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Abstract: The morphology of the brain undergoes changes throughout the aging process, and
accurately predicting a person’s brain age and gender using brain morphology features can aid in
detecting atypical brain patterns. Neuroimaging-based estimation of brain age is commonly used to
assess an individual’s brain health relative to a typical aging trajectory, while accurately classifying
gender from neuroimaging data offers valuable insights into the inherent neurological differences
between males and females. In this study, we aimed to compare the efficacy of classical machine
learning models with that of a quantum machine learning method called a variational quantum
circuit in estimating brain age and predicting gender based on structural magnetic resonance imaging
data. We evaluated six classical machine learning models alongside a quantum machine learning
model using both combined and sub-datasets, which included data from both in-house collections
and public sources. The total number of participants was 1157, ranging from ages 14 to 89, with a
gender distribution of 607 males and 550 females. Performance evaluation was conducted within each
dataset using training and testing sets. The variational quantum circuit model generally demonstrated
superior performance in estimating brain age and gender classification compared to classical machine
learning algorithms when using the combined dataset. Additionally, in benchmark sub-datasets, our
approach exhibited better performance compared to previous studies that utilized the same dataset
for brain age prediction. Thus, our results suggest that variational quantum algorithms demonstrate
comparable effectiveness to classical machine learning algorithms for both brain age and gender
prediction, potentially offering reduced error and improved accuracy.

Keywords: brain age prediction; brain age estimation; gender classification; sex classification;
structural magnetic resonance imaging; machine learning; quantum machine learning; variational
quantum circuit; parameterized quantum circuit; quantum neural network

1. Introduction

Neuroimaging-derived brain age serves as a valuable biomarker for monitoring the
progression of brain-related conditions and aging [1]. This metric, often termed “brain age,”
is calculated using machine learning algorithms applied to magnetic resonance imaging
(MRI) data to predict an individual’s chronological age. The disparity between the predicted
brain age and the actual chronological age reflects deviations from typical age trajectories
and is utilized to assess brain health [1]. Elevated brain age relative to chronological age has
been correlated with diminished cognitive abilities. Moreover, mental health characteristics,
such as Alzheimer’s disease [2], mild cognitive impairment [2], focal epilepsy [3], multiple
sclerosis [4], traumatic brain injury [5], schizophrenia [6,7], bipolar disorder [8], major
depressive disorder [9], etc., have been associated with an increased brain age difference.
These findings underscore the significance of the brain age difference as a biomarker for
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assessing brain health. The number of publications related to these studies is increasing
every year [1].

Gender classification based on neuroimaging data has emerged as a crucial area of
research with significant implications across various domains, including neuroscience,
medicine, and psychology [10–12]. The ability to accurately classify gender from neu-
roimaging data offers valuable insights into the inherent neurological differences between
males and females [10–12]. For instance, Flint et al. [10] demonstrated an increased misclas-
sification in transgender women when employing structural MRI data for biological sex
classification. Understanding these characteristics is essential for unraveling the complexi-
ties of brain structure, function, and development, as well as for addressing gender-related
disparities in health and cognition. Moreover, gender classification from neuroimaging
data contributes to the elucidation of sex-specific brain disorders and conditions. This
capability enables researchers and clinicians to discern gender-specific patterns, thereby
facilitating early detection, intervention, and treatment of neurological disorders that may
manifest differently between males and females.

Numerous machine learning studies have sought to predict both brain age and gender,
primarily utilizing structural MRI data [1–12]. Structural MRI scans provide a plethora of
brain morphological features, making them a preferred choice for investigating age-related
brain changes across various disorders and conditions [1]. The literature encompasses
a diverse array of methodological approaches, ranging from classical machine learning
methodologies [13–16] to those employing deep learning techniques [17–23]. Nevertheless,
there seems to be a noticeable lack of research employing quantum machine learning for
brain age and gender prediction.

