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Abstract: Brain hypoxia is associated with a wide range of physiological and clinical conditions.
Although oxygen is an essential constituent of maintaining brain functions, our understanding of how
specific brain cell types globally respond and adapt to decreasing oxygen conditions is incomplete.
In this study, we exposed mouse primary neurons, astrocytes, and microglia to normoxia and two
hypoxic conditions and obtained genome-wide transcriptional profiles of the treated cells. Analysis
of differentially expressed genes under conditions of reduced oxygen revealed a canonical hypoxic
response shared among different brain cell types. In addition, we observed a higher sensitivity of
neurons to oxygen decline, and dissected cell type-specific biological processes affected by hypoxia.
Importantly, this study establishes novel gene modules associated with brain cells responding to
oxygen deprivation and reveals a state of profound stress incurred by hypoxia.

Keywords: hypoxia; neuron; astrocyte; microglia; hypoxia-inducible factors; cerebral hypoxia;
hypoxia gene module; oxygen deprivation

1. Introduction

For almost all life forms on earth, oxygen is an essential nutrient for tissue oxidation
and energy metabolism. When oxygen levels decline, mammals elicit a rapid adaptive
reaction termed hypoxia response, which markedly alters the whole-body physiology to
ensure survival [1]. At the individual level, immediately, the heart rate increases, and
the blood vessels dilate to boost oxygen delivery to the stressed tissues. Meanwhile, at
the cellular level, a substantial transcriptional program is instigated to express genes that
encode proteins needed in adaptation to low oxygen availability, such as increasing red
blood cell production and altering metabolic pathways to generate energy [1–9].

Hypoxia-inducible factors (HIF) are the master transcriptional regulators of the hy-
poxia response [2,3,6,7]. Oxygen-labile HIF alpha subunits are stabilized under low oxygen
conditions and, in association with HIF beta subunits, control the induction of various genes
encoding proteins related to angiogenesis, erythropoiesis, and anaerobic metabolism [10,11].
Three HIFα protein isoforms exhibit highly conserved domain structure and bind to the
same hypoxia-responsive element (HRE) DNA motif to drive gene expression [12,13]. Un-
der normoxia conditions, proline residues of the HIFα subunits are hydroxylated by prolyl
hydroxylase domain (PHD) proteins in an oxygen-dependent manner [14]. Subsequently,
the hydroxylated HIFαs are recognized and targeted by von Hippel–Lindau (VHL) tumor
suppressor protein for ubiquitylation and proteasomal degradation [15]. When oxygen is
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limited, non-hydroxylated HIFαs translocate to the nucleus to initiate the transcription of a
large panel of hypoxia-responsive genes.

The brain is the body’s most energy-demanding organ due to its high metabolic rate and
relies critically on oxygen as the primary element for optimal functioning; hence, it is the organ
most sensitive to oxygen deprivation [16]. Cerebral hypoxia is an emergent medical condition
where the brain cannot obtain sufficient oxygen and can occur as a result of suffocation, cardiac
arrest, drowning, high altitude exposure, respiratory rest, and stroke. Patients with brain
hypoxia may manifest mild symptoms, including memory loss and difficulties with motor
function, but in severe cases, cerebral hypoxia can result in coma, seizures, or brain death.

The response within a tissue to hypoxia may vary significantly between different cell
types, depending on the metabolic demands and functional specialization of the cells. The
brain is one of the most complex organs and consists of diverse types of cells that form intricate
networks and connections with one another [17]. In the nervous system, neurons are the
fundamental cells that transmit and receive electrical signals to maintain bodily functions and
enable brain activities [18]. Astrocytes, named after their star-shaped bodies, are a major glial
cell population that provides essential support and protection to neurons in various ways [19].
Microglia, on the other hand, are the brain-resident immune cells and play crucial roles in
defense response, debris removal, and developmental support [20]. Previous investigations
have revealed that neurons respond to hypoxia with significant gene expression alteration
and metabolic reprogramming [21–23], but whether astrocytes and microglia react similarly
is unknown. Depending on the severity of oxygen deprivation, hypoxia response can have
adaptive effects or lead to pathogenic outcomes [5]. It remains unclear how a mild hypoxia
response in brain cells differs from a strong one at the transcriptome level.

In this study, we exposed mouse primary neurons, astrocytes, and microglia cells
to normoxia and two different hypoxia conditions and examined the transcriptomes of
the treated cells. By analyzing differentially expressed genes and enriched functional
pathways, we detected a conserved hypoxia response among the brain cells and observed
cell type-specific sensitivity and transcriptional responses to oxygen decline. Importantly,
our study, for the first time, established novel gene modules associated with brain cells
responding to different extents of oxygen deprivation and revealed a state of overwhelming
stress induced by hypoxia on brain cells.

2. Methods
2.1. Animals

C57BL/6J mice bred from a line originally obtained from the Jackson Laboratory were
used in this study. Mice were housed in groups of 2–5 per cage under conventional housing
conditions and a standard light/dark cycle. Both male and female neonates were used
in experiments.

