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Abstract: Virtual reality (VR) enables the development of virtual training frameworks suitable for
various domains, especially when real-world conditions may be hazardous or impossible to replicate
because of unique additional resources (e.g., equipment, infrastructure, people, locations). Although
VR technology has significantly advanced in recent years, methods for evaluating immersion (i.e.,
the extent to which the user is engaged with the sensory information from the virtual environment
or is invested in the intended task) continue to rely on self-reported questionnaires, which are often
administered after using the virtual scenario. Having an objective method to measure immersion
is particularly important when using VR for training, education, and applications that promote the
development, fine-tuning, or maintenance of skills. The level of immersion may impact performance
and the translation of knowledge and skills to the real-world. This is particularly important in tasks
where motor skills are combined with complex decision making, such as surgical procedures. Efforts
to better measure immersion have included the use of physiological measurements including heart
rate and skin response, but so far they do not offer robust metrics that provide the sensitivity to
discriminate different states (idle, easy, and hard), which is critical when using VR for training to
determine how successful the training is in engaging the user’s senses and challenging their cognitive
capabilities. In this study, electroencephalography (EEG) data were collected from 14 participants
who completed VR jigsaw puzzles with two different levels of task difficulty. Machine learning was
able to accurately classify the EEG data collected during three different states, obtaining accuracy
rates of 86% and 97% for differentiating easy versus hard difficulty states and baseline vs. VR states.
Building on these results may enable the identification of robust biomarkers of immersion in VR,
enabling real-time recognition of the level of immersion that can be used to design more effective and
translative VR-based training. This method has the potential to adjust aspects of VR related to task
difficulty to ensure that participants are immersed in VR.

Keywords: virtual reality; immersion; task difficulty; electroencephalography (EEG); biomarkers;
machine learning

1. Introduction

Virtual reality (VR) allows the delivery of novel solutions in various domains such as
entertainment [1], simulations [2], tele-rehabilitation [3,4], and training [5]. In particular,
VR training applications not only provide the opportunity to experience scenarios that
impose high physical or hygienic risks [6], but also allow trainees to practice the module
as many times as necessary without being limited by fear of wasting real resources [7].
Despite its potential, VR’s limitations include physical drawbacks such as VR-induced

Brain Sci. 2024, 14, 470. https://doi.org/10.3390/brainsci14050470 https://www.mdpi.com/journal/brainsci

https://doi.org/10.3390/brainsci14050470
https://doi.org/10.3390/brainsci14050470
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com
https://orcid.org/0000-0002-2466-8019
https://orcid.org/0000-0001-7497-0438
https://orcid.org/0000-0001-9832-5740
https://doi.org/10.3390/brainsci14050470
https://www.mdpi.com/journal/brainsci
https://www.mdpi.com/article/10.3390/brainsci14050470?type=check_update&version=2


Brain Sci. 2024, 14, 470 2 of 19

motion sickness [5] and the weight of the head-mounted device (HMD) [8]. Furthermore,
VR-based training may not accurately simulate the level of tactile, haptic, or proprioceptive
feedback with which users need to be trained to develop the required kinaesthetic skills [9].
Additionally, virtual environments may fail to accurately represent the real-world scenario
in terms of visual and auditory cues and fidelity [10]. These restrictions may decrease the
level of effectiveness of VR-based training and must be studied and addressed to optimize
VR for training in certain applications [5].

As a result of these limitations, the success of VR training can depend on how suc-
cessful it is in engaging the user’s senses and cognitive capabilities to the same level as
its real-world counterpart. In the literature, engagement is defined in terms of different
quantities such as presence, flow, fidelity, and immersion [11]. Flow is defined as the
process of optimal experience [12], presence refers to the psychological sense of being in the
virtual environment [13], and immersion is defined as the degree to which the user feels
engaged and absorbed in the environment and attends to the planned task [14]. Immersion
encompasses different aspects of the sense of ‘being there’ [15], including being caught up
in the sensory input of the virtual environment, as well as being mentally and cognitively
invested in the intended task. Immersion that refers to the sensory information received
by the user from the virtual environment is called sensory immersion [16], while cogni-
tive immersion is defined by the degree of engagement of the user caused by the task’s
demands [1]. Although the former is mostly constrained by technology-related aspects of
the virtual environment and how well the software and hardware provide the required
levels of different real-world sensory information [4], the latter is dependent on how much
the designed task engages the user [17]. Immersion provides a better quantification of
engagement in the evaluation of a virtual training designed to replicate the real-world
experience, as its definition encompasses both sensory and cognitive components of VR
training [11].

