg of eutylone, the two-way ANOVA on the percentage change in saccharin
consumption revealed a main effect of Conditioning Drug [1, 27) = 19.602, p < 0.001] but
not of Pre-exposure Drug [F(1, 27) = 0.203, p = 0.656]. There was, however, a significant
interaction of Pre-exposure Drug × Conditioning Drug. [F(1, 27) = 6.734, p = 0.015]. In
relation to the two-way interaction, subjects pre-exposed to vehicle and conditioned with
32 mg/kg of eutylone (V32) significantly decreased saccharin consumption relative to
controls (V0; p < 0.05). In contrast, subjects pre-exposed to MDMA and conditioned with
32 mg/kg (M32) did not differ from their controls (M0; p > 0.05). Additionally, subjects
pre-exposed to vehicle and conditioned with 32 mg/kg (V32) significantly decreased sac-
charin consumption relative to subjects pre-exposed to MDMA (M32; p < 0.05; see Figure 9,
bottom left panel).

Two-Bottle Test

For subjects injected with 3.2 mg/kg eutylone, the two-way ANOVA on the percentage
of saccharin consumed on the two-bottle test revealed no main effects of Conditioning Drug
[F(1, 28) = 0.012, p = 0.913] or Pre-exposure Drug [F(1, 28) = 0.032, p = 0.858] (see Figure 9;
top right panel) or a significant interaction of Pre-exposure Drug × Conditioning Drug
[F(1, 28) = 0.1.308, p = 0.263]. For subjects injected with 10 and 32 mg/kg eutyone, the
two-way ANOVA on the percentage of saccharin consumed on the two-bottle test revealed
a main effect of Conditioning Drug [F(1, 27) > 7.610, p = 0.001] but not of Pre-exposure Drug
[F(1, 27) < 0.070, p = 0.794] (see Figure 9; middle right panel). There was no significant inter-
action of Pre-exposure Drug × Conditioning Drug [F(1, 27) = 0.065, p = 0.801]. The two-way
ANOVA on the percentage of saccharin consumed on the two-bottle test revealed for sub-
jects injected with 32 mg/kg eutylone a main effect of Conditioning Drug [F(1, 27) = 56.588,
p < 0.001] and Pre-exposure Drug [F(1, 27) = 5.652, p = 0.025] (see Figure 9; bottom right
panel). There was no significant interaction of Pre-exposure Drug × Conditioning Drug
[F(1, 27) = 2.284, p = 0.142]. Regardless of pre-exposure, all subjects conditioned with
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eutylone consumed a significantly lower percentage of saccharin compared to the controls
(p < 0.05).
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Figure 9. Mean (±SEM) percentage change in saccharin consumption (left) and percentage saccharin
consumed (right) for animals pre-exposed to MDMA or vehicle and conditioned with vehicle or
3.2 (top), 10 (middle) or 32 (bottom) mg/kg of eutylone during CTA acquisition (left) and two-bottle
test (right). * Subjects injected with 3.2 and 10 mg/kg (collapsed across pre-exposure conditions)
significantly differed from vehicle. ˆ Subjects in Group V32 significantly differed from Group V0.
+ Subjects in Group M32 significantly differed from Group V32.

Conditioned Place Preference

For animals injected with 3.2 mg/kg eutylone, the two-way ANOVA on the per-
centage of time spent on the DPS during the CPP Post-Test revealed that there was no
main effect of Conditioning Drug [F(1, 26) = 3.968, p = 0.057] or Pre-exposure Drug
[F(1, 26) = 1.062, p = 0.312] (see Figure 10; top panel) or any significant interaction of
Pre-exposure × Conditioning Drug [F(1, 26) = 0.065, p = 0.801]. For animals injected with
10 and 32 mg/kg eutylone, the two-way ANOVA on the percentage of time spent revealed a
main effect of Conditioning Drug [all F values (1, 27) > 4.996, all p values < 0.035] but not of
Pre-exposure Drug [all F values (1, 27) < 0.0639, all p values > 0.432] (see Figure 10, middle
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and bottom panels). For both doses, there was no significant interaction of Pre-exposure
× Conditioning Drug [all F values (1, 27) < 0.014, all p values > 0.552]. Regardless of
pre-exposure, subjects conditioned with eutylone spent a significantly greater percentage
of time on the DPS than controls (p < 0.05).
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Figure 10. Mean (±SEM) percentage of time spent on the drug-paired side (DPS) for mice pre-exposed
to MDMA or vehicle and conditioned with vehicle or 3.2 (top), 10 (middle) or 32 (bottom) mg/kg
of eutylone. * Subjects injected with 10 and 32 mg/kg (collapsed across pre-exposure conditions)
significantly differed from vehicle.