2.2. Primary Mouse Brain Cell Cultures

The methods used for culturing primary neurons and microglia were described previ-
ously [24,25]. To culture neurons, forebrain hemispheres from P0 pups were dissected and
the dissociated cells were cultured in completed neuronal culture media (Neurobasal
medium supplemented with 2% B27, 0.5 mM L-glutamine, 40 U/mL penicillin, and
40 µg/mL streptomycin). Cells were maintained in incubators at 37 ◦C, 5% CO2, and
half the culture medium was replaced every 5–7 days. To culture astrocytes, P1–P3 mouse
brains were dissected under a dissecting microscope in ice-cold dissection buffer (1x HBSS
supplemented with 10 mM HEPES, pH 7.5, 0.6% glucose, 1% Pen-Strep). The cortex, to-
gether with the hippocampus, was digested in trypsin (2.5%) at 37 ◦C for 15 min, followed
by the addition of soybean trypsin inhibitor (1 mg/mL) and DNase I (1%). Dissociated brain
cells were resuspended and cultured with AstroMACS medium (Miltenyi Biotec, #130-117-
031, Auburn, CA, USA) 10–14 days before use. Mouse microglia cells from mixed glial cell
culture were selected with CD11b microbeads according to the manufacturer’s instruction
(#130-093-634, Miltenyi Biotec). Cells were cultured in glial culture medium (DMEM, 10%
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FBS, 1% (v/v) Pen-Strep) supplemented with 10% (v/v) of conditional medium harvested
from confluent LADMAC cell cultures (ATCC® CRL-2420™) and 10 ng/mL of rTGFβ1
(Tonbo Bioscience, San Diego, CA, USA).

2.3. Hypoxia Treatments

Primary brain cells were cultured in 24 well plates in replicates under normoxia until
mature. Prior to treatment, half of the culture medium in which primary neurons and
astrocytes matured under normoxic conditions was replaced with a warm medium pre-
equilibrated to the corresponding level of O2 per condition. For microglia, complete medium
change was performed with pre-equilibrated medium. Cellplates were then left inside either
a Whitley H35 Hypoxystation (Don Whitley Scientific Limited, Shipley, United Kingdom) set
at 1% or 5% O2 levels, or a Cell IQTM inCusaFe CO2 incubator (PHCbi, PHC Corporation,
Minato City, Tokyo, Japan) in normal atmosphere. Cells were incubated for 8 h and lysed
immediately with TRIzol solution inside the hypoxic chamber or a regular tissue culture hood.

2.4. Library Preparation and Transcriptome Sequencing

Total RNA was extracted with Direct-zol RNA Microprep Kit (Cat# R2062, ZYMO
Research). Novogene Co. (Sacramento, CA, USA) performed mRNA sequencing and data
analysis. Basically, the RNA quality was evaluated as follows: RNA integrity number > 7.0
and 28S:18S ratio > 1.8. Messenger RNA was purified from total RNA using poly-T oligo-
attached magnetic beads for library construction. The library cDNA was subjected to
paired-end sequencing with a pair-end 125-base pair reading length on an Illumina HiSeq
2500 sequencer (Illumina, San Diego, CA, USA).

2.5. RNA-Seq Analysis

For quantification of gene expression, featureCounts (v1.5.0-p3) was used to calculate
the read numbers mapped to each gene. Subsequently, the FPKM of each gene was deter-
mined based on the length of the gene and read counts mapped to the gene. Differential
expression analysis was performed using the DESeq2 R package (1.20.0). The p-values were
adjusted (Padj) using Benjamini and Hochberg’s approach for controlling the false discovery
rate. For all analyses in this study, only genes with fold change > 1.2 and Padj < 0.05 were
considered differentially expressed.

2.6. Principal Component Analysis

Gene expression counts data for all samples was uploaded to ExpressAnalyst (https:
//www.expressanalyst.ca/; accessed on 26 January 2024) for filtering (unannotated features,
count abundance < 4, and variance percentile rank < 15) and normalization (log2-counts
per million transformation). Filtered and normalized data was then uploaded into ClustVis
(https://biit.cs.ut.ee/clustvis/; accessed on 26 January 2024) to perform principal com-
ponent analysis, and PC values were plotted in GraphPad Prism. Ellipses were drawn
manually in plots to encompass groups.

2.7. Pathway Analysis

For all pathway analyses presented in the figures, genes up- or downregulated (fold
change > 1.2, Padj < 0.05) were queried using the KEGG database in g:Profiler [26] (https:
//biit.cs.ut.ee/gprofiler/gost; accessed on 26 January 2024) with significance threshold of
0.05 (based on the g:SCS algorithm for multiple testing correction) and plotted using Prism.

2.8. Statistics

All data in bar plots are presented as −log10(Padj) of KEGG pathways (or numbers
of genes as in Figure S1). Violin plots with individual sample values, medians, and
quartiles were used to plot the expression (FPKM) of individual transcripts. Heatmaps
were generated using group-averaged FPKM values. Shapiro-Wilk normality tests were
used to assess data distribution. Differences between cell types under normoxia were
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analyzed by one-way ANOVA with Tukey’s post-hoc multiple-comparisons tests (or by
Kruskal-Wallis test with Dunn’s post-hoc multiple comparisons test when the distribution
was not normal). Differences between O2 levels within each cell type were analyzed by
one-way ANOVA with Dunnett’s post hoc multiple-comparisons tests (or by Kruskal-Wallis
test with Dunn’s post hoc multiple-comparison test when the distribution was not normal).
GraphPad Prism (v10.0.0) was used for statistical analyses and plotting. p-values less than
0.05 were considered significant (noted as * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.001
in plots), and those over 0.05 were considered non-significant (“ns”). Microscopy images
are representative of multiple replicates. No statistical methods were used to predetermine
sample sizes. Biorender.com was used to generate all schematics within the figures.

