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Abstract: Neuroinflammation contributes to the pathophysiology of major depressive disorder
(MDD) by inducing neuronal excitability via dysregulation of microglial brain-derived neurotrophic
factor (BDNF), Na-K-Cl cotransporter-1 (NKCC1), and K-Cl cotransporter-2 (KCC2) due to activation
of BDNF-tropomyosin receptor kinase B (TrkB) signaling. Allosteric modulation of α7 nAChRs has
not been investigated on BDNF, KCC2, and NKCC1 during LPS-induced depressive-like behavior.
Therefore, we examined the effects of PNU120596, an α7 nAChR positive allosteric modulator, on the
expression of BDNF, KCC2, and NKCC1 in the hippocampus and prefrontal cortex using Western blot
analysis, immunofluorescence assay, and real-time polymerase chain reaction. The effects of ANA12,
a TrkB receptor antagonist, on LPS-induced cognitive deficit and depressive-like behaviors were
determined using the Y-maze, tail suspension test (TST), and forced swim test (FST). Pharmacological
interactions between PNU120596 and ANA12 were also examined. Experiments were conducted in
male C57BL/6J mice. LPS administration (1 mg/kg) resulted in increased expression of BDNF and
the NKCC1/KCC2 ratio and decreased expression of KCC2 in the hippocampus and prefrontal cortex.
PNU120596 pretreatment (4 mg/kg) attenuated the LPS-induced increase in the expression of BDNF
and NKCC1/KCC2 ratio and the reduction in KCC2 expression in these brain regions. In addition,
ANA12 (0.25 or 0.50 mg/kg) reduced the LPS-induced cognitive deficit and depressive-like behaviors
measured by a reduced spontaneous alternation in the Y-maze and increased immobility duration
in TST and FST. Coadministration of PNU120596 (1 mg/kg) and ANA12 (0.25 mg/kg) prevented
the LPS-induced cognitive deficit and depressive-like behaviors. Overall, PNU120596 prevented
the LPS-induced depressive-like behavior by likely decreasing neuronal excitability via targeting
microglial α7 nAChR in the hippocampus and prefrontal cortex.

Keywords: nicotinic receptor; major depressive disorder; neuroinflammation; microglia; α7 nicotinic
receptor positive allosteric modulator; mice

1. Introduction

Neuroinflammation has been recently proposed to be involved in the pathophysiology
of major depressive disorder (MDD) [1,2]. This theory was realized because proinflamma-
tory cytokines were found at high levels in depressed patients [3–7]. Moreover, cytokine
immunotherapy can develop MDD-related symptoms in patients [8]. Healthy volunteers
exhibit MDD-related symptoms when receiving agents activating the immune system,
such as vaccines and endotoxins [9–13]. An immune challenge by lipopolysaccharide (LPS,
endotoxin) leads to depressive-like behavior in rodents [14–16].
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Microglia-neuron communication functions bidirectionally. Microglia impart signifi-
cant influences on numerous aspects of neuronal functions [17,18]. Similarly, microglial
brain-derived neurotrophic factor (BDNF) also induces neuronal excitability [19]. BDNF
plays an important role in the regulation of neurogenesis and neurite outgrowth in a nor-
mal physiological condition [20]. Genetic studies have indicated that BDNF is implicated
in depressive-like behavior in animals [21,22]. Similarly, it has also been shown to alter
neuronal excitability via regulation of γ-aminobutyric acid (GABA) release from interneu-
rons [23]. In addition, BDNF could be regulated during inflammation [24,25]. Interestingly,
the binding of BDNF to its receptor tyrosine kinase B (TrkB) generates the signal that
dysregulates transmission of GABA. The dysregulation of GABAergic transmission is asso-
ciated with K+–Cl− cotransporter (KCC2) downregulation and Na+–K+–Cl− cotransporter
(NKCC1) upregulation [26–28].

Dysfunctions of NKCC1 are considered to be associated with various neuropsychiatric
disorders, such as depression, autism, and schizophrenia [29,30]. Recent research has
shown that increased secretion of interleukin-18 (IL-18) mediates depressive-like behaviors
via promoting the IL-18/NKCC1 signaling pathway [29]. Moreover, altered NKCC1/KCC2
expression has been observed in the brains of depressive and schizophrenic patients [31,32].
Furthermore, investigation of postmortem brain tissues has identified decreased expres-
sion of KCC2 transcripts in adults diagnosed with schizophrenia and affective mood
disorder [32].