Quantum machine learning has emerged as a promising tool to enhance classical
machine learning techniques [24]. Research indicates that both quantum and quantum-
inspired computing models have the potential to optimize the training process of conven-
tional models, resulting in improved prediction accuracy for target functions with reduced
iteration requirements [25,26]. Several studies have highlighted the practical advantages
of quantum machine learning algorithms, demonstrating their superior performance over
classical counterparts in predicting complex medical outcomes [25] and image restora-
tion [26]. Among various quantum machine learning methods, parameterized quantum
circuits (PQCs), variational quantum circuits (VQCs), or quantum neural networks (QNNs)
stand out as particularly promising. For instance, researchers have utilized hybrid quan-
tum neural networks to discover drug molecules [25] and recover contaminated ghost
images [26], showcasing superior performance compared to classical counterparts with
fewer iterations and higher accuracy, especially when dealing with limited datasets. This
suggests their potential for addressing pharmacological and medical challenges, such
as predicting patient responses to different medications or evaluating patient prognosis
and diagnosis.

This study investigates the application of VQC in predicting brain age and gender
using brain morphological features derived from structural MRI data. To the best of
our knowledge, these applications represent a novel endeavor. We aim to assess the
performance of VQC in comparison with classical machine-learning algorithms. The goal
of this study is to explore the potential of quantum machine learning models in predicting
brain age and gender based on brain morphometric data, providing invaluable insights
into age-related disorders.

2. Materials and Methods
2.1. Description of Dataset

In this study, we utilized three primary datasets: the IXI dataset (n = 563, age range
18–88 years, https://brain-development.org [14] (accessed on 27 April 2023)), the CAU
dataset (n = 156, age range 55–83 years [15]), and an in-house collected dataset (n = 438,
age range 14–89 years [27–29]). All participants included in our analysis underwent
careful screening following local study protocols to confirm their status as healthy in-
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dividuals without a history of neurological, psychiatric, or major medical conditions.
T1-weighted MRI scans were acquired using either 1.5T or 3T scanners. Detailed informa-
tion regarding the acquisition protocols for each dataset can be found in the corresponding
references [14,15,27–29]. Figure 1 and Table 1 provide an overview of the age and gender
distributions across our datasets. For each distribution of datasets, the details are pro-
vided in Supplementary Figure S1 and Tables S1–S3. Ethical approvals and informed
consents were locally obtained for each dataset to ensure compliance with relevant research
ethics guidelines.
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of male and female samples.

Table 1. Demographics of subjects included in this study.

Age Range
No. of Subjects

Male Female Total

14–19 96 27 123
20–29 159 120 279
30–39 86 54 140
40–49 59 60 119
50–59 69 83 152
60–69 95 134 229
70–79 36 66 102
80–89 7 6 13
Total 607 550 1157

2.2. Image Processing and Feature Extraction

The structural brain T1-weighted MRI scans of all subjects were processed using the Fast-
Surfer v2.1.0 [30], except for the CAU dataset, which had been processed using FreeSurfer [31]
run on Ubuntu Linux operating system version 22.04 LTS and was provided in a spreadsheet
format, not as raw images. FastSurfer, an alternative version of FreeSurfer, employs deep learn-
ing techniques for structural MRI processing. The FastSurfer brain segmentations were carried
out on Google Colab using the ‘Tutorial_FastSurferCNN_QuickSeg.ipynb’ notebook. In brief,
cortical and subcortical segmentation for each subject was conducted on their T1-weighted
image through a series of steps, including skull stripping, segmentation of cortical gray and
white matter, and identification of subcortical structures. Further technical details about the
pipeline can be found in reference [30]. Notably, this method is highly efficient, taking only a
few minutes per subject.

This study utilized estimated subcortical and cortical volume parcellation data. Based
on previous studies [14,15], we selected 34 segmentation features from the available
95 labels (refer to Table 2), and later reduced these to 17 features using principal com-
ponent analysis (PCA) decomposition for age and gender prediction models. This re-
duction was partly necessitated by the limited qubits available for quantum machine
learning algorithms.
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Table 2. The 34 selected features from MRI brain volume segmentation data.