3. Results
3.1. Exposing Primary Mouse Brain Cells to Different Oxygen Levels

To capture brain cells’ response to oxygen variation, we first established primary
cultures of three mouse brain cell types under normoxic conditions (21% O2). These
cells each displayed characteristic morphologies and possessed distinctive transcriptomes
(Figure 1A,B). As expected, neurons selectively expressed genes that encode character-
istic neuronal markers such as β tubulin (Tubb3), NeuN (Rbfox3), and synapsin I (Syn1)
(Figure 1C). Likewise, well-known astrocytic markers Gfap, Aldh11, and Sox9 were highly
elevated in astrocytes, while microglia were enriched in myeloid markers Cx3cr1, Fcrls, and
Tmem119, validating the identities of the cultured brain cells.
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Figure 1. Culture of primary mouse brain cells and exposure to different levels of oxygen. (A): Images
of mature CNS cells in culture before O2 treatment (scale bar = 50 µm); (B): PCA plots of brain cell
transcriptomes at 21% O2; (C): Level of expression of brain cell makers at 21% O2; (D): Schematic
of experimental plan, mature cultures of each cell type (neuron, astrocytes and microglia) were
exposed to either 21, 5 or 1% of oxygen for 8 h before the RNA was extracted for sequencing;
(E): level of expression of markers of hypoxia in each CNS cell type upon treatments. (****: p < 0.0001,
***: p < 0.001, **: p < 0.01, *: p < 0.05).
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We experimentally exposed the three cell types to different oxygen concentrations—1%
(widely used model of hypoxia) [27–29], 5% (milder degree of hypoxia), and 21% (normoxia)—for
8 h in culture and performed RNAseq analysis on the resulting samples (Figure 1D). In
peripheral cells, hypoxia potently induces vascular endothelial growth factor (Vegf ) ex-
pression to stimulate angiogenesis and upregulate phosphoglycerate kinase 1 (Pgk1) and
lactate dehydrogenase A (Ldha) to promote glycolysis [30–32]. In all three brain cell types,
we observed an overall dose-dependent upregulation of these hypoxia-responsive genes
(Figure 1E). Thus, we validated the experimental manipulations by detecting expected
molecular responses by brain cells to oxygen decline.

3.2. Transcriptional Responses of Neurons to Reduced Oxygen Availability

To comprehend the transcriptomic differences in neurons under different O2 condi-
tions, we first generated a principal component analysis (PCA) plot and observed dis-
tinctly segregated clustering of the treatment groups, indicating robust global responses
by neurons to oxygen decline (Figure 2A). By comparing the transcriptomes of neurons
cultured under 5% O2 vs. those under normoxia, we detected 1462 genes significantly
upregulated (Figures 2B and S1). Pathway analysis of these differentially expressed genes
(DEGs) identified “Glycolysis/Gluconeogenesis” and “HIF-1 signaling pathway” as the
two top processes upregulated under mild hypoxia (Figure 2C). In addition, the “Carbon
metabolism” and “Central carbon metabolism in cancer” pathways were elevated, which
have been shown to closely associate with the Warburg effect in cancer cells under the
influence of hypoxia [33,34]. Interestingly, the “Notch signaling pathway” was also upreg-
ulated in neurons cultured at 5% O2. Although this finding from neurons was somewhat
surprising, several earlier studies have established a crosstalk between hypoxia and Notch
signaling, in which Notch-responsive promoters are activated by HIF1α, mediating ex-
pression of Notch-dependent downstream genes [35,36]. Meanwhile, neurons significantly
downregulated 850 genes under mild hypoxic conditions (Figures 2B and S1). Among these,
the “Axon guidance” pathway was most affected, an intriguing finding consistent with
reports that during brain development, hypoxia disrupts axon pathfinding and neuronal
migration in various organisms, including C. elegans, zebrafish, and mammals [37,38]. Not
surprisingly, hypoxia suppressed neuronal “Oxidative phosphorylation”, a process by
which cells use oxygen to produce adenosine triphosphate (ATP) (Figure 2C).

Assessment of neuronal transcriptomes under 1% vs. 5% O2 revealed 1219 upregulated
DEGs (Figures 2D and S1). It is evident that further oxygen decline enhanced both the
“HIF-1 signaling pathway” and “Glycolysis/Gluconeogenesis”, two pathways among the
top three processes most represented in the significantly upregulated genes (Figure 2E). In
addition, the “Circadian rhythm” pathway was affected in neurons cultured under 1% O2,
a finding in line with reports of the crosstalk between hypoxia and the circadian clock at
the genome level [39,40]. Between 1% and 5% O2, neurons downregulated 1196 DEGs and
profoundly repressed the “Cell cycle” pathway (Figures 2D,E and S1). Hypoxia is known to
alter cell cycle progression and interrupt various phases of cell proliferation [41,42]. Since
neurons are post-mitotic, the immediate functional implication of this finding is unclear.