3.3. Discussion

Prior exposure to a drug can impact its aversive and rewarding effects which, in turn,
may alter its acceptability and the likelihood of its intake (see [83,84]). To address this with
eutylone, the effects of cocaine or MDMA pre-exposure on eutylone’s affective properties
were examined in mice using a combined CTA/CPP design. Similar to the effects reported
in Experiment 1, eutylone produced significant dose-dependent taste avoidance and place
preference. As described, MDMA pre-exposure significantly attenuated taste avoidance
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induced by 32 mg/kg of eutylone, while cocaine had no effect at any dose. Neither MDMA
nor cocaine pre-exposure impacted eutylone-induced place preference.

The overall limited effects of pre-exposure to cocaine and MDMA on eutylone-induced
taste avoidance and place preference are surprising in the light of prior work showing
significant and often robust attenuation and sensitization of such effects by drug history.
For example, in one of the initial assessments of the effects of drug pre-exposure in taste
avoidance learning Berman and Cannon [85] reported that rats exposed to ethanol prior to
taste avoidance conditioning displayed attenuated ethanol-induced avoidance relative to
non-pre-exposed subjects. Subsequent to this demonstration, exposure to a wide array of
drugs has been reported to weaken taste avoidance conditioning with itself [86–88] and
with compounds with shared neurochemical activity or effects ([55,56,89–91]; for reviews,
see [1,2,91]). Similarly, exposure to a drug prior to place preference conditioning can
sensitize the drug’s rewarding effects. For example, pre-exposure to morphine produces
faster acquisition of morphine-induced place preference (at low doses of morphine) as
well as significantly greater preference (at higher doses; see [92]). As with taste avoidance
conditioning, such sensitization can occur when the pre-exposure and conditioning drug
are similar and different (see [93–97]; though see [98,99]).

Although the effects of drug history have been well characterized, reports with synthetic
cathinones are relatively few (for a recent review, see [13]). For example, Gregg and his col-
leagues [100] reported that rats pre-exposed to mephedrone (15 mg/kg; for 5 days) displayed
locomotor sensitization to a subsequent injection of cocaine (15 mg/kg) when administered
10 days later. Interestingly, cocaine pre-exposure had no effect on mephedrone-induced motor
activity, suggesting an asymmetrical effect of drug pre-exposure. Mephedrone pre-exposure
did not sensitize methamphetamine-induced activity (for related work with methcathinone
and cocaine, see [101]). More directly related to the current work, Woloshchuk et al. [102]
reported that pre-exposure to MDPV (a first-generation synthetic cathinone) significantly
attenuated avoidance of saccharin induced by MDPV and cocaine (but not by the emetic
LiCl) with the strongest effect occurring on itself. Interestingly, Manke et al. [58] reported
that pre-exposure to methylone (another first-generation synthetic cathinone) attenuated taste
avoidance induced by MDPV and MDMA (MDPV > MDMA). In related work, methylone
pre-exposure had no impact on avoidance induced by the SSRI fluoxetine [103]. In relation
to the effects of drug history on place preference conditioning, Lopez-Arnau et al. [104] re-
cently reported that adolescent exposure to MDPV potentiated place preference conditioning
with cocaine during adulthood (as well as reinstatement of cocaine IVSA; for recent papers
showing that a history of cocaine IVSA prevented the development of a high-responder
phenotype for MDPV, see [105,106]). Interestingly, ethanol pre-exposure has no impact on
the second-generation synthetic cathinone a-PVP’s ability to produce CPP (although it did
weaken a-PVP’s aversive effects as assessed with taste avoidance conditioning) (see [82]).

In this context, the issue becomes why exposure to cocaine or MDMA had such weak
(or no) effects on eutylone. As noted above, eutylone is a reuptake inhibitor at DAT and
NET as well as a substrate releaser at SERT. Given its multiple neurochemical actions, it is
possible that one of its subjective effects may be more salient resulting in an overshadowing
or masking of its other stimulus effects. Given that MDMA (but not cocaine) did impact
eutylone’s aversive effects is consistent with the possibility that its serotonergic effects are
more salient than its effects on DA and NE. Such overshadowing or masking has been
reported in several assessments of drug mixtures in drug discrimination learning (DDL)
procedures in which animals are reinforced for responding on a specific lever following
administration of individual drugs (or drug mixtures) and on a different lever following
the drug vehicle. In work with drug combinations, training with a drug mixture has been
reported to generalize control only to one of its components in subsequent tests, suggestive
that control may have been established only to the most salient of the drugs in combination
(for examples of this selective generalization or the ability of drugs to overshadow others in
this design, see [107–112], though see [113]; for reports of generalization of hybrid synthetic
cathinones in DDL designs, see [114–116]).