No. Feature No. Feature

1 Left white matter 18 Right white matter
2 Left lateral ventricle 19 Right lateral ventricle
3 Left inferior lateral ventricle 20 Right inferior lateral ventricle
4 Left cerebellum white matter 21 Right cerebellum white matter
5 Left cerebellum cortex 22 Right cerebellum cortex
6 Left thalamus proper 23 Right thalamus proper
7 Left caudate 24 Right caudate
8 Left putamen 25 Right putamen
9 Left pallidum 26 Right pallidum

10 Left hippocampus 27 Right hippocampus
11 Left amygdala 28 Right amygdala
12 Left accumbens area 29 Right accumbens area
13 Left ventralDC 30 Right ventralDC
14 Left choroid plexus 31 Right choroid plexus
15 Left cerebral cortex 32 Right cerebral cortex
16 Cerebrospinal fluid 33 Brain stem
17 Third ventricle 34 Fourth ventricle

2.3. Machine Learning Algorithms

Brain age and gender prediction were performed using the scikit-learn library [32]
for classical machine learning algorithms and the tensorcircuit package [33] for quantum
machine learning algorithms. The tensorcircuit package was selected for its efficiency
and ability to utilize a relatively large number of qubits in our experimental environment,
allowing us to employ up to 17 qubits in our case. All machine learning algorithms were
executed on Google Colab.

For brain age prediction models, we employed the following six classical machine learning
models in scikit-learn: linear regression (LR), support vector regression (SVR) with parame-
ters {‘svr__C’: 15.0, ‘svr__cache_size’: 200, ‘svr_coef0’: 0.0, ‘svr__coef0’: 0.0, ‘svr__degree’: 3,
‘svr__epsilon’: 0.2, ‘svr__gamma’: ‘scale’, ‘svr_kernel’: ‘rbf’, ‘svr__max_iter’: −1, ‘svr__shrinking’:
True, ‘svr__tol’: 0.001, ‘svr_verbose’: False}, extreme gradient boosting (XGBoost) with param-
eters {‘alpha’: 0.9, ‘çcp_alpha’: 0.0, ‘criterion’: ‘friedman_mse’, ‘init’: None, ‘learning_rate’:
0.1, ‘loss’: ‘squared_error’, ‘max_depth’: 3, ‘max_features’: None, ‘max_leaf_nodes’: None,
‘min_impurity_decrease’: 0.0, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘min_weight_
fraction_leaf’: 0.0, ‘n_estimators’: 100, ‘n_iter_no_change’: None, ‘random_state’: None, ‘sub-
sample’: 1.0, ‘tol’: 0.0001, ‘validation_fraction’: 0.1, ‘verbose’: 0, ‘warm_start: False}, random
forest (RF) with parameters {‘bootstrap’: True, ‘ccp_alpha’: 0.0, ‘criterian’: ‘squared_error’,
‘max_depth’: None, ‘max_features’: 1.0, ‘max_leaf_nodes’: None, ‘max_samples’: None,