To comprehend the consensus molecular changes accompanying oxygen decline in
neurons, we examined the shared DEGs between the neuronal transcriptomes at 5% vs.
21% O2 and those between 1% vs. 5% O2. We identified 343 genes that were consistently
upregulated and 102 genes downregulated when neurons were confronted with continuous
oxygen deprivation (Figure 2F,G) (Table S1). Remarkably, the genes with persistently
increased expression belonged to the well-characterized hypoxia response pathways, such
as the “HIF-1 signaling pathway”, “Glycolysis/Gluconeogenesis”, and “Central carbon
metabolism in cancer”, revealing a highly conserved canonical hypoxia response in neurons
under hypoxic conditions. No significant consensus pathway was identified from the
shared downregulated gene list.
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Figure 2. Transcriptional profile of neurons in response to different oxygen levels. (A): PCA plot of the
transcriptomes of neuronal cultures under different O2 conditions; (B): Volcano plot of significantly
up- and downregulated genes at 5% vs. 21% O2 (FC > 1.2); (C): Top KEGG pathways enriched in up-
(left) and downregulated (right) genes at 5% vs. 21% O2; (D): Volcano plot of significantly up- and
downregulated genes at 1% vs. 5% O2 (FC > 1.2); (E): Top KEGG pathways enriched in up- (left) and
downregulated (right) genes at 1% vs. 5% O2; (F): Venn diagrams showing the numbers of unique
and shared DEGs (upregulated in red, downregulated in blue) between the two hypoxic conditions
tested; (G): Top KEGG pathways enriched in upregulated genes shared between the two hypoxic
conditions tested.

As hypoxia can rapidly reprogram chromatin [43], we next examined the expression
of key epigenetic regulators in neurons during oxygen decline. The TET (ten-eleven translo-
cation) proteins are demethylases that dynamically control DNA methylation patterns in
various tissues. In response to hypoxia, neurons upregulated the transcription of Tet1, Tet2,
and Tet3 in a largely dose-dependent manner (Figure S2). The sirtuin family of proteins
(SIRTs) are class III histone deacetylases that play complex and important roles in epigenetic
modifications and chromatin regulation under diverse biological processes. We detected
higher Sirt4 and Sirt6 levels in hypoxia-exposed neurons (Figure S2). SATB2 protein fa-
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cilitates chromatin structure organization and coordinates the activity of multiple genes
involved in the development. REST is a potent epigenetic repressor of neuronal genes
during embryonic development, which normally remains downregulated in terminally
differentiated neurons [44]. Although unaffected by mild hypoxia, both Sirt1 and Satb2
levels were significantly reduced while Rest mRNA markedly increased in neurons cultured
under 1% O2 (Figure S2).

Altogether, these data have revealed a highly sensitive transcriptomic response of primary
neurons to oxygen decline, a process accompanied by profound epigenetic reprogramming.

3.3. Transcriptional Responses of Astrocytes to Reduced Oxygen Availability

On the PCA plot, three treatment groups of astrocytes showed segregated clustering,
indicating sizable transcriptomic differences among astrocytes under oxygen disparity
(Figure 3A). Astrocytes exposed to mild hypoxia significantly upregulated the expression of
599 genes compared with normoxia (Figures 3B and S1). Similar to neurons, the “HIF-1 sig-
naling pathway” and “Glycolysis/Gluconeogenesis” constituted the top processes elicited
by mild hypoxia treatment, indicating a characteristic hypoxic response (Figure 3C). Re-
markably, the “Motor proteins” pathway was found elevated in astrocytes cultured under
5% O2. Corresponding to such process, multiple members of myosin, kinesin, and dynein
family genes were significantly upregulated, an intriguing novel observation. Under mild
hypoxic conditions, we found 196 genes that were significantly downregulated in astro-
cytes (Figure S1). As expected, the “Oxidative phosphorylation” pathway was found
most significantly repressed (Figure 3C). Pathway analysis also identified other terms,
such as “Diabetic cardiomyopathy” and “Non-alcoholic fatty liver disease” (Figure 3C),
two peripheral disease conditions known to be critically modulated by hypoxia [45,46].

Comparison of astrocytic transcriptomes at 1% vs. 5% O2 revealed 2135 upregulated
DEGs, a more rigorous response than the one elicited by mild hypoxia (Figures 3D and S1).
Hypoxia-related pathways dominated the top processes affected by the DEGs, including
“HIF-1 signaling pathway”, “Metabolic pathways”, and “Glycolysis/Gluconeogenesis”
pathways (Figure 4E). Interestingly, the “Focal adhesion” pathway was also stimulated,
a finding consistent with the observations that hypoxia activates and induces transloca-
tion of focal adhesion proteins to modulate the adhesive interaction between cells and
the extracellular matrix [47]. When O2 levels reduced to 1%, the transcriptome of astro-
cytes contained 1762 genes with significantly lower expression in comparison with 5%
(Figures 3E and S1). Like neurons, the “Cell cycle” was significantly repressed. In contrast
to neurons, the DEGs affected several pathways related to genomic DNA integrity, such
as “DNA replication”, “Homologous recombination”, “Fanconi anemia pathway”, and
“Mismatch repair”, indicating an astrocyte-specific response.

To probe the genes involved in persistent response by astrocytes to oxygen decline,
we compared the DEGs identified above and identified 189 genes consistently affected by
O2 reduction. Among these, 158 genes were steadily upregulated and 13 genes downreg-
ulated in the astrocytic transcriptomes with cumulative hypoxia exposure (Figure 3F,G)
(Table S2). The “HIF-1 signaling pathway”, “Glycolysis/Gluconeogenesis”, “Central carbon
metabolism in cancer“, and “Central carbon metabolism in cancer” constituted the foremost
pathways associated with the upregulated DEGs, revealing a persistent canonical hypoxic
response in brain astrocytes.