Nicotinic acetylcholine receptors (nAChRs) have been targeted for drug development
in cognitive and neurodegenerative disorders in preclinical studies [33,34]. The homo-
meric α7 nAChR subtype is widely expressed by neuronal and non-neuronal cells, such
as microglia, in the central nervous system (CNS) [35,36]. Microglia have been suggested
to regulate immune responses via the anti-inflammatory cholinergic pathway, involving
interaction between the nervous and immune systems [36]. The α7 nAChRs are included
in the modulation of microglial activation, the primary source of neuroinflammation in
the brain [37–39]. Moreover, these receptors are widely expressed in MDD-relevant brain
regions, such as the hippocampus and prefrontal cortex, implicated in the regulation of
emotion and behavior [35,40,41]. Therefore, the anti-inflammatory role of α7 nAChRs could
be a promising target to treat disorders associated with inflammation [36,42]. Microglial
activation causes the release of BDNF as an inflammatory mediator and is involved in the
dysregulation of chloride ion concentration, which is regulated by GABAergic neurotrans-
mission via NKCC1 upregulation and KCC2 downregulation. Interruption of intracellular
chloride ion concentration subsequently induces neuronal excitability. Thus, targeting
BDNF, NKCC1, and KCC2 within the hippocampus and prefrontal cortex via α7 nAChR
PAM might have potential therapeutic utility for MDD.

Ligands acting on the orthosteric binding site of α7 nAChR may allow rapid desensiti-
zation that limits the receptor function [43,44]. Therefore, modulation of the α7 nAChR by
ligands acting on the allosteric binding site represents an alternative aspect of overcoming
desensitization. Evidence indicates that α7 nAChR positive allosteric modulators (PAMs)
type II prevent desensitization and enhance cholinergic neurotransmission [43,44]. As
a result, the α7 nAChR PAMs could be an appropriate choice to ensure the maximum
anti-inflammatory properties of the α7 nAChRs. The α7 nAChR PAM, PNU120596, has
been found to prevent LPS-induced depressive-like behavior in mice [37]. However, the
impact of allosteric modulation of microglial α7 nAChR on the regulation of BDNF, NKCC1,
and KCC2 associated with MDD remains unknown.

The objective of our present study was to determine the effects of PNU120596, an α7
nAChR PAM, on BDNF, NKCC1, and KCC2 expression in the hippocampus and prefrontal
cortex in the LPS-induced mouse model of MDD. We also examined the pharmacological
interaction between PNU120596 and ANA12, an antagonist of TrkB, on LPS-induced
depressive-like behaviors.
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2. Materials and Methods
2.1. Animals

Male C57BL/6J mice (weighing 20–30 g) were purchased from Jackson Laboratory
(Bar Harbor, ME, USA). Mice were housed in groups of 5 in standard shoebox cages
(29 × 18 × 12 cm) under standard laboratory conditions (22 ± 2 ◦C, relative humidity
50–60%) and maintained on a 12 h light/dark cycle (lights on at 0600 h) with free access
to food and water. The behavioral experiments were conducted between 0900 and 1600 h,
and mice (10–12 weeks of age) were allowed to habituate to the testing room with dim
light for at least 1 h. A counter-balanced design was used to control any order effects. All
procedures described herein follow the National Institutes of Health Guide for the Care
and Use of Laboratory Animals and were approved by the Institutional Animal Care and
Use Committee at South Dakota State University. Good Laboratory Practice and ARRIVE
guidelines were followed. All efforts were made to ensure minimal animal suffering.

2.2. Drugs and Treatment

LPS (from Escherichia coli, serotype 0127:B8) and methyllycaconitine (MLA), an
α7 nAChR antagonist, were purchased from Sigma-Aldrich (St. Louis, MO, USA) and
dissolved in normal saline (0.9% NaCl). PNU120596 was purchased from Tocris Bioscience
(Ellisville, MO, USA) and reconstituted in normal saline with 5% dimethyl sulfoxide
(DMSO) and 5% Solutol (Sigma, St. Louis, MO, USA). ANA-12 was purchased from
MedChem Express (Monmouth Junction, NJ, USA) and reconstituted in normal saline with
1% DMSO and 0.5% tween 80. All chemicals were administered intraperitoneally in a
volume of 10 mL/kg of body weight.

2.3. Experimental Procedure

Mice were treated with PNU120596 (1 or 4 mg/kg) followed by LPS (1 mg/kg) ad-
ministration after 0.5 h, as previously described [37]. MLA (3 mg/kg) was injected 10 min
before PNU120596 (4 mg/kg) administration. Brain tissues were collected for analyses
24 h after LPS administration because significant depressive-like behavior appears at this
time and is prevented by PNU120596 effects [16,37]. The hippocampi and prefrontal cor-
tices were dissected, frozen on dry ice, and stored at −80 ◦C until further analysis. For
behavioral studies, mice were treated with ANA12 (0.25 or 0.50 mg/kg) 23 h after LPS
administration to determine the antidepressant-like effects of ANA12. The pharmacological
interaction between PNU120596 and ANA12 on LPS-induced depressive-like behavior was
tested using locomotor activity(LMA), Y-maze, tail suspension test (TST), and forced swim
test (FST).