‘min_impurity_decrease’: 0.0, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2, ‘min_weight_
fraction_leaf’: 0.0, ‘n_estimators’: 100, ‘n_jobs’: None, ‘oob_score’: False, ‘random_state’: None,
‘verbose’: 0, ‘warm_start’: False}, Bayesian ridge (BR) with parameters {‘alpha_1’: 1 × 10−6,
‘alpha_2’: 1 × 10−6, ‘alpha_init’: None, ‘compute_score’: False, ‘copy_X’: True, ‘fit_intercept’:
True, ‘lambda_1’: 1 × 10−6, ‘lambda_2’: 1 × 10−6, ‘lambda_init’: None, ‘n_iter’: 300, ‘tol’:
0.001, ‘verbose’: False}, and multi-layer perceptron (MLP) regression with parameters {‘acti-
vation’: ‘relu’, ‘alpha’: 0.0001, ‘batch_size’: 10, ‘beta_1’: 0.9, ‘beta_2’: 0.999, ‘early_stopping’:
True, ‘epsilon’: 1 × 10−8, ‘hidden_layer_sizes’: (17, 17, 17, 17, 17, 17, 17, 17, 17, 17), ‘learn-
ing_rate’: ‘constant’, ‘learning_rate_init’: 0.01, ‘max_fun’: 15,000, ‘max_iter’: 1000, ‘momentum’:
0.9, ‘n_iter_no_change’: 10, ‘nesterouvs_momentum’: True, ‘power_t’: 0.5, ‘random_state’:
None, ‘shuffle’: True, ‘solver’: ‘adam’, ‘tol’: 0.0001, ‘validation_fraction’: 0.1, ‘verbose’: True,
‘warm_start’: False}. For gender classification, we utilized logistic regression (LR) with pa-
rameters {‘C’: 1.0, ‘class_weight’: None, ‘dual’: False, ‘fit_intercept’: True, ‘intercept_scaling’:
1, ‘l1_ratio’: None, ‘max_iter’: 100, ‘multi_class’: ‘auto’, ‘n_jobs’: None, ‘penalty’: ‘l2’, ‘ran-
dom_state’: None, ‘solver’: ‘lbfgs’, ‘tol’: 0.0001, ‘verbose’: 0, ‘warm_start’: False}, XGBoost,
support vector classification (SVC) with parameters {‘C’: 1.0, ‘break_ties’: False, ‘cache_size’: 200,
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‘class_weight’: None, ‘coef0’: 0.0, ‘decision_function_shape’: ‘ovr’, ‘degree’: 3, ‘gamma’: ‘scale’,
‘kernel’: ‘rbf’, ‘max_iter’: −1, ‘probability’: False, ‘random_state’: None, ‘shrinking’: True, ‘tol’:
0.001, ‘verbose’: False}, RF with parameters {‘bootstrap’: True, ‘oop_alpha’: 0.0, ‘class_weight’:
None, ‘criterion’: ‘gini’, ‘max_depth’: None, ‘max_features’: ‘sqrt’, ‘max_leaf_nodes’: None,
‘max_samples’: None, ‘min_impurity_decrease’: 0.0, ‘min_samples_leaf’: 1, ‘min_samples_split’:
2, ‘min_weight_fraction_leaf’: 0.0, ‘n_estimators’: 100, ‘n_jobs’: None, ‘oob_score’: False, ‘ran-
dom_state’: None, ‘verbose’: 0, ‘warm_start’: False}, MLP with the same parameters as in brain
age estimation, and k-nearest neighbor (KNN) with parameters {‘algorithm’: ‘auto’, ‘leaf_size’:
30, ‘metric’: ‘minkowski’, ‘metric_params’: None, ‘n_jobs’: None, ‘n_neighbors’: 5, ‘p’: 2,
‘weights’: ‘uniform’}.