Research on immersion has been crucial to determine the impact and success of VR
experiences in the translation of cognitive and motor learning [18]. There are different
subjective and objective methods proposed in the literature to study immersion. Subjective
methods strongly rely on participants’ opinions and self-reported data [13,19] while consid-
ering the sense of immersion tied to the phenomenological experience of the user [1]. These
measures rely on the understanding that the user has of the concept of immersion [19] and
are impacted by the inherent subjectivity of the measured quantity. Additionally, asking
about immersion while the user is inside the virtual environment breaks the immersion, as
it distracts the user from their subjective experience [20], and asking about it afterwards
makes the results highly dependent on the recollection of the user’s experience [21]. There-
fore, quantifying immersion in a consistent and objective manner that enables researchers
to compare their findings and investigate the difference between immersion levels resulting
from different tasks, environments, levels of difficulty, circumstances, etc., is necessary.
Researchers have investigated various objective methods of measuring immersion that do
not require conscious deliberation from the participants [11,22], using performance-based
and physiological-based points of view. Physiological measures have included eye track-
ing [11], galvanic skin response [23], electrocardiogram [24], and electroencephalography
(EEG) [2,25], among others.

In the literature, to our knowledge, the use of EEG for studying immersion has been
limited to measuring the amplitude of event-related potentials (ERPs), evoked in response
to a stimulus that is not related to the task in which the immersion of the participant is
studied. This is followed by a statistical analysis of ERP amplitudes to study the differ-
ences between different levels of immersion and/or presence [1,2,23,25,26]. Although this
method is more promising than other physiological measures in terms of accuracy and re-
sistance to confounding variables (including being influenced by how virtual environments
represent information, boredom, and exhaustion), it still lags in offering a robust marker
for identifying immersion that is not influenced by potential confounding variables, and
it has resulted in heterogeneous, and in some cases contradictory findings [1,25]. It also
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suffers from an inability to identify and differentiate low and high levels of immersion in
real time. Machine learning (ML) methods for classifying EEG signals can offer the ability
to differentiate between different levels of immersion in real time.

In the literature, EEG-based machine learning and other classification approaches have
been used in various paradigms to extract insightful meaning from different mathematical
features of the signals. Kamińska et al. [27] and Aliyari et al. [28] were able to classify
different levels of stress imposed on the users in the virtual environment. Deep learning
has been used to extract information from EEG for stroke patients performing a real-time
rehabilitation experiment [29]. Moncada et al. proposed a method for a VR-based protocol
to classify important characteristics related to epilepsy [30], while Yildrim has reviewed
ML-based methods used to classify EEG characteristics attributed to cybersickness [31].
Hekmatmanesh et al. investigated the use of different methods based on EEG (based on
a common spatial pattern algorithm) to improve the detection of motor imagery patterns
in EEG signals in brain–computer interface applications by evaluating the efficiency of
various types of classifiers [32]. Other work has investigated the possibility of using
brain–computer interfaces to control movements in VR based on ML-based movement
prediction [33], and other work has investigated the applications of machine learning
approaches for EEG-based emotion recognition [34].

These studies show that the potential for extracting relevant features for classification
of EEG recordings is promising, with the potential to identify biomarkers of sensory
processing in EEG recordings of a VR-based task. These methods introduce more robust
biomarkers for their corresponding applications, where more accurate and homogeneous
results are obtained, but also offer the potential for automatic recognition and classification
of EEG data in real time. If they can progress to real-time measurement, machine learning
approaches have the potential to address the limitations of VR-based training on the
performance and transfer of skills to the real world and contribute to improving the design
of VR-based training. Additionally, ML approaches might enable real-time customization
of various features of training according to the individual characteristics of a user.