Therefore, we have detected significant transcriptomic responses by primary astro-
cytes to oxygen decline and identified biological pathways differentially affected by mild
vs. severe hypoxia exposure.
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Figure 3. Transcriptional profile of astrocytes in response to different oxygen levels. (A): PCA
plot of the transcriptomes of astrocyte cultures under different O2 conditions; (B): Volcano plot of
significantly up- and downregulated genes at 5% vs. 21% O2 (FC > 1.2); (C): Top KEGG pathways
enriched in up- (left) and downregulated (right) genes at 5% vs. 21% O2; (D): Volcano plot of
significantly up- and downregulated genes at 1% vs. 5% O2 (FC > 1.2); (E): Top KEGG pathways
enriched in up- (left) and downregulated (right) genes at 1% vs. 5% O2; (F): Venn diagrams showing
the numbers of unique and shared DEGs (upregulated in red, downregulated in blue) between the
two hypoxic conditions tested; (G): Top KEGG pathways enriched in upregulated genes shared
between the two hypoxic conditions tested.
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Figure 4. Transcriptional profile of microglia in response to different oxygen levels. (A): PCA
plot of the transcriptomes of microglia cultures under different O2 conditions; (B): Volcano plot of
significantly up- and downregulated genes at 5% vs. 21% O2 (FC > 1.2); (C): Top KEGG pathways
enriched in up- (left) and downregulated (right) genes at 5% vs. 21% O2; (D): Volcano plot of
significantly up- and downregulated genes at 1% vs. 5% O2 (FC > 1.2); (E): Top KEGG pathways
enriched in up- (left) and downregulated (right) genes at 1% vs. 5% O2; (F): Venn diagrams showing
the numbers of unique and shared DEGs (upregulated in red, downregulated in blue) between the
two hypoxic conditions tested; (G): Top KEGG pathways enriched in upregulated genes shared
between the two hypoxic conditions tested.

3.4. Transcriptional Responses of Microglia to Reduced Oxygen Availability

Microglia cells cultured under normoxia and those with 5% O2 exhibited signifi-
cant overlap on the PCA plot (Figure 4A), a feature distinct from neurons and astrocytes
(Figures 2A and 3A); yet, both clustered away from cells cultured under 1% O2 (Figure 4A),
indicating that microglia responded more intensely to severe than mild hypoxia. By
comparing the transcriptomes of microglia cultured under 5% O2 vs. those under nor-
moxia, we detected 604 genes significantly upregulated under mild hypoxia condition
(Figures 4B and S1). These DEGs are primarily associated with hypoxia-related processes,
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such as the “HIF-1 signaling pathway”, “Central carbon metabolism in cancer”, “Gly-
colysis/Gluconeogenesis”, “Starch and sucrose metabolism”, and “Carbon metabolism”
(Figure 4C). On the other hand, microglia significantly downregulated 379 genes under
mild hypoxia (Figure S1). Pathway analysis of these genes identified “Steroid biosynthesis”
as the sole significantly affected biological process (Figure 4C). Interestingly, neurosteroids
can function as regulators of neuroinflammation, and several genes involved are also
linked to lipid droplet formation, which integrates cell metabolism and innate immunity in
myeloid cells [48,49].

A more drastic transcriptomic change was detected when we compared microglial
transcriptomes at 1% vs. that at 5% O2: 2135 upregulated and 2110 downregulated tran-
scripts were identified (Figure 4D and Figure S1). Unlike neurons and astrocytes, the most
positively affected pathways in microglia under hypoxia are “Ribosome” and “COVID-19”
in microglia (Figure 4E). Interestingly, several reports have revealed a significant impact
of hypoxia on ribosomal function and protein synthesis in human cells [50,51], whereas
numerous studies have established a close link between hypoxia and COVID-19 patho-
genesis [8,52–54]. In addition, we detected an enhanced “HIF-1 signaling pathway”, and
“Carbon metabolism”, indicating a prototypical hypoxia response in microglia exposed
to lower oxygen levels (Figure 4E). Pathway analysis on the downregulated transcripts
identified “Cell cycle”, “DNA replication”, “Fanconi anemia pathway” and “Homologous
recombination” as the most significantly repressed processes in microglia under hypoxia
(Figure 4E), analogous to the astrocytic response under the same condition (Figure 3E).
Unique among brain cells, microglia depressed “Nucleocytoplasmic transport” and “p53
signaling pathway” when exposed to 1% O2 concentration.

We then compared the microglial DEGs identified above and identified 77 genes
involved in continuous response by microglia to oxygen decline; among which, 73 genes
were steadily upregulated and 4 genes downregulated in the microglial transcriptomes
with cumulative hypoxia exposure (Figure 4F,G) (Table S3). Similar to other brain cells,
the upregulated shared DEGs were primarily involved in a canonical hypoxia response
that included “Glycolysis/Gluconeogenesis”, the “HIF-1 signaling pathway”, “Carbon
metabolism”, and “Central carbon metabolism in cancer” pathways.

Hence, our transcriptomic analysis revealed that primary microglia are more tolerant
to mild hypoxia than neurons in culture. While eliciting a canonical hypoxia response,
the brain resident immune cells exhibit additional unique transcriptional responses to
oxygen decline.