In quantum machine learning models, we used variational quantum circuits for age
prediction and gender classification tasks. Our VQC model was implemented based on the
‘Quantum Machine Learning for Classification Tasks’ tutorial notebook [33]. We adapted
the Ising ZZ coupling gates to CNOT gates (Figure 2). The quantum logic gates used in
this study are detailed in Table 3. The quantum circuit in Figure 2 was created using the
Pennylane framework [34].
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Figure 2. Variational quantum circuit (VQC) architecture for brain age regression and gender
classification. T1-weighted structural MRI data undergo segmentation and feature selection, resulting
in 34 features. These features are normalized and reduced to 17 elements using principal component
analysis (PCA). The 17 features are then fed into the VQC, where trainable operations (Rx, Ry, Rz) and
CNOT operations are applied across 10 blocks. After measurements, the outputs are combined into a
single layer for brain age prediction or gender classification. Note that the blue arrows represent the
direction of forward processing, and the blue circles denote individual features.
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2.4. Model Training and Evaluation

Before applying PCA embedding to the model input, we utilized MinMaxScaler from
the scikit-learn library to scale the features between zero and one. This normalized feature
vector serves as the input for both classical and quantum machine learning algorithms. Fo-
cusing on the quantum model, the feature vector underwent transformation into a quantum
layer within the VQC. This quantum layer comprised three components: embedding (PCA
embedding was employed here), variational layers, and measurement. In our study, we
utilized 17 qubits and constructed 10 repeated blocks for the VQC architecture (Figure 2).
The normalized classical features were encoded into the quantum Hilbert space, with the
resulting quantum state representing the input data from the preceding classical layer.
Each variational layer within the VQC consisted of two parts: rotations with trainable
parameters and control gates, typically subsequent to CNOT operations (Figure 2 and
Table 3). These rotations acted as quantum gates, transforming the encoded input data
based on variational parameters, whereas the CNOT operations entangled the qubits in the
quantum layer, facilitating the creation of quantum superposition. Each block contained
three layers. In the measurement component, all the qubits were measured and summed
at a single node. Subsequently, a sigmoid activation function was applied to produce the
final output. Thus, the output of the VQC provided predictions of brain age or gender
values. The performance of the VQC model was compared with that of classical machine
learning models.

For model training, the preprocessed data were shuffled and distributed once into the
training (80%) and testing (20%) sets. We selected this split ratio to ensure sufficient data
for training the model while preserving a reasonable portion for testing purposes. The split
was performed randomly.

To enhance the representativeness of the dataset and mitigate inadvertent biases, the
order of the samples in the training set was shuffled at each epoch, whereas it remained
unchanged in the test set. For optimization, we employed an adaptive moment estimation
(ADAM) optimizer with a learning rate set to 0.01.

To evaluate the effectiveness of the brain age prediction model, we primarily used
the mean absolute error (MAE) metric. This metric measures the discrepancy between the
predicted brain age (ŷ) and the corresponding chronological age (y) for each sample in our
dataset. The MAE is defined as follows:

MAE =
1
N ∑N

i=1 |ŷ i − yi|,

where N is the number of samples in the dataset. The model’s successful performance
is indicated by the low values of the MAE. Other regression metrics, such as the mean
squared error (MSE), root mean squared error (RMSE), and r-squared, were also estimated.

On the other hand, to evaluate the performance of the gender classification model, we
primarily used the accuracy score defined as follows:

Accuracy =
Number o f correct predictions
Total number o f predictions

Other classification metrics such as precision, recall, and f1-score were also estimated.
All models were implemented in Python and executed on Google Colab. The classical

machine learning algorithms were implemented with scikit-learn, while the quantum ma-
chine learning algorithm was implemented with the Tensorcircuit framework. Additionally,
we conducted an experiment by training the classical and quantum machine learning
models with the same hyperparameters on varying sizes of training data, including 57, 115,
231, 462, 694, and 925 samples.
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3. Results
3.1. Algorithm Performance for Brain Age Prediction

The performance of each algorithm in the combined dataset is depicted in Figure 3
and Table 4 for both the training set (left four figures) and the hold-out test set (right four
figures). Additional metrics, including mean absolute error (MAE), mean squared error
(MSE), root mean squared error (RMSE), and r-squared (R2), are presented. For a more
comprehensive view, performance metrics for various training sample sizes are detailed in
Supplementary Tables S4–S8.
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Figure 3. Relationship between training sample sizes and performance of classical (LR, BR, XGB, RF,
SVR, MLP) and quantum machine learning (VQC) models for brain age predictions (plots display
MAE (A,C), MSE (B,D), RMSE (E,G), and R2 (F,H) values for both train (A,B,E,F) and test (C,D,G,H)
sets against training size).

Table 4. Age prediction performance of various machine learning regressors.

Regressors
Train (N = 925) Test (N = 231)

MAE MSE RMSE R2 MAE MSE RMSE R2

LR 6.978 77.987 8.831 0.791 7.506 85.695 9.257 0.784

BR 6.982 78.013 8.833 0.791 7.512 85.733 9.259 0.783

XGBoost 4.437 33.259 5.767 0.911 7.639 104.394 10.217 0.736

RF 2.809 14.118 3.757 0.962 8.275 118.161 10.870 0.701

SVR 5.395 42.177 6.494 0.887 7.324 88.986 9.433 0.775

MLP 6.118 62.193 7.886 0.834 7.103 83.184 9.121 0.790

VQC 6.200 66.674 8.165 0.822 6.744 80.092 8.949 0.798

LR: linear regression; BR: Bayesian ridge; XGBoost: extreme gradient boosting; RF: random forest; SVR: support
vector regression; MLP: multilayer perceptron; VQC: variational quantum circuit.