2.4. Western Blot Analysis

Western blot analysis was carried out as described previously, with minor modifi-
cations [45]. Briefly, brain tissue samples were homogenized in modified RIPA buffer
containing Dulbecco’s phosphate-buffered saline (pH 7.4), 0.1% sodium dodecyl sulfate,
1% IGEPAL CA-630, and a protease inhibitor. Each sample was centrifuged (14,000× g,
20 min at 4 ◦C), and the supernatant was collected. Total protein concentration in the brain
samples was determined by a bicinchoninic acid assay (Pierce, Rockford, IL, USA). Equal
amounts of protein (50 µg) were loaded onto gels for sodium dodecyl sulfate (SDS) polyacry-
lamide gel electrophoresis. Separated proteins were transferred onto a PVDF membrane
(MilliporeSigma, Billerica, MA, USA). Membranes were then blocked on a gyro-rocker with
5% nonfat dry milk in Tris-buffered saline/0.1% tween-20 and subsequently incubated
overnight at 4 ◦C with primary antibodies for BDNF (1:300, rabbit polyclonal, Santa Cruz
Biotech, Iowa, IA, USA), p-CREB (1:500, rabbit polyclonal, Santa Cruz Biotech, USA), or
β-tubulin (E7-S, 1:5000, mouse monoclonal, University of Iowa, Iowa, IA, USA). After
incubation, membranes were incubated with appropriate horseradish peroxide-conjugated
secondary antibodies. Bound antibodies were detected with enhanced chemilumines-
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cence prime reagent (Amersham, Buckinghamshire, UK), and protein quantification was
performed using densitometric analysis.

2.5. Immunofluorescence Assay

Immunofluorescence assays were performed as described previously [37]. Briefly,
14 µM coronal tissue slices were washed with phosphate-buffered saline (PBS). The tissues
were retrieved using 0.01 M citrate buffer (pH 6.0) heated at 90 ◦C in a water bath for
10 min. Brain tissue sections for the hippocampus and prefrontal cortex were then blocked
and incubated with a primary antibody against BDNF (1:50, Santa Cruz Biotech, USA)
overnight at 4 ◦C. Tissue sections were then incubated with a secondary antibody labeled
with fluorescein isothiocyanate (FITC) (Santa Cruz Biotechnology, Dallas, TX, USA). The
slides were mounted with mounting medium containing 4′,6′-diamidino-2-phenylindole
(DAPI) for nuclear staining and prolong anti-fade reagent (Santa Cruz Biotechnology,
Dallas, TX, USA). Immunofluorescence was examined using a laser-scanning confocal
microscope (Fluoview FV1200, Olympus, Tokyo, Japan). The integrated density of pro-
tein immunoreactivity was performed using Image J software (v1.8.0, NIH, Bethesda,
MD, USA).

2.6. Quantitative Real-Time Polymerase Chain Reaction

Total RNA was isolated from brain tissue using TRIzol reagent (Invitrogen, Carlsbad,
CA, USA) according to the manufacturer’s instructions. One microgram of total RNA was
reverse transcribed using a reverse transcription system to make cDNA using the High-
Capacity cDNA Reverse Transcription Kit (Applied Biosystems, Carlsbad, CA, USA) and
Master Cycler Personal (Eppendorf, Hauooauge, NY, USA) as described previously [38].
Approximately 20 µL of cDNA was yielded, out of which 1 µL was used for each real-
time PCR analysis. Primers sequences were obtained from Integrated DNA Technologies
(Coralville, Iowa, USA) and are displayed in Table 1. The Ct value was measured for
each gene, and the relative expression of each gene was calculated using the delta-delta
Ct method.

Table 1. Sequence of primers used in the current investigation in qRT-PCR.

Gene Primer Sequence (5′-3′)

KCC2
AGCCTATGACGATGACCCA (forward)
CCACCTCTGCTGTCTACATC (reverse)

NKCC1
GGTATCATTAACATTGCCAGTGG (forward)
CAGATCCTCAGTCAGCCATAC (reverse)

GAPDH
GTGGAGTCATACTGGAACATGTAG (forward)
AATGGTGAAGGTCGGTGTG (reverse)

2.7. Behavioral Tests
2.7.1. Locomotor Activity

The locomotor activity was assessed as described previously [45]. Briefly, the animals
were individually placed in the periphery of the cage (40 cm × 40 cm × 35 cm). The
mice were allowed to explore the chamber for 15 min, with the first 5 min being the
acclimatization period and the last 10 min being the test period. A camera was vertically
held 100 cm above the cage to record the animals’ behavior. Then, the videos were analyzed
with ANY-maze software (v7.37, Stoelting Co., Wood Dale, IL, USA) to measure the total
distance traveled (m) by each animal.

2.7.2. Y-Maze

The Y-maze was performed as described previously [15]. Briefly, the Y-maze apparatus
was made of gray Plexiglas and consisted of 3 closed arms (35 cm × 5 cm × 10 cm) at a
120◦ angle from each other. Each mouse was placed at the center of the maze and allowed
to explore freely for 8 min. During the test, each mouse was recorded, and the videos were



Brain Sci. 2024, 14, 290 5 of 16

analyzed to measure spontaneous alternations. The alternations were counted when the
3 different arms were visited by the mouse without making a return entry to an already
visited arm. Percent spontaneous alternations (alternate arm entries/total number of
entries) × 100 was also calculated. An arm entry was defined as the presence of all 4 feet
of the animal in 1 arm. The apparatus was thoroughly cleaned with 70% ethanol after the
removal of each mouse.