3.5. Configuration of the Hypoxia Response Machinery in Mouse Brain Cells

Given the observations of both shared and differential responses to decreasing oxygen,
we then examined the core mediators of cellular hypoxia response in mouse primary brain
cells. Under normoxia, astrocytes presented the highest levels of HIF-1α (encoded by Hif1a)
and HIF-2α (encoded by Epas1) transcripts, two key O2-labile hypoxia-inducible factors,
compared to neurons and microglia (Figure 5A). While the Hif3a transcript was extremely
low in neurons and astrocytes, it was absent in microglia. Astrocytes also abundantly
expressed HIF-1β (encoded by Arnt) and HIF-2β (encoded by Arnt2), subunits of HIFs
known to be constitutively expressed. In comparison, primary neurons cultured under
normoxia conditions maintained moderate expression of Hif1a, Epas1, and Arnt genes
(Figure 5A). Microglia, on the other hand, expressed intermediate levels of HIF-1α and
high levels of HIF-1β (Arnt), but completely lacked the expression of HIF-2α (Epas1),
HIF-3α, and HIF-2β (Arnt2) (Figure 5A). Hypoxia is known to stimulate upregulation as
well as downregulation of gene expression. As mentioned above, REST has been known
as a neuronal epigenetic regulator [44]. Recently, REST was identified as an important
transcription repressor in hypoxic response [55,56]. Consistent with the literature, we
observed highly repressed Rest expression in differentiated neurons. Interestingly, the
highest expression of Rest was detected in primary astrocytes, and moderate levels of Rest
transcript were found in microglia under normoxia (Figure 5A).
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Figure 5. Distinct transcriptional profiles of hypoxia response machinery in brain cell types during
normoxia and hypoxia. (A): Expression of members of the HIF family (Hif1a, Hif-2a encoded by Epas1,
Hif3a, Hif-1b encoded by Arnt, and Hif-2b encoded by Arnt2), and Rest under normoxic conditions
across cell types; ns: not significant (B): Expression of negative HIF regulators Vhl, and PHD1, -2, and
-3 (encoded by Egln2, Egln1, and Egln3, respectively) under normoxic conditions across cell types;
(C): Group-averaged relative expression of these transcripts under normoxia and reduced O2 levels.
(***: p < 0.001, *: p < 0.05, ns: p > 0.05).

HIF alpha subunits are post-translationally regulated by VHL and PHD proteins
during normoxia and stabilized under hypoxia conditions. We found that, under normoxia,
primary astrocytes expressed the highest levels of Vhl, PHD2 (encoded by Egln1), and
PHD3 (encoded by Egln3) and lowest levels of PHD1 (encoded by Egln2), when compared
with neurons and microglia (Figure 5B). Microglia, on the other hand, expressed the lowest
levels of Vhl, Egln1, and Egln3. Primary neurons positively and moderately express Vhl,
Egln2, Egln1, and Egln3 under normoxia. These findings revealed a distinct configuration
of hypoxia response machinery in major brain cells.

To comprehend the transcriptional regulation of these hypoxia mediators, we com-
pared the relative levels of these genes in each cell type when exposed to different O2
concentrations (Figure 5C). Remarkably, neuronal and microglial Hif1a levels were reduced,
whereas astrocytic Hif1a increased, in response to mild hypoxia. When cultured at 1%
O2, astrocytes elevated Hif1a transcription, while microglia repressed the expression of
Hif1a. The expression pattern for HIF-2α (Epas1) also differed significantly among the brain
cells—while neurons and astrocytes significantly upregulated its expression, microglia
decreased Epas1 transcription at 1% O2. While the absolute Hif3a levels remained very low
in brain cells, they also showed fluctuating expression to oxygen deviation. Although HIFβ
subunits are stably expressed under normoxia, we detected significant cell type-specific
transcriptional alterations of both HIF-1β (Arnt) and HIF-2β (Arnt2) under different O2
levels (Figure 5C). On the other hand, transcripts of Rest, Vhl, Egln1, and Egln3 were
found invariably increased in brain cells cultured at 1% O2 (Figure 5C), revealing a pro-
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found change in the molecular configurations of hypoxia response machinery in brain cells
under hypoxia.

3.6. Shared Brain Cell Responses to Oxygen Decline

We reasoned that, under brain hypoxia, all brain cells simultaneously undergo molec-
ular reprogramming in response. Thus, it would be possible and worthwhile to establish a
gene module to denote the brain-specific hypoxic response. For that, we analyzed the DEGs
obtained from three brain cell types cultured under 5% O2 vs. those under normoxia and
obtained 51 genes with significantly altered expression in all cells (Figure 6A) (Table S4).
Among the top 20 genes with the most significant fold changes (Figure 6B), Ankyrin repeat
domain 37 (Ankrd37) was previously identified as a HIF-1 target gene, and its human coun-
terpart was recently linked to a novel causal mechanism controlling human hippocampal
volume [57,58]. Similarly, solute carrier family 16 (Slc16a3) encodes one of the monocar-
boxylic acid transporters, is induced under hypoxic conditions, and subsequently promotes
glycolytic metabolism in cells [59,60]. Also included in the list are several well-known
genes involved in hypoxia response—Hk2 [61], Pdk1 (Figure 1), Pfkl [62], Ak4 [63], Stc2 [64],
Ero1a [65], Gys1 [66], Egln3 (Figure 5), Bnip3 [67], Ldha (Figure 1), and Slc2a1 [68].
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Figure 6. Shared transcriptional response to oxygen decline across brain cell types. (A): Venn diagram
of overlapping DEGs between cell types at 5% vs. 21% O2; (B): Expression of top 20 DEGs across
cell types by magnitude of fold change at 5% vs. 21% O2; (C): Venn diagram of overlapping DEGs
between cell types at 1% vs. 5% O2; (D): Expression of top 20 DEGs across cell types by magnitude
of fold change at 1% vs. 5% O2; (E): Relative expression of selected stress response genes across cell
types at different oxygen levels.
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Furthermore, we identified 507 differentially expressed genes conserved among three
brain cell types when the transcriptomes obtained from 1% vs. 5% O2 culture conditions
were contrasted (Figure 6C). This is a much longer list than the one marking the brain
cells’ shared response to mild hypoxia (Figure 6A), consistent with the observed stronger
responses by glia cells to more significant hypoxia (Figures 3 and 4). Figure 6D contains
the top 20 DEGs with the greatest fold changes. Mgarp encodes mitochondria localized
glutamic acid-rich protein and was expressed more than 3, 25, and 21 times in neurons,
astrocytes, and microglia at 1% O2 over their counterparts at 5% O2 culture, respectively.
A protein induced by hypoxia in neurons, Mgarp, also called mitochondrial movement
regulator [69], has been shown to functionally modulate neocortical development and
motility of neocortical neurons [70]. However, its presence and role in glial populations
have not been investigated. In addition, we spotted other genes known to be involved
in hypoxia response in the top 20 gene list—Ndufa4l2 [71], Muc2 [72], Slc16a3 (see above),
Bnip3 (see above), P4ha2 [73], Egln3 (Figure 5), Apln [74], Ero1a [65], Ascl2 [75], Prelid2 [76],
Nxph4 [77], Tmem74b [78], and Ndrg1 [79]. Of note, 28 of the 51 DEGs shared by brain
cells in response to mild hypoxia were also represented in the gene module affected by
significant hypoxia (Table S4).