The prediction performance varied with the regression algorithms. When the train-
ing sample size was 925, the best prediction performance was achieved using VQC
(MAE = 6.744, MSE = 80.092, MRSE = 8.949, and R2 = 0.798), whereas the worst perfor-
mance was observed with RF (MAE = 8.275, MSE = 118.161, RMSE = 10.870, and R2 = 0.701).
Similarly, with 694 samples in the training set, MLP demonstrated the best performance
(MAE = 5.293, MSE = 50.448, RMSE = 7.103, and R2 = 0.868), whereas RF exhibited the
worst performance (MAE = 6.382, MSE = 78.092, MRMSE = 8.837, and R2 = 0.796). For
the 462 samples in the training set, VQC exhibited the best performance (MAE = 5.502,
MSE = 56.829, RMSE = 7.539, R2 = 0.856), whereas RF exhibited the worst performance
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(MAE = 7.348, MSE = 87.258, RMSE = 9.341, R2 = 0.780). For 231 samples in the training
set, VQC outperformed the other methods (MAE = 5.171, MSE = 49.714, RMSE = 7.051,
and R2 = 0.877), whereas RF exhibited the worst performance (MAE = 7.439, MSE = 92.641,
RMSE = 9.625, and R2 = 0.770). Furthermore, with 115 samples, RF achieved the best perfor-
mance (MAE = 6.452, MSE = 65.773, RMSE = 8.110, and R2 = 0.847), whereas LR achieved the
worst performance (MAE = 8.391, MSE = 122.784, RMSE = 11.081, and R2 = 0.714). Finally,
with 57 samples in the training set, MLP exhibited the best performance (MAE = 5.914,
MSE = 73.814, RMSE = 8.591, R2 = 0.761), whereas SVR and RF demonstrated the worst
performances (MAE = 8.283, MSE = 94.746, RMSE = 9.734, R2 = 0.693, and MAE = 7.938,
MSE = 125.458, RMSE = 11.201, R2 = 0.593, respectively).

3.2. Algorithm Performance for Gender Prediction

The gender classification performance of each algorithm on the combined dataset is
visualized in Figure 4 and summarized in Table 5 for both the training and holdout test
sets. The prediction performance varied across classification algorithms. Key metrics such
as accuracy, precision, recall, and f1-score values are presented. The detailed results for the
different training sample sizes are shown in Supplementary Tables S9–S13.
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Figure 4. Relationship between training sample sizes and performance of classical (LR, KNN, XGB,
RF, SVC, MLP) and quantum machine learning (VQC) models for gender predictions (plots display
accuracy (A,C), precision (B,D), recall (E,G), and f1-score (F,H) for both train (A,B,E,F) and test
(C,D,G,H) sets against training size).

Table 5. Gender prediction performance of various machine learning classifiers.

Classifiers
Train (N = 925) Test (N = 231)

Accuracy Precision Recall F1-Score Accuracy Precision Recall F1-Score

LR 0.811 0.819 0.820 0.819 0.810 0.828 0.815 0.821

KNN 0.838 0.837 0.851 0.844 0.779 0.779 0.798 0.788

XGBoost 0.997 0.998 0.996 0.997 0.762 0.754 0.786 0.770

RF 0.997 0.994 1.000 0.758 0.770 0.770 0.770 0.770

SVC 0.835 0.845 0.840 0.843 0.771 0.787 0.780 0.784

MLP 0.789 0.845 0.774 0.808 0.753 0.811 0.744 0.776

VQC 0.809 0.864 0.791 0.826 0.818 0.885 0.794 0.837

LR, logistic regression; KNN, k-nearest neighbor; XGBoost, extreme gradient boosting; RF, random forest; SVC,
support vector classifier; MLP, multilayer perceptron; VQC, variational quantum circuit.
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In gender classification tasks, accuracy, precision, recall, and f1-score values varied
across different training sample sizes. For instance, with a training sample size of 925,
accuracy ranged from 0.753 to 0.818, with the highest accuracy achieved by VQC and the
lowest by XGBoost. Similarly, precision values ranged between 0.754 and 0.885, recall
values ranged between 0.744 and 0.815, and f1-score values ranged from 0.770 to 0.837.
VQC consistently demonstrated the best prediction performance across various sample
sizes, whereas XGBoost exhibited the lowest performance. The performance trends for the
other sample sizes followed a similar pattern, with VQC consistently outperforming the
other algorithms in terms of accuracy, precision, recall, and F1-score metrics.