In this study, immersion was attributed to the level of difficulty of the task, based on
the past literature [35,36]. Therefore, different levels of task difficulty were used, which
included sitting idle and solving a jigsaw puzzle in easy and hard conditions in VR, where
the number of pieces determined the difficulty of the task. Machine learning algorithms
(stochastic gradient descent (SGD), support vector classifier (SVC), decision tree (DT), Gaus-
sian naive Bayes (GNB), k-nearest neighbors (KNN), random forest (RF), and a multilayer
perceptron (MLP)) were used to classify the EEG signals recorded during these states.
Various temporal, frequency-domain, and non-linear features were used for analysing the
EEG signals and in total two sets of features were tested (10 features for three or nine central
channels and four frequency bands). The combination of a novel design protocol (which
has shown its robustness in a recent study [25]) and machine learning approaches was used
in the current study. The study aimed to determine whether machine learning approaches
could accurately classify the three states based on the features extracted from EEG data, in
addition to determining which features best represent different states of immersion.

2. Materials and Methods
2.1. Overall Experimental Procedure

A total of 14 right-handed individuals (7 male, 6 female, 1 preferred not to say)
between the ages of 18 and 35 participated in this study. The dominance of the right hand
was determined by a score of above 40 in the Edinburgh handedness inventory [37]. The
study exclusion criteria required all participants not to have any neurological conditions
(such as epilepsy, multiple sclerosis, skull fracture or serious head injury, attention deficit
hyperactivity disorder, etc.), and not to have recurrent or chronic neck pain, and not to
take any tricyclic antidepressants, neuroleptic or antipsychotic medications, or recreational
drugs, as they can alter EEG suitability. Furthermore, to avoid hearing and severe visual
conditions as well as motion sickness, which could compromise the results, the participants
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were asked if they had hearing problems, stereo blindness, or had reported previous VR-
induced motion sickness; participants reporting any of these were excluded from the study.
This study was approved by the research ethics board of the University of Ontario Institute
of Technology (Ontario Tech University) (REB #17351).

Prior to the main study, we conducted various preliminary studies [1–3,23,26] and
developed a protocol [25] to investigate the feasibility of the chosen task for discriminating
between low and high levels of immersion. A VR jigsaw puzzle was selected for the
study because it enables potential confounding variables, not related to immersion, to be
minimized. This is described in greater detail below (Section 2.2).

The main study started with a calibration stage in which participants sat on a chair
and wore both the EEG cap and the Meta Quest Pro VR headset. The calibration focused on
collecting a ‘baseline’ data set with the participants watching a 360◦ pre-recorded video of
the real study room while remaining idle for two 6 min blocks. After completing the baseline
collection, the participants played through the jigsaw puzzles for four 6 min blocks of easy,
hard, hard, and easy levels. The overall experimental protocol is depicted in Figure 1. The
participants were instructed to use controllers to select, pick, reorient, and place pieces.
The participants were allowed to interact with the game through a familiarization block
with the objective of reducing the cognitive load that would be required when familiarizing
with the controllers while solving the puzzle at the same time. A short 2 min break was
anticipated in which the headset (and not the EEG cap) was removed, enforced to avoid
exhaustion from wearing the headset, which weighs 722 g.
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Figure 1. Overall experimental protocol.

The ‘Jigsaw Puzzle VR’ (available through https://www.meta.com/experiences/50
80756015327836/?utm_source=altlabvr.com (accessed on 9 July 2023)) game was chosen
because it provided the closest experience to solving a puzzle in real life. This game
allows users to use the controllers to move and put together the pieces (Figure 2). In
this case, difficulty refers to how complex it is to complete the puzzle according to the
number of pieces and the time required to complete the puzzle [25]. Two levels of dif-
ficulty were chosen: one with 24 pieces, set as easy difficulty; and a 60-piece puzzle
selected for the hard difficulty. Each component of this procedure is defined in detail in the
following subsections.
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2.2. Choice of the Experimental Task

Our proposed protocol employing a jigsaw puzzle provides a suitable testbed with
the following highlights:

• The similarity between the easy and hard levels in terms of interactions highlights
that the main difference between the difficulty levels is only related to the cognitive
demand. The scenes for the easy and hard puzzles were chosen from very similar
natural and ‘unfamous’ landscapes, similar in color and pattern, so that the participants
were not stimulated by possible memories, emotions, and thoughts induced by other
types of pictures. The images used for different blocks of playing the jigsaw puzzle
are presented in Figure 3.