2.7.3. Tail Suspension Test

The TST was performed as described previously [46]. Briefly, each mouse was sus-
pended in the tail suspension test chamber with a distance of around 45 cm from the floor
by attaching the tail to a hook in the chamber with a distance from the tip of the tail of
around 1 cm by using adhesive tape. The test was conducted for 6 min by recording each
mouse. The videos were analyzed to measure immobility time for each mouse by observing
any absence of leg or body movements as immobility.

2.7.4. Forced Swim Test

The FST was performed as described previously [47]. Briefly, mice were placed
individually in a cylindrical Plexiglas® tank (45 cm high × 20 cm diameter), which was
filled with 25 cm of water (25 ± 1 ◦C), and allowed to swim for 6 min. During the test,
each mouse was recorded, and the videos were analyzed to measure immobility time.
Immobility was counted when no additional activities were observed other than those
required to keep the head above water. Mice were removed from the cylinder immediately
after the test, dried with paper towels, and returned to their home cages.

2.8. Statistical Analysis

Biochemical data were analyzed using one-way ANOVA. Two-way ANOVA was
conducted (LPS vs. control × treatments) for each behavioral test. Tukey’s post hoc test
was performed for multiple comparisons using GraphPad Prism (GraphPad Inc., San Diego,
CA, USA). Results were expressed as mean ± S.E.M. The difference between treatments
was considered significant at p < 0.05.

3. Results
3.1. Effects of PNU120596 on the Expression of BDNF and p-CREB in the DG and CA1 Regions of
the Hippocampus and Medial Prefrontal Cortex

We examined the effects of PNU120596 on LPS-induced increases in BDNF expression
in the DG, CA1, and medial prefrontal cortex (Figure 1A). One-way ANOVA indicated
that PNU120596 pretreatment had significant effects on LPS-elevated BDNF expression in
the DG and CA1 regions of the hippocampus (F4,19 = 7.763; p < 0.001) and medial part of
the prefrontal cortex (F4,20 = 7.272; p < 0.001). The post hoc test for multiple comparisons
revealed that LPS (1 mg/kg) significantly (p < 0.01) increased BDNF expression in the DG
and CA1 regions of the hippocampus and medial prefrontal cortex compared to control.
In addition, PNU120596 (4 mg/kg) significantly (p < 0.05) decreased BDNF expression in
the DG and CA1 regions of the hippocampus and medial prefrontal cortex compared to
the LPS-treated group. In contrast, MLA significantly blocked PNU120596′s effects in all
these regions. To assess whether p-CREB expression is modified during BDNF changes
associated with neuroinflammation, we evaluated the effects of PNU120596 on p-CREB
expression in the DG and CA1 regions of the hippocampus and medial prefrontal cortex
(Figure 1B). One-way ANOVA indicated that LPS and PNU120596 had no significant effects
on p-CREB expression in the DG and CA1 regions of the hippocampus (F4,17 = 0.4929;
p = 0.7411) and medial part of the prefrontal cortex (F4,17 = 0.1825; p = 0.9443).
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significantly (p < 0.05) decreased BDNF expression in the DG, CA1, and medial prefrontal cortex
compared to the LPS-treated group, and these changes were blocked by MLA. (B) Effects of PNU
on p-CREB expression in the DG, CA1, and medial prefrontal cortex of mice. The treatments did
not have significant effects on p-CREB expression. (C) Representative Western blots for BDNF and
p-CREB expression from the DG, CA1, and medial prefrontal cortex. ## p < 0.01, LPS (1 mg/kg)
vs. control; * p < 0.05, PNU (4 mg/kg) plus LPS vs. LPS alone; + p < 0.05, MLA (3 mg/kg) plus
PNU (4 mg/kg) plus LPS vs. PNU (4 mg/kg) plus LPS. Data are expressed as the mean ± S.E.M. of
4–6 mice/group.

3.2. Effects of PNU120596 on BDNF Immunoreactivity in the DG and CA1 Regions of the
Hippocampus and Medial Prefrontal Cortex

To evaluate the effects of PNU120596 on LPS-induced increases in BDNF expression,
BDNF immunoreactivity was tested in the DG, CA1, and medial prefrontal cortex (Figure 2).
One-way ANOVA showed that PNU120596 significantly decreased LPS-induced BDNF
expression in DG (F2,15 = 6.523; p < 0.01), CA1 (F2,15 = 6.115; p < 0.05), and medial prefrontal
cortex (F2,9 = 6.652; p < 0.05). The post hoc test for multiple comparisons revealed that LPS
(1 mg/kg) significantly increased BDNF expression compared to control. Furthermore,
PNU120596 (4 mg/kg) significantly (p < 0.05) reduced BDNF expression in all these regions
compared to the LPS treated group.