Brain Sci. 2023, 13, 1294 18 of 24

The dual nature of eutylone’s mechanism of action may also produce a unique con-
figural subjective effect that does not fully generalize to drugs with single (or different)
neurochemical activity. Although such assessments have not yet been made with synthetic
cathinones, several studies have demonstrated such configural effects in the DDL. For
example, Troisi II et al. [117] trained rats in an operant DDL procedure with a mixture of
nicotine (0.3 mg/kg) and ethanol (1 g/kg) vs. saline (see also [118]). Following acquisition
of the discrimination in which the mixture controlled responding, animals were assessed
for the generalization of its discriminative control to the individual elements of the com-
pound. Under these conditions, nicotine and ethanol alone substituted partially for the
compound (N > E). Following these assessments, the individual elements were presented
in an extinction procedure such that they were given, but animals were never reinforced
for responding. In subsequent tests with the compound, responding fully recovered. From
these data, Troisi II et al. [117] argued that the compound was perceived as different from
the elements, functioning as a unique configural cue. Further support for this position
was provided by showing that animals could learn to discriminate the compound from the
elements in an explicit discrimination procedure in which the compound was reinforced
while the elements were not (treated as a saline condition). As expected, animals learned
this discrimination, responding only under the compound condition. Again, these data
support the position that a drug mixture was not simply perceived as the combination of
the individual elements, but as a unique cue that only partially overlapped with the drugs
making up the compound. Accordingly, it is possible that cocaine or MDMA alone does not
produce the same unique cue that is salient to the subject when eutylone is given, limiting
the effects of drug pre-exposure on eutylone’s ability to induce a taste avoidance.

3.4. Limitations

Surprisingly, we did not see any greater taste avoidance in the choice procedure than
the one-bottle design. This was unexpected given that it is generally a more sensitive index
in that animals are not required to pit the avoidance of the taste against deprivation as
they can avoid the taste and consume the neutral fluid. The differences reported between
the one- and two-bottle designs could be due to variability in the strength of conditioning
effects [119,120]. Further, this suggests that the mouse does not defend deprivation as
well as the rat (for which most of the work on one- and two-bottle assessments have been
made). Mice appear not to be able to suppress consumption as effectively as rats which is
interesting in the light of the fact that for a host of drugs (including eutylone), mice display
significant weaker taste avoidance than rats [48,66–69], suggestive that although the drug
may be aversive (as one can see with higher doses), deprivation may limit their ability to
suppress consumption in general. This is speculation, but such an interpretation has been
given to other subject manipulations (e.g., sex difference comparisons; see [121,122]).

In the present work, the specific procedure used during place preference conditioning
was driven by initial side preference. In Experiment 1, there was no significant side prefer-
ence during the Pre-Test, and as such an unbiased procedure was used in which rats were
randomly assigned to a specific side prior to being injected with the drug. In Experiment 2,
there was a significant side preference (in Replicate 1) which dictated the use of a biased
procedure in which animals were placed on their non-preferred side prior to being injected
with the drug. In Replicate 2, there was no significant side preference, but to be consistent
with the first replicate within the same study, a comparable biased procedure in which
all animals were injected with drug on the non-preferred side was used. Importantly,
despite the use of a biased vs. unbiased procedure, significant place preferences were
evident across Experiments 1 and 2 and within Experiment 2, consistent with work in place
preference conditioning that reports significant effects with both designs ([123–126]; for a
review see [127]).



Brain Sci. 2023, 13, 1294 19 of 24

3.5. Conclusions

Independent of the basis for the current results, what is striking is that a history of
cocaine or MDMA had weak (and selective) effects of taste avoidance learning and no
effects on place preference conditioning, suggesting that the affective properties of eutylone
were relatively unaffected by this history. As described above, these results parallel those
from recent assessments with eutylone’s parent compound, i.e., methylone (see [58]), that
is also a hybrid drug as it is a monoamine reuptake inhibitor (DA and NE > 5-HT) with
release substrate activity primarily at 5-HT. It remains to be determined whether these
effects reflect unique properties of hybrid compounds such as eutylone and methylone (and
other synthetic cathinones with mixed actions; see also [128]) or are instead a function of the
specific parameters under which they have been assessed all reported to impact the effects
of drug pre-exposure, e.g., order of drug preexposure and conditioning [56,59], doses of the
pre-exposure drug [92], sex [129], adolescents vs. adults [130]. Given the extensive co-use of
synthetic cathinones (see above), understanding their serial (and concurrent; see [131–133])
interactions may be important in predicting abuse vulnerability of this class of compounds.
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