• The number of pieces for the puzzles was adjusted in our pilot studies to ensure
that the easy and hard puzzles could be completed within the allocated study time.
Furthermore, ensuring that the puzzle can be completed minimizes the risk of partici-
pants feeling demotivated, according to the motivational intensity model (MIM) [38].
Therefore, during the pilot phase of the study, several permutations of duration and
number of pieces were tested to find the optimum combination [25]. We came up
with the final number of pieces for easy and hard levels through multiple rounds of
piloting in which different skilled and unskilled participants played the game with
different number of pieces, puzzle scenes, and lengths. We tested durations as short as
3 min and as long as 12 min, together with the number of pieces as low as 20 pieces
and as high as 96 pieces. Most participants could complete two easy puzzles (each
with 24 pieces) or one hard puzzle (with 60 pieces) in the two 6 min blocks allocated to
each condition.

Brain Sci. 2024, 14, x FOR PEER REVIEW 5 of 19 
 

   
(a) (b) (c) 

Figure 2. ‘Jigsaw Puzzle VR’ game interactions: (a) Picking up puzzle pieces by pointing and 
selecting them using the trigger buĴon; (b) rotating the puzzle piece with the thumb sticks; (c) the 
pieces are joined together when matched. 

2.2. Choice of the Experimental Task 
Our proposed protocol employing a jigsaw puzzle provides a suitable testbed with 

the following highlights: 
 The similarity between the easy and hard levels in terms of interactions highlights 

that the main difference between the difficulty levels is only related to the cognitive 
demand. The scenes for the easy and hard puzzles were chosen from very similar 
natural and ‘unfamous’ landscapes, similar in color and paĴern, so that the 
participants were not stimulated by possible memories, emotions, and thoughts 
induced by other types of pictures. The images used for different blocks of playing 
the jigsaw puzzle are presented in Figure 3. 

 The number of pieces for the puzzles was adjusted in our pilot studies to ensure that 
the easy and hard puzzles could be completed within the allocated study time. 
Furthermore, ensuring that the puzzle can be completed minimizes the risk of 
participants feeling demotivated, according to the motivational intensity model 
(MIM) [38]. Therefore, during the pilot phase of the study, several permutations of 
duration and number of pieces were tested to find the optimum combination [25]. 
We came up with the final number of pieces for easy and hard levels through multiple 
rounds of piloting in which different skilled and unskilled participants played the 
game with different number of pieces, puzzle scenes, and lengths. We tested 
durations as short as 3 min and as long as 12 min, together with the number of pieces 
as low as 20 pieces and as high as 96 pieces. Most participants could complete two 
easy puzzles (each with 24 pieces) or one hard puzzle (with 60 pieces) in the two 6 
min blocks allocated to each condition. 

 

 

(a) (b) 

Figure 3. Photos of similar landscapes used for 2 difficulty levels of the jigsaw puzzle game:
(a) used for the easy level and (b) used for the hard level. To have control over the difficulty
level of the puzzles, the photos were chosen to resemble the same color distribution and scenery, so
that the only difference between the levels was the number of the pieces chosen for each level of diffi-
culty. (photo sources: ((a)—top) image from wallpapers.com, “Beautiful Scenery Trees Wallpaper”,
accessed on 13 October 2023, © 2023 wallpapers.com; ((a)—bottom) Peakpx, “Shenandoah National
Park”, accessed on 13 October 2023, © 2023 peakpx.com; (b) Peakpx, “view nature, bonito, flowers”,
accessed on 13 October 2023, © 2023 peakpx.com).

2.3. Choice of Rest State (Baseline Collection)

During baseline data collection, the participant wears the VR HMD on top of the
EEG cap. Additionally, the headset is powered during the baseline collection to have all
possible confounding parameters caused by wearing the HMD exactly consistent between
the easy and hard difficulties. Acknowledging that visual cues can influence cognitive
load, we explored using a 180◦ version of the fixation cross (e.g., reticle) [39] in VR, and
playing a 360◦ video of the same environment where the visual stimuli matched the same

wallpapers.com
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environment in which the participant was currently in. The 360◦ video was chosen over the
fixation cross, since participants found that the latter was boring and monotonous, creating
mental distractions that could impact the EEG [25].