3.3. Effects of PNU120596 on the mRNA Expression of KCC2 and the NKCC1/KCC2 Ratio in the
Hippocampus and Prefrontal Cortex

To examine the effects of PNU120596 on neuronal excitability in the hippocampus and
prefrontal cortex, we quantified the mRNA expression of KCC2 and the NKCC1/KCC2
ratio (Figure 3). One-way ANOVA indicated that PNU120596 pretreatment restored LPS-
mediated reduction in KCC2 expression (Figure 3A) in the hippocampus (F4,24 = 4.359;
p < 0.01) and prefrontal cortex (F4,25 = 5.092; p < 0.01), and the LPS-induced NKCC1/KCC2
expression (Figure 3B) in the hippocampus (F4,21 = 7.201; p < 0.001) and prefrontal cor-
tex (F4,20 = 5.551; p < 0.01). The post hoc test for multiple comparisons revealed that LPS
(1 mg/kg) clearly decreased mRNA of KCC2 and increased mRNA of the NKCC1/KCC2 ra-
tio in the hippocampus and prefrontal cortex compared to control. In addition, PNU120596
(4 mg/kg) significantly blocked the LPS-induced reduction in mRNA of KCC2 and de-
creased the LPS-elevated mRNA of the NKCC1/KCC2 ratio in the hippocampus and
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prefrontal cortex. In contrast, MLA significantly blocked PNU120596′s effects on the
expression of KCC2 and the NKCC1/KCC2 ratio in both brain regions.
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Figure 3. (A) Effects of PNU120596 (PNU) on LPS-induced changes in mRNA expression of KCC2 in
the hippocampus and prefrontal cortex of mice. LPS (1 mg/kg) clearly decreased KCC2 expression
in the hippocampus and prefrontal cortex compared to control. PNU120596 (4 mg/kg) signifi-
cantly (p < 0.05) blocks the effects of LPS on KCC2 expression in the hippocampus and prefrontal
cortex. (B) Effects of PNU on LPS-induced increases in the mRNA expression ratio of NKCC1 to
KCC2 in the hippocampus and prefrontal cortex of mice. LPS (1 mg/kg) significantly (p < 0.05)
increased NKCC1/KCC2 expression in the hippocampus and prefrontal cortex compared to control.
PNU120596 (4 mg/kg) significantly (p < 0.05) decreased these changes in the hippocampus and
prefrontal cortex. # p < 0.05, LPS (1 mg/kg) vs. control; * p < 0.05, PNU (4 mg/kg) plus LPS vs. LPS
alone; + p < 0.05 or ++ p < 0.01, MLA (3 mg/kg) plus PNU (4 mg/kg) plus LPS vs. PNU (4 mg/kg)
plus LPS. Data are expressed as the mean ± S.E.M. of n = 4–6 mice/group.

3.4. Effects of ANA12 on LPS-Induced Depressive-like Behavior

To determine whether the blockade of TrkB can reduce LPS-induced cognitive deficit
and depressive-like behavior, we examined the effects of ANA12 on LMA, Y-maze, TST, and
FST. The effects of ANA12 (0.25 or 0.50 mg/kg) on the total distance traveled by the mice for
locomotor activity 24 h after LPS injection (Figure 4B) were analyzed. A two-way ANOVA
indicated that the locomotor activity was not significantly different between the treatment
groups (F2,32 = 0.05983; p = 0.9420). The effects of ANA12 on spontaneous alternations
for cognitive deficit-like behavior in the Y-maze 25.5 h after LPS injection are shown in
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Figure 4C. A two-way ANOVA indicated that ANA12 significantly (F2,33 = 3.464; p < 0.05)
reversed the LPS-induced reduction in spontaneous alternations. The effects of ANA12 on
immobility time for depressive-like behavior in TST and FST, 27 and 28.5 h, respectively
after LPS injection are shown in Figure 4D,E. A two-way ANOVA indicated that ANA12
significantly reversed LPS-induced increases in immobility time in TST (F2,33 = 3.428;
p < 0.05) and FST (F2,33 = 4.486; p < 0.05).
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Figure 4. Assessment of antidepressant-like effects of ANA12 (ANA, 0.25 or 0.50 mg/kg) in an
inflmmatory mouse model of depression: (A) Experimental timeline for drug administrations and
behavioral tests (B) Effects of ANA on the total distance traveled (m) in LMA. The treatments did not
show significant effects on total distance traveled. (C) Effects of ANA on spontaneous alternations (%)
in Y-maze. ANA (0.50 mg/kg) significantly (p < 0.01) increased spontaneous alternations compared to
LPS-treated mice. (D) Effects of ANA on immobility time (s) in TST. ANA (0.50 mg/kg) significantly
(p < 0.01) prevented LPS-induced increases in immobility time. (E) Effects of ANA on immobility time
(s) in FST. ANA (0.50 mg/kg) significantly (p < 0.01) prevented LPS-induced increases in immobility
time. # p < 0.05 or ## p < 0.01, vehicle/LPS (1 mg/kg) vs. vehicle/control; ** p < 0.01, ANA (0.50 mg/kg)
plus LPS vs. vehicle/LPS. Data are expressed as the mean ± S.E.M. of n = 6–7 mice/group.