3.3. Comparative Study for Brain Age Prediction

For comparative analysis, we constructed a VQC model to predict brain age using the
IXI and CAU sub-datasets. The model’s performance metrics were as follows: in the IXI
dataset, the model achieved an MAE of 6.265, MSE of 65.812, RMSE of 8.106, and R2 of
0.759 on the training set (N = 450), and an MAE of 7.201, MSE of 83.074, RMSE of 9.114,
and R2 of 0.679 on the test set (N = 112) (Table 6).

Table 6. Comparative study of IXI dataset for brain age prediction in the training data (N = 450) and
prediction performance (N = 113).

Author Method
Model

Performance
(MAE)

Prediction
Performance

(MAE)

Han, J. et al. [14] ARD 7.4790 8.0453

Proposed VQC 6.265 7.201
ARD: Automatic Relevance Determination, VQC: variational quantum circuit; MAE: mean squared error.

For the CAU dataset, the model’s performance on the training data (N = 109) resulted
in MAE = 3.451, MSE = 17.992, RMSE = 4.242, and R2 =0.587, whereas on the test set (N = 47),
the performance yielded MAE = 3.302, MSE = 16.675, RMSE = 4.083, and R2 =0.425 (Table 7).

Table 7. Comparative study of CAU dataset for brain age prediction in the training data (N = 109)
and prediction performance (N = 47).

Author Method MAE MSE RMSE R2

Simfukwe, C. et al. [15] BR 3.310 18.280 4.280 0.300

Proposed VQC 3.302 16.675 4.083 0.425
BR, Bayesian ridge; VQC, variational quantum circuit; MAE, mean absolute error; MSE, mean squared error;
RMSE, root mean squared error.

4. Discussion

In this study, we conducted a comprehensive comparison between quantum machine
learning (QML) and classical machine learning (CML) algorithms for brain age regres-
sion and gender classification using combined and benchmark datasets. Our findings
demonstrate that QML algorithms, particularly variational quantum circuits (VQCs), either
outperform or perform comparably to classical algorithms in both tasks.

For brain age prediction, the performance of various algorithms varies significantly,
underscoring the importance of algorithm selection. Notably, VQCs consistently exhibit
superior performance across different sample sizes, displaying lower mean absolute er-
ror (MAE), mean squared error (MSE), and root mean squared error (RMSE) values and
higher r-squared (R2) scores than the other algorithms. This suggests the potential of
QML approaches, particularly VQCs, for accurately predicting brain age based on struc-
tural MRI findings. Conversely, random forest (RF) consistently showed comparatively
inferior performance, especially in larger sample sizes, highlighting its limitations in han-
dling complex data relationships. Additionally, the performance of linear regression (LR)
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degraded notably with smaller sample sizes, indicating susceptibility to overfitting or
inadequate model complexity. In contrast, the multi-layer perceptron (MLP) demonstrated
robust performance across various sample sizes, indicating its adaptability to diverse
dataset characteristics.

Similarly, in gender prediction tasks, observed variations in accuracy, precision, recall,
and F1-score values across different training sample sizes underscore the significance of
both algorithm selection and dataset characteristics. Once again, VQCs consistently outper-
formed other classical machine learning algorithms across varying sample sizes, achieving
superior metrics for all performance measures. This consistent superiority highlights the
potential of QML, particularly VQCs, in gender classification tasks, attributed to its ability
to capture complex data relationships and generalize across different sample sizes.

Furthermore, the comparative analysis of the VQC model’s performance in predict-
ing brain age using IXI and CAU sub-datasets provided valuable insights into its effec-
tiveness across diverse datasets. Our findings indicate that VQC outperforms previous
studies [14,15] that utilized Automatic Relevance Determination (Table 6) and Bayesian
Ridge (Table 7) algorithms, achieving better brain age prediction metrics using brain mor-
phometric data. These results suggest the superiority of VQC in accurately predicting brain
age across different datasets.