2.4. EEG Recording

The EEG signals were recorded using a WaveguardTM 64-electrode EEG cap (manufac-
tured by ANT Neuro, Hengelo, The Netherlands), following the 10–20 electrode placement
system [40] (as shown in Figure 2). We used a TMSi REFA-8 amplifier (TMSi, Oldenzaal,
The Netherlands) for EEG recording. Throughout the EEG recording, we ensured that
electrode impedances remained below 10 kΩ. The EEG data were collected using Advanced
Source Analysis Lab™ (ANT Neuro, Hengelo, The Netherlands) at a sampling frequency
of 2048 Hz. In this study, features were extracted from the EEG data recorded from the
three midline frontal, central, and parietal electrodes (lines 3, 4, and z shown in Figure 4).
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2.5. EEG Signals Pre-Processing

The EEG data were pre-processed offline using ASA 4.10.1 and later using Python in
Google Collaboratory, through which the artifacts from muscle activity and/or blinking
were removed. Eyeblinks were removed through the artifact removal feature of ASA. A
bandpass filter of low cut-off frequency of 0.1 Hz and high cut-off frequency of 30 Hz with
a steepness slope of 24 dB/octave was used to remove the amplifier, environment, and
connection noise. Artifacts with amplitude outside the region of [−100, 100] µv were also
removed. Later, the EMG artifacts were removed from the signal through independent
component analysis (ICA) in Python. In this study, interpolation was never required to
substitute signals from a noisy channel.

2.6. General Machine Learning Pipeline

All EEG signals were segmented into 4 s windows. This was performed so that in
future analyses the data could be grouped to see if the level of immersion changed over
time. Then, all windows are grouped and labeled according to the level of immersion for
which they were recorded (i.e., three states of baseline, easy, and hard). The temporal,
frequency-domain, and non-linear features were then extracted from each 4 s EEG win-
dow. According to previous work related to the use of ERPs to identify different levels
of immersion during VR tasks, midline channels (Fz, Cz, and Pz) can provide relevant
information about immersion levels [1–3,23]. In this sense, two global groups of features
were generated; the first were features only extracted from the midline channels and the
second were features extracted from the midline and adjacent channels (F3, F4, C3, C4,
P3, P4). The reason for choosing the first group of features is for consistency with what
has been previously reported in the literature [3,26]. Subsequently, feature selection was
performed through two methods: one using the maximum relevance minimum redundancy



Brain Sci. 2024, 14, 470 7 of 19

(MRMR) method, and the other using the combination of MRMR with a statistical test of
independence (Mann–Whitney U test). Afterwards, eight machine learning classifications
were performed using different feature sets, with the first through fourth classifications
using the features of the midline channels as input. The fifth through eighth classifications
used the midline and adjacent channels’ features as input. The first, second, fifth, and sixth
classifications differentiated the easy from hard VR states. The third, fourth, seventh, and
eighth differentiated the baseline state from the difficulty. Finally, the related biomarkers
were identified through EEG characterization of the best two classifiers to identify the
differences between the baseline and VR states. The detailed pipeline of the data analysis
and machine learning process is depicted in Figure 5.
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2.7. Introducing the Primary Features

The features used in this study were selected primarily based on previous work that
showed success in defining optimal features for ML-based approaches for the classification
of EEG data for other applications [41,42]. Table 1 shows the different features that were
used in this study. In total, these 10 features were used for a group of 3 and 9 channels of
EEG filtered into 4 frequency bands (delta (0.2–4 Hz), theta (4–8 Hz), alpha (8–12 Hz) and
beta (12–30 Hz)), resulting in the final counts of 120 and 360 for channel-band-feature trios.

Table 1. Features used in this study.