BCL2/adenovirus E1B interacting protein 3 (Bnip3) appeared on both top 20 shared
DEG lists (Figure 6B,D). Bnip3 is known to be associated with diverse processes such
as apoptosis, redox homeostasis, and glucose uptake regulation [80,81]. Expression of
Bnip3 and its binding partner Binp3l can be induced by HIF activation upon hypoxia
exposure [67]. Via regulating mitochondrial function and mitophagy, the Bnip3/Bnip3l
complex was shown to mediate hypoxia-induced cell death [82–84]. Both Bnip3 and Binp3l
transcripts were significantly elevated in brain cells cultured under 1% O2 (Figure 6E). As a
part of MAPK cascades, the c-Jun N-terminal kinase (JNK) signaling pathway is involved
in a wide range of cellular processes, particularly in the context of stress response and
apoptosis [85]. We observed that primary brain cells invariably upregulated Jun expression
under more severe hypoxia.

The DNA damage-inducible transcript 2 (Ddit2), alternatively known as GADD45G, is
a member of the growth arrest and DNA damage-inducible gene family. It functions as a
stress-responsive gene that is induced by genotoxic stress and other cellular stress signals.
The DNA damage-inducible transcript 3 (Ddit3), also known as C/EBP homologous protein
(CHOP), is a stress-inducible gene and regulates various cellular processes, including
apoptosis, redox homeostasis, and glucose metabolism. The DNA damage-inducible
transcript 4 (Ddit4) gene is induced by various cellular stresses and acts as a negative
regulator of the mTOR pathway. Remarkably, 1% O2 exposure substantially increased the
levels of these 3 stress response mediators in every brain cell type assayed in this study
(Figure 6E).

The EIF2AK3 gene encodes the protein kinase RNA-like ER kinase (PERK), which
plays a key role in the unfolded protein response (UPR) to endoplasmic reticulum (ER)
stress. Both neurons and astrocytes significantly upregulated EIF2AK3 gene expression
when cultured at 1% O2, whereas microglia produced a higher level of EIF2AK3 when
cultured at 5% O2. The activating transcription factor 3 (Atf3) and activating transcription
factor 4 (Atf4) are important stress-responsive genes that serve as master regulators of the
cellular response to stress in various cellular processes, including the regulation of gene
expression, metabolism, immunity, and oncogenesis. In primary neurons, Atf3 and Atf4
transcripts started to increase under mild hypoxia and reached higher levels when hypoxia
grew more severe. Brain glia cells boosted Atf3 and Atf4 transcription primarily in response
to lower O2 tension (Figure 6E).

In summary, our analyses have established hypoxia-driven brain gene modules and
revealed profound stress-related responses in all brain cells under hypoxia.
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4. Discussion

In this study, we conducted a comprehensive and unbiased genome-wide survey
on the transcriptomes of major mouse brain cells that have been exposed to varied oxy-
gen levels corresponding to normoxia, and mild and severe hypoxia. We not only de-
tected cell type-specific responses, but our analysis also revealed that neurons, astrocytes,
and microglia upheld a canonical hypoxia response to oxygen decline, which encom-
passes the well-characterized pathways such as the “HIF-1 signaling pathway”, “Glycol-
ysis/Gluconeogenesis”, and “Carbon metabolism”, further validating the Nobel Prize-
winning discoveries led by Drs. Gregg Semenza, William Kaelin, and Peter Ratcliffe.

For the first time, we established hypoxia-driven brain gene modules by identifying
the shared DEGs among major brain cell types experiencing hypoxia (Figure 6). Despite
broad pathophysiological impacts, non-life-threatening brain hypoxia is not routinely
examined nor diagnosed, let alone studied in detail at the molecular level. Lacking reliable
means to identify tissue hypoxia is apparently one of the contributing factors. Many
biological processes, like hypoxia, can evoke rigorous cellular reactions, which lead to
transcriptomic reprogramming affecting the expression of hundreds, if not thousands, of
genes. Taking advantage of this notion, gene signatures tied to underlying pathogenic
pathways have been successfully used in the diagnosis and monitoring of various human
diseases [86–88]. The hypoxia-driven brain gene modules described here contain not
only factors well-characterized in hypoxia response from other body cells and tissues but
also gene entities that are brain specific or bear novel links. For example, our analyses
highlighted Mgarp’s role in brain hypoxia beyond neurons, as it topped our shared brain
gene signature panel (Figure 6D). The regulator of G protein signaling 11 (Rgs11) was also
found significantly upregulated in all brain cells under mild hypoxia (Figure 6B). Rgs11 is
expressed in rodent brains in a region-specific manner [89]; yet, it has never been linked to
hypoxia beforehand. Likewise, it would be interesting to further investigate the functional
connections between genes, such as Leng8, Bend5, Smtnl2, H2-Ab1, and Gm12868, to brain
hypoxia in future studies.