One interesting finding is that, although VQC did not demonstrate superior per-
formance compared to other algorithms in the training set for both brain age predic-
tion and gender classification tasks, it exhibited excellent performance in the test set
(Figures 3 and 4). This result implies that QML may possess better generalization capabili-
ties than CML algorithms. The quantum advantage might indeed have played a role in
enabling this enhanced performance [35].

Overall, our study contributes to the expanding body of literature on QML applications
in healthcare and neuroscience. While our findings demonstrate promising results for VQC
in brain age regression and gender classification tasks, further research is warranted to
explore its generalizability and integration into clinical practice for neurological research.

The limitation of this study is that, first, we generally could not demonstrate that
our model outperforms deep-learning-based models in other previous studies [17–23].
For instance, in the brain age prediction task, Wang et al. [36] examined a T1-weighted
MRI dataset of 3688 dementia-free participants with a mean age of 66 years, utilizing a
convolutional neural network (CNN) deep learning algorithm to predict brain age. They
achieved a mean absolute error (MAE) of 4.45 years. Hwang et al. [18] explored the
feasibility and clinical relevance of brain age prediction using axial T2-weighted images of
healthy subjects with a deep CNN model. The CNN model was trained with 1530 scans,
and the MAE evaluated the performance between the predicted age and the chronological
age based on an internal and external test dataset. The model showed MAEs of 4.22 years in
the internal test set and 9.96 years in the external test set. Mendes, S.L et al. [11] employed
two public datasets, ABIDE-II and ADHD-200, comprising healthy controls (HC, N = 894),
autism spectrum disorder (ASD, N = 251), and attention deficit hyperactivity disorder
(ADHD, N = 357) individuals, for age prediction and gender classification tasks. They
utilized T1-weighted sMRI scans and preprocessed gray and white matter images using
Voxel-Based Morphometry (VBM), and subsequently trained models with 3D convolutional
neural networks (CNNs). Their best-performing model, trained on the ADHD-200 dataset,
achieved an MAE of 1.43 years and an R2 score of 0.62 for age prediction on the test set. For
gender classification, the model achieved an AUC-ROC of 0.85, with precision, recall, and
F1-score values of 0.84, 0.81, and 0.83, respectively. Conversely, when using the ABIDE-II
dataset, the age prediction model yielded an MAE of 1.63 and an R2 score of 0.54, while
the gender classification model achieved an AUC-ROC of 0.82, with precision, recall, and
F1-score values of 0.87, 0.80, and 0.83, respectively.

As our study did not employ the same datasets as those mentioned above, a direct
comparison might be challenging. However, it appears that the deep-learning-based
studies cited above demonstrated higher performance metrics than ours, likely owing to
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commonalities in their methodologies. Specifically, many of these studies minimized or
completely avoided the preprocessing steps, trained deep learning models directly on raw
images, or used minimal transformations. In contrast, our study involved preprocessing
to extract brain morphometry features, and the limited number of qubits required for
VQCs hindered us from training the model using all the features, potentially leading to
information loss. To address these challenges, hybrid approaches that combine classical
and quantum machine learning [25,26] and employ techniques such as quanvolutional
neural networks [37,38] or data reuploading [39] could potentially yield better results. In
addition, our study did not demonstrate the clinical utility of age prediction and gender
classification, which may require disease-specific or atypical data. Therefore, future research
should focus on applying improved models to a broader range of applications, including
clinical scenarios, to demonstrate their practical relevance.

5. Conclusions

In conclusion, our study compared quantum and classical machine learning algorithms
for brain age regression and gender classification. We found that variational quantum
circuits (VQCs) consistently outperformed or were comparable to classical algorithms across
both tasks. Although VQCs consistently showed superior performance, limitations such as
information loss due to preprocessing and qubit constraints were noted. Future research
should explore hybrid approaches or advanced techniques to address these challenges and
demonstrate their practical relevance in clinical scenarios.
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