Type of Feature Features

Temporal
Activity (variance) [43]

Mobility [43]
Complexity [43]

Frequency-domain Power spectral density (PSD)

Entropy Permutation
Spectral Entropy

Non-linear
Higuchi’s fractal dimension [44]

Hurst’s exponent [45]

Statistical
Kurtosis

Skewness
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2.8. Methods for Feature Selection

As mentioned earlier, two techniques were used for feature selection: MRMR and
MRMR combined with the Mann–Witney U statistical test [46]. For the second technique,
the Mann–Whitney U test was applied to the MRMR results to select the features that
showed the greatest statistical difference. The MRMR approach evaluates the significance
of each feature by considering two key relationships: the F statistic between each feature
and the target variable or label, and the Pearson correlation between each feature and
the remaining features in the data set. Consequently, a higher score indicates a greater
relevance of a feature [47]. In contrast to principal component analysis (PCA), which
produces principal components that are linear combinations of all original features, and
linear discriminant analysis (LDA), which focuses on maximizing separability between
classes based on the projection of the data on a new orthogonal basis and does not directly
consider the class labels or target variable, MRMR selects a subset of original features that
are directly interpretable. This can be advantageous in situations such as this study, where
interpretation and understanding of the selected features (and not their combinations or
projections) in relation to the problem under study are the main focus [48].

2.9. Classification Methods and EEG Characterization

The following classification methods were implemented and used: SGD, SVC, DT,
GNB, KNN, RF, and MLP. A heuristic method was then applied to find the training
hyperparameters of the models. A total of 80% of the data were used for training, and
the remaining data were used to test the models. Following the classification, the channel-
band-feature trios that provide the most relevant information through specific features for
identifying the level of immersion are recognized and introduced as relevant markers. In
this study, we evaluate the performance of the classifiers based on the accuracy percentage
metric (defined as the proportion of the number of correct predictions in all predictions [49]).
The parameters used for running the classification methods are summarized in Table A1 in
the Appendix A to this paper.

3. Results

Two groups of features were generated: 120 features extracted from the midline
channels and 360 features extracted from the midline and adjacent channels. The best
classifier method was random forest, which obtained accuracies above 85%. With respect
to the features, the most relevant channels were Fz, Cz, Pz, F3, P3, C3, F4, P4, and C4.

Tables 2–5 show the accuracy of the tested model for each classification performed
during this approach. In Tables 2 and 4, we are using a total of 120 features (3 chan-
nels, 4 frequency bands, 10 basic features), and in Tables 3 and 5, we are using a total of
360 features (9 channels, 4 frequency bands, 10 basic features). Tables 2 and 3 show the accu-
racy percentages for classification between the easy and hard states, while Tables 4 and 5 show
the accuracy percentages for classification of baseline vs. VR state (easy and hard together).
In all tables, the second column lists the accuracy percentages for the most relevant and
statistically significant features obtained from the MRMR method and Mann–Whitney test,
respectively, and the third column shows the accuracy percentages of the classifiers for the
most relevant features resulting from only the MRMR.

All classifications were performed using different sets of data (batches) to train and test
the model: all features; 10% of the total features using the MRMR method; and the features
selected using the MRMR complemented by the Mann–Whitney U test. The batches for
the classifications which used the midline channels’ features as input were 120 features,
12 most relevant features (according to MRMR relevance score), and 6 most relevant features
(MRMR + Mann–Whitney). On the other hand, the batches for the classifications that used
the features of the midline and adjacent channels were 360 features, 36 most relevant
features (according to MRMR relevance score), and 20 most relevant features (MRMR +
Mann–Whitney).
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Table 2. Percentage accuracy for each classifier using the midline channels’ features as inputs
differentiating the easy and hard puzzles as classes.

Percentage of Classification Accuracy (Easy vs. Hard) 3 Channels

Classifier 6 Best Features 12 Features All Features

SGD (stochastic gradient descent) 59.47 57.23 63.14
SVC (support vector classifier) 57.84 58.04 69.86

DT (decision tree) 59.27 54.79 67.01
GNB (Gaussian naive Bayes) 56.82 54.79 52.75
KNN (k-nearest neighbors) 59.27 59.06 71.69

RF (random forest) 61.30 59.06 76.37
MLP (multilayer perceptron) 59.47 60.90 73.93

Table 3. Percentage of accuracy for each classifier using the midline and adjacent channels’ features
as input differentiating the easy and hard puzzles as classes.