3.5. Combination Effects of PNU120596 and ANA12 on LPS-Induced Depressive-like Behavior

To evaluate whether there is an interaction between α7 nAChR and the TrkB receptor,
we determined if subthreshold doses of PNU120596 and ANA12 could produce antide-
pressant and pro-cognitive-like effects in LMA, Y-maze, TST, and FST in an inflammatory
mouse model of depression. The combination effects of PNU120596 (1 mg/kg) and ANA12
(0.25 mg/kg) on locomotor activity, measured as the total distance traveled by mice 24 h
after LPS injection, are shown in Figure 5B. A two-way ANOVA indicated that the locomo-
tor activity was not significantly different between the treatment groups (F2,32 = 0.09898;
p = 0.9060). In addition, the combination effects of PNU120596 and ANA12 on spontaneous
alternations for cognitive deficit-like behavior in Y-maze 25.5 h after LPS injection are shown
in Figure 5C. A two-way ANOVA revealed that PNU120596 and ANA12 coadministration
significantly (F2,33 = 3.789; p < 0.05) prevented LPS-induced reduction in spontaneous alter-
nations. Furthermore, the combination effects of PNU120596 and ANA12 on immobility
time for depressive-like behavior in TST and FST at 27 and 28.5 h, respectively after LPS
injection are shown in Figure 5D,E. A two-way ANOVA revealed that PNU120596 and
ANA12 coadministration significantly prevented the LPS-induced increase in immobility
time in TST (F2,33 = 3.547; p < 0.05) and FST (F2,37 = 3.506; p < 0.05).
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Figure 5. Assessment of enhancing antidepressant-like effects of PNU120596 (PNU, 1 mg/kg) by
coadministration with ANA12 (ANA, 0.25 mg/kg) in mice: (A) Experimental timeline for drug
administrations and behavioral tests. (B) Combination effects of PNU and ANA on total distance
traveled (m) in LMA. The treatments did not show significant effects on the total distance traveled.
(C) Combination effects of PNU and ANA on spontaneous alternations (%) in Y-maze. PNU and ANA
coadministration significantly (p < 0.01) increased spontaneous alternations compared to LPS-treated
mice. (D) Combination effects of PNU and ANA on immobility time (s) in TST. PNU and ANA
coadministration significantly (p < 0.05) decreased immobility time compared to LPS-treated mice.
(E) Combination effects of PNU and ANA on immobility time (s) in FST. PNU and ANA coadminis-
tration significantly (p < 0.01) decreased immobility time compared to LPS treated mice. # p < 0.05,
## p < 0.01 or ### p < 0.001, vehicle/LPS (1 mg/kg) vs. vehicle/control; * p < 0.05 or ** p < 0.01, PNU
(1 mg/kg) plus ANA (0.25 mg/kg)/LPS vs. vehicle/LPS. Data are expressed as the mean ± S.E.M. of
n = 6–10 mice/group.

4. Discussion

The present findings indicate that systemic inflammation increases the expression
of BDNF in the hippocampus and prefrontal cortex 24 h after LPS administration. These
effects are associated with a reduction in mRNA expression of KCC2 and an increase in
mRNA expression of the NKCC1/KCC2 ratio. Positive allosteric modulation of α7 nAChR
via PNU120596 attenuates the changes induced by LPS in the expression of BDNF, KCC2,
and the NKCC1/KCC2 ratio in the hippocampus and prefrontal cortex. These effects of
PNU120596 are blocked by the action of MLA, an α7 nAChR antagonist. Interestingly, the
treatments had no effects on p-CREB expression in the hippocampus or prefrontal cortex.
Blockade of BDNF receptor TrkB by ANA12 reduces LPS-induced cognitive deficits and
depressive-like behaviors. Coadministration of subthreshold doses of PNU120596 and
ANA12 prevents LPS-induced cognitive deficits and depressive-like behaviors.

Innate immune system activation by systemic administration of LPS is associated
with the induction of neuroinflammation in the brain [2]. Neuroinflammation produces
molecular and behavioral changes that lead to depressive-like behavior 24 h after LPS
injection [2,16]. Our data demonstrate that a systemic LPS challenge promoted upregulation
of BDNF and the NKCC1/KCC2 ratio and downregulation of KCC2 in the hippocampus
and prefrontal cortex. These changes are associated with LPS-induced cognitive deficits
and depressive-like behaviors that appeared significantly 24 h after LPS administration.