One of our primary goals in this study was to comprehend cell type-specific responses
to hypoxia. Among brain cells, neurons and astrocytes are derived from neural stem cells
or radial glial cells, whereas microglia originate from early embryonic erythromyeloid
progenitors in the extra-embryonic yolk sac. With discrete transcriptomes (Figure 1B),
these cells fulfill distinct functions in the brain. When exposed to mild hypoxia, neurons
differentially expressed 2312 genes, extensively more than in glial cells—795 from astro-
cytes and 983 from microglia (Figure S1). The mechanism underlying such a rigorous
response is unclear, as Hif1a and Hif2a are transcribed moderately in neurons. However, the
levels of these proteins are primarily maintained via post-translational regulation, which
could be affected by lower transcript levels of the negative regulators Vhl, Egln1, and
Egln3 in neurons than astrocytes under normoxia (Figure 5). On the other hand, microglia
apparently express hypoxia response components in unique combinations, a pattern some-
what dissimilar to neurons and astrocytes (Figure 5). Comparing the transcriptomes from
cells at 1% vs. 5% O2, we detected 2415 DEGs in neurons, 3987 in astrocytes, and 4312
in microglia, a contrast to their responses to mild hypoxia (Figure S1). Pathway analysis
reveals that both neurons and astrocytes upregulate the “Circadian rhythm” and “MAPK
signaling pathway“, and astrocytes and microglia upregulate “Focal adhesion”. In a cell
specific-manner, neurons upregulate the “Notch signaling pathway” while downregulating
“Axon guidance”, astrocytes upregulate “Motor proteins” and “Phagosome”, and microglia
upregulate “Ribosome” and “COVID-19”.

Changes in oxygen availability have had a profound impact on the evolution of life on
Earth. Mammals are highly adaptable to mild hypoxic conditions, such as high-altitude
plateaus and subterranean burrows [90]. In animals and humans, the body’s oxygen de-
livery system produces an oxygen cascade, which results in varied physiological oxygen
tensions in different tissues and organs [91]. Of note, the oxygen concentration inside the
normal brain parenchyma is reportedly 4.4% ± 0.3% [91]. Interestingly, intermittent mild
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hypoxia has potential benefits to brain functions, such as increased working capacity and re-
sistance to brain injury; moreover, it alleviates memory impairment in Alzheimer’s disease
mouse models and patients with mild cognitive impairment [92–95]. In our dataset, both
neurons and astrocytes cultured at 5% O2 exhibit significantly reduced the “Oxidative phos-
phorylation” (OXPHOS) pathway when compared with cells cultured at 21% O2. While
OXPHOS is critical for efficient energy metabolism, it also serves as a source of reactive
oxygen species and free radicals that promote oxidative stress. Oxidative stress has been im-
plicated in the pathogenesis of several neurodegenerative diseases, including Alzheimer’s
disease, Parkinson’s disease, and amyotrophic lateral sclerosis (ALS) [96]. In line with this,
we observed remarkably downregulated processes, such as “Parkinson disease”, “Prion dis-
ease”, “Huntington’s disease”, and “Pathways of neurodegeneration—multiple diseases”,
in astrocytes cultured at 5% O2 when compared to the 21% O2 condition.

On the contrary, severe hypoxia could be pathogenic and detrimental to tissues,
especially for the oxygen-demanding brain. From this transcriptomic analysis, we have
detected a multitude of molecular changes in brain cells exposed to intense hypoxia, which
includes rigorous upregulation of canonical hypoxia response pathways, such as the “HIF-
1 signaling pathway”, “Glycolysis/Gluconeogenesis”, and “Central carbon metabolism
in cancer” (Figures 2–4), significant reconfiguration of the hypoxia response machinery
(Figure 5), and instigation of several core stress responses (Figure 6). Despite such a strain,
cell death-related pathways were not apparently triggered in brain cells cultured under at
1% O2, nor was increased Casp3 or Casp8 expression detected. Of note, while playing a role
in promoting axonal injury and neurodegenerative processes [97], Ddit3/CHOP was shown
previously to protect neurons against hypoxia-induced cell death [21]. Thus, brain cells
experiencing hypoxic stress undergo complex cellular changes, findings that are in need
of further elucidation. Since chronic hypoxia profoundly shapes the cellular outcomes,
analysis of additional time points would help discern other pathways induced following
the acute response.

5. Conclusions

In summary, this study has produced a valuable resource that elucidates the transcrip-
tional alterations occurring in brain cells in response to oxygen deprivation. Furthermore,
we have identified hypoxia-driven gene modules specific to the brain, which may serve
as a diagnostic tool for molecularly assessing brain hypoxia under pathophysiological
conditions. The insights obtained into the cell-specific changes induced by hypoxia may
also facilitate future research aimed at comprehensively understanding how this important
cellular response shapes the brain and beyond.
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**: p < 0.01, *: p < 0.05). Table S1. Lists of shared DEGs in neurons. Table S2. Lists of shared DEGs in
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