Percentage of Classification Accuracy (Easy vs. Hard) 9 Channels

Classifier 20 Features 36 Features All Features

SGD 58.83 59.02 71.62
SVC 70.86 73.68 84.21
DT 66.73 70.11 75.19

GNB 55.08 56.20 53.76
KNN 72.74 75.75 86.09

RF 71.24 79.70 86.65
MLP 76.50 80.26 86.09

Table 4. Percentage accuracy for each classifier using the midline channels’ features as inputs
differentiating the baseline and VR (easy and hard together) as classes.

Percentage of Classification Accuracy (Baseline vs. VR) 3 Channels

Classifier 6 Features 12 Features All Features

SGD 70.38 73.51 83.70
SVC 74.18 76.09 89.67
DT 73.10 72.83 81.93

GNB 67.93 68.07 75.68
KNN 74.32 75.95 87.91

RF 75.41 78.26 89.81
MLP 75.27 77.31 91.98

Table 5. Percentage accuracy for each classifier using the midline and adjacent channels’ features as
inputs differentiating the baseline and VR (easy and hard together) as classes.

Percentage of Classification Accuracy (Baseline vs. VR) 9 Channels

Classifier 20 Features 36 Features All Features

SGD 85.84 87.09 93.23
SVC 86.72 88.85 96.12
DT 82.46 85.71 89.85

GNB 83.46 83.58 81.45
KNN 86.09 87.72 97.37

RF 86.34 87.22 96.87
MLP 86.22 88.35 96.49

In general, the performance of most classifiers when all features of the batch are used
as input is promising. However, when the batch contains fewer features, the performance
is observed to drop, as expected. This implies that by decreasing the number of features
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below 5%, this trend would continue, and there would be no point in performing any
analysis based on the features used if the performance of the classifiers does not even
exceed 75% accuracy percentage. This trend is also shown in Table 6, where the accuracy of
classifiers is being reported using the best 36 features (chosen by MRMR only) and the best
5, 10, or 20 features (chosen by MRMR and Mann–Whitney together). Figure 6 shows the
relevance score for the best 20 features (with the highest relevance) after applying MRMR,
and Table 7 presents the p-value of these 20 most relevant features resulting after applying
MRMR + Mann–Whitney for the fourth set of features (extracted from the midline and
adjacent channels and used to classify the baseline and VR states). To better understand
the association of the best features with different brain regions, Figure 7 depicts the mean
of the z-normalized values of the most relevant features in different electrodes.

Table 6. Percentage accuracy for each classifier that uses the features of the midline and adjacent
channels as inputs differentiating the baseline and VR (easy and hard together) as classes.

Percentage of Classification Accuracy (Baseline vs. VR) 9 Channels

Classifier 5 Features 10 Features 20 Features 36 Features All Features

SGD 84.09 85.34 85.84 87.09 93.23
SVC 84.09 86.22 86.72 88.85 96.12
DT 82.46 84.84 82.46 85.71 89.85

GNB 82.08 83.58 83.46 83.58 81.45
KNN 82.21 85.71 86.09 87.72 97.37

RF 83.21 85.84 86.34 87.22 96.87
MLP 84.96 86.22 86.22 88.35 96.49
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Based on this preliminary analysis, the EEG signal characterization and identification
of possible biomarkers was accomplished using the approach that classified the baseline
and VR states (easy and hard), using the features of the EEG signals of the midline and
adjacent channels as input parameters.
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Table 7. p-value for the most relevant features based on MRMR results (Figure 6) used to obtain
percentage of accuracy for baseline vs. VR in 9 channels (to obtain results in the third column of
Table 6).

Feature Name p-Value Feature Name p-Value

P4 Beta kurtosis 7.37 × 10−200 Cz Theta psd 9.82 × 10−148

Cz Theta mobility 3.31 × 10−188 Cz Beta permutation entropy 2.06 × 10−146

F3 Beta skewness 1.21 × 10−185 F4 Beta spectral entropy 6.07 × 10−144

F3 Alpha permutation entropy 1.91 × 10−179 Fz Delta mobility 1.14 × 10−140

F4 Beta hurst 9.89 × 10−172 F4 Alpha hurst 3.00 × 10−140

Pz Alpha kurtosis 1.02 × 10−165 Pz Beta activity 3.43 × 10−137

C4 Theta permutation entropy 2.86 × 10−164 Pz Alpha activity 2.33 × 10−128

P4 Beta activity 1.24 × 10−161 Fz Delta spectral entropy 6.89 × 10−131

Fz Alpha hurst 4.15 × 10−157 Pz Beta hurst 3.10 × 10−126

Cz Beta higuchi 3.52 × 10−156 F4 Beta complexity 5.28 × 10−125
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4. Discussion
4.1. Biomarkers of Immersion in VR