BDNF has been found to be dysregulated during neuroinflammation [48]. It is involved
in the nuclear factor-κB (NF-κB) inflammatory signaling pathway [24,25]. Upregulation of
BDNF is associated with the activation of NF-κB and the upregulation of proinflammatory
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cytokines [49]. BDNF is likely an inflammatory mediator involved in the LPS-induced
neuroinflammation in the present study. Therefore, BDNF might be involved in the modu-
lation of depressive-like behavior associated with neuroinflammation. Indeed, BDNF has
been implicated in the modulation of depressive-like behavior in rodents. Along these
lines, though somewhat controversial, it is noteworthy to mention that BDNF in the ventral
tegmental area-nucleus accumbens (VTA-NAc) pathway is involved in the development of
depression-like behavior [50,51]. For example, mice experiencing social defeat stress exhibit
depressive-like behavior associated with central BDNF upregulation in the mesolimbic
dopamine pathway [50,52]. Consistent with a previous report, upregulation of BDNF in the
hippocampus is associated with LPS-induced depressive-like behavior [53]. Mice reared in
communal nests show upregulation of hippocampal BDNF expression and depressive-like
behavior [54]. Mice genetically modified to overexpress BDNF show anxiety-like behavior
when exposed to chronic immobilization stress [55]. In an inflammatory mouse model
of depression, anxiety-like behavior is comorbid with depressive-like behavior [15] as an
indication of BDNF involvement in depressive-like behavior. However, viral-mediated
suppression of the BDNF receptor TrkB in the VTA and NAc exhibits antidepressant-like
behavior [51]. BDNF knockout mice exhibit antidepressant-like behavior in FST [21], sug-
gesting the regulatory function of BDNF in depressive-like behavior. Antidepressants such
as imipramine and fluoxetine reduce BNDF expression in the rodent hippocampus [53,56].
Based on all the studies, it is important to note that BDNF expression is distinct in specific
brain regions. BDNF generally appears to have antidepressant effects in the hippocampus
and prefrontal cortex [52,57]. In contrast, BDNF exhibits pro-depressive effects in the
VTA-NAc pathway [50–52]. Thus, BDNF overexpression in distinct brain regions has been
attributed to a high degree of variability in stress models, microglial activators, and the
time of measuring these trophic responses.

Recently, we have shown that positive allosteric modulation ofα7 nAChRs by PNU120596
regulates LPS-induced depressive-like behavior by decreasing microglial activation [37]. In
addition, chronic stress contributes to the generation of neuroactive kynurenine metabolites,
which leads to subsequent depressive-like behavior [58]. Recently, we have found that α7
nAChRs PAM prevents neurotoxic metabolite production and its release from the microglia
in an inflammatory mouse model of MDD [59]. Additional evidence demonstrates that
activation of α7 nAChRs results in an anti-inflammatory action [36,60,61], which could
be the underlying mechanism of the antidepressant-like effects of PNU120596. However,
the effect of PNU120596 on BDNF dysregulation associated with neuroinflammation is
unknown. Our findings demonstrate that PNU120596 reduces LPS-induced upregulation
of BDNF expression in the hippocampus and prefrontal cortex. These results depend on
the activation of α7 nAChRs because MLA, an α7 nAChR antagonist, blocks PNU120596′s
effects on BDNF expression.

Dysregulation of BDNF was suggested to cause activation of BDNF-TrkB signaling
cascades that dysregulate NKCC1 and KCC2. These effects are associated with a decreased
level of chloride ions that are regulated by GABAergic neurotransmission [62]. The impair-
ment of GABAergic neurotransmission has been proposed to be involved in the pathophys-
iology of MDD and other inflammatory conditions [63]. Our prior research supports the
idea that positive allosteric modulation of α7 nAChRs regulates inflammatory pain-like
symptoms, likely by reducing neuronal excitability [64]. Previous evidence confirms that
mice exposed to social defeat stress exhibit depressive-like behavior associated with KCC2
downregulation that leads to neuronal depolarization [65]. Pharmacological blockade of
NKCC1, reducing neuronal chloride concentration, produces antidepressant-like effects in
mice [66]. In the present study, administration of LPS leads to downregulation of KCC2
and upregulation of the NKCC1/KCC2 ratio in the hippocampus and prefrontal cortex.
This dysregulation might be correlated to the development of depressive-like behavior
associated with inflammation via the BDNF–TrkB signaling cascade.

PNU120596 attenuates LPS-induced downregulation of KCC2 and upregulation of
the NKCC1/KCC2 ratio in the hippocampus and prefrontal cortex. MLA prevents the
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effects of PNU120596 from normalizing these factors dysregulated by LPS, suggesting the
involvement of α7 nAChRs in the regulation of NKCC1 and KCC2 in these brain regions.
These effects of PNU120596 could be another reason for its attenuation of LPS-induced
depressive-like behavior, as shown previously [37].

Microglia, or innate immune cells, are the primary source of inflammation in the
brain [67]. Previous studies have shown that activated microglia produce and release
BDNF [23,68,69]. Microglial BDNF has been shown to phosphorylate the TrkB receptor as
an indication for activation [70], which may promote signals to dysregulate NKCC1 and
KCC2 [32]. During inflammation, NF-κB, a transcription factor, is activated to synthesize
several inflammatory genes, including BDNF [25]. To differentiate between neuronal and
microglial BDNF, we determined the expression of CREB, which is a transcription factor of
BDNF in the neurons [71]. Interestingly, our results indicate that CREB expression does
not change during inflammation. Increased expression of BDNF with LPS may not be
produced by the neurons in the present study. Future studies are needed to determine
whether microglial BDNF modulates neuron-microglia interactions in other brain regions.
The heterogeneity of microglial BDNF function should also be taken into consideration
when investigating such mechanisms [72].

PNU120596 has been shown to prevent LPS-induced microglial activation in the
hippocampus and prefrontal cortex [37]. PNU120596 might promote anti-inflammatory
signals to prevent the dysregulation of BNDF, NKCC1, and KCC2 associated with microglial
activation. These anti-inflammatory pathways are independent of calcium ion influx during
activation of microglial α7 nAChRs. Therefore, microglial α7 nAChRs have been proposed
to be metabotropic receptors [60,73,74].

Given the increased expression of BDNF in the hippocampus and prefrontal cortex
as a response to LPS treatment, activation of the TrkB receptor by BDNF is speculated
to generate signals that dysregulate NKCC1 and KCC2 and consequently mediate LPS-
induced depressive-like behavior. We used the TrkB receptor antagonist ANA12 to examine
whether stimulation of the BDNF-TrkB cascade as a response to LPS treatment is adequate to
promote depressive-like behavior. We found that ANA12 was able to decrease LPS-induced
depressive-like behavior.

Previous studies have shown that ANA12 reduces depressive-like behavior in mice.
The antidepressant-like effects of ANA12 have been suggested to be due to blockade of
TrkB receptors in the NAc [75,76]. Our results did not show antidepressant-like effects of
ANA12 at a basal level, whereas the antidepressant-like effects of ANA12 were noticeable
during inflammation. These effects suggest that ANA12 likely prevents upregulated BDNF
from activating its TrkB receptor. Therefore, the antidepressant-like effects of ANA12 are
suggested to be specific to blockade of the TrkB receptor and its activation of the signal,
which dysregulate NKCC1 and KCC2, as a response to systemic LPS challenge.

In this study, ANA12 exhibits pro-cognitive-like effects in an inflammatory mouse
model of depression. Cognitive impairment was targeted in this study because cognitive
impairment is one of the depression-related symptoms [77]. The hippocampus [15,78] and
prefrontal cortex [14,79] have been demonstrated to regulate spatial memory and reversal
learning, respectively. Therefore, molecular changes in these brain regions may reflect
changes in cognitive deficit-like behavior. ANA12 prevents LPS-induced cognitive deficit-
like behavior, probably because ANA12 may prevent dysregulated BDNF from activating
TrkB signals interrupting NKCC1 and KCC2 in the hippocampus and prefrontal cortex.
Moreover, PNU120596 prevented LPS-induced depressive-like behavior [37]. We have
found that coadministration of subthreshold doses of PNU120596 and ANA12 reduced
LPS-induced cognitive deficits and depressive-like behaviors. These data might indicate
the interaction between α7 nAChR and the TrkB receptor by generating a partial anti-
inflammatory signal from α7 nAChR and a partial blockade of the TrkB cascade induced
by BDNF.

Our results did not show different effects on locomotor activity. Our previous study
showed that locomotor activity decreases significantly 6 h after LPS administration as an
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indication of sickness behavior because of molecular changes associated with inflammation.
The locomotor activity becomes normal 24 h after LPS injection, which is associated with the
significant appearance of depressive-like behavior, suggesting a behavioral transition [16].

5. Conclusions

In these studies, we have shown that the α7 nAChR PAM, PNU120596, through
allosteric modulation, reduces LPS-induced increases in the expression of BDNF and the
NKCC1/KCC2 ratio and KCC2 downregulation in the hippocampus and prefrontal cortex
during neuroinflammation. The coadministration of PNU120596 and ANA12 induced
an additive/synergistic antidepressant effect, representing a pharmacological interaction
for preventing LPS-induced depressive-like behavior. These effects are likely due to the
anti-inflammatory effects of PNU120596 and/or antagonism of the TrkB signal by ANA12
(Figure 6). Therefore, the present study provides evidence for novel molecular mechanisms
for the antidepressant-like effects of PNU120596 involving microglial α7 nAChR.
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Figure 6. A schematic showing the interaction between α7 nAChR and the TrkB receptor asso-
ciated with PNU120596’s antidepressant-like effects in an inflammatory mouse model of depres-
sion. PNU120596 stimulates α7 nAChR through positive allosteric modulation. Receptor activation
prevents an LPS-induced increase in BDNF and NKCC1 expression and KCC2 expression in the
hippocampus (HPC) and prefrontal cortex (PFC). Antagonism of TrkB, the receptor for BDNF, using
ANA12 decreases LPS-induced depression-like behavior. ANA12 enhances the antidepressant-like
effects of PNU120596, indicating the interaction between α7 nAChR and TrkB mediating LPS-induced
depression-like behavior. →: stimulation; a: inhibition; +: synergism.
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