To the best of our knowledge, this study is the first to use machine learning methods
to classify features computed from EEG signals extracted during the performance of VR
tasks. This approach was able to differentiate EEG during two levels of puzzle difficulty
(easy or hard), and to differentiate the baseline state from the VR states (easy and hard
together), obtaining accuracy scores above 86% and 97%, respectively.

It is important to note that the classification performance was better when more
information was available (Tables 3 and 5), which indicates that the percentage of accuracy
presented here could be increased by adding more EEG channels adjacent to the midline.
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In addition, feature selection methods prove to be of great importance when generating
more efficient classifiers without largely affecting their performance, and to perform more
specific analyses on the features that provide relevant information, thus enabling the
characterization of the signals under study. In this case, the combination of MRMR and the
Mann–Whitney U test [50] proved to be of great help in selecting not only the most relevant
features but also those that showed statistical difference between the classes (Table 7).
For this reason, the order of the relevant features shown in Figure 6 is not the same as
that shown in Table 7. This allowed us to obtain classifiers that still reflect promising
performance using less than 5% of the total features as input (Table 6). Thus, the need for a
smaller number of features implies an increase in computational efficiency when training
and testing artificial intelligence models. This may prove valuable in future studies or
applications that require real-time processing.

Comparing the results from Tables 2–5 shows that while the accuracy percentage of
86% is obtained using only 10 features for classification between the baseline and VR states,
such accuracy rates are obtainable only using all possible features (i.e., 360 features from all
nine studied channels) for differentiating the easy and hard states, which makes a specific
analysis difficult given the nature of the results obtained for this particular case. So, as a
first contribution we propose possible biomarkers to differentiate between a baseline (idle)
state and states related to the VR-based task (easy and hard), which is a first step towards
obtaining reliable biomarkers to measure immersion.

Table 6 shows that when using the best 10 features (the first 10 features of Table 7
with the best p-values), five of the seven classifiers used achieved accuracy percentages
higher than 85%. In the case of this particular approach, the best classifiers were SVC, RF,
and MLP, with MLP being the most accurate. This may represent an opportunity for deep
learning models to be included in the future to meet the same objective. Table 7 presents
the most relevant final features, i.e., the features recorded in this table were the ones used to
obtain the results shown in Table 6. Consequently, Figure 6 and Table 7 allow us to propose
the following biomarkers to differentiate the level of immersion between a baseline state
and a VR task state in a virtual reality environment: the kurtosis of the P4 and Pz channels
in the beta and alpha frequency ranges, respectively, the mobility in the Cz channel in theta
band, the skewness for F3 in beta band, the permutation entropy in F3 and C4 in the alpha
and theta bands, respectively, the value of the Hurst exponent for F4 and Fz in beta and
alpha bands, respectively, the activity in P4 in beta band, and finally, the Higuchi exponent
value for Cz in beta band.

4.2. Association of Biomarkers of Immersion in VR and Neurophysiological Findings

A correlation between attention allocation and engagement level of immersion has
been found in previous work [51]. Given the association between frontal cortex and atten-
tional control [52], the sensitivity of features corresponding to the three frontal electrodes
in the current study to the sense of immersion is unsurprising (F3 Beta skewness, F3 Alpha
permutation entropy, F4 Beta hurst, and Fz Alpha hurst). This association has also been
studied in the context of using auditory ERPs to investigate immersion in VR [3]. More
specifically, there is a strong correlation between dorsolateral prefrontal cortex activity and
planning [53], which is one of the cognitive skills involved in solving a jigsaw puzzle. The
right and left prefrontal regions are associated with different functions [54,55]. While the
right prefrontal cortex is more involved in strategic construction of plans, the left prefrontal
cortex is more engaged in supervising the execution of the plans and control processes [53].
Fz activity has also been found to be related to the difficulty level of the task in VR [1].

This is supported by the frontal-related biomarkers of immersion found in our study
(F3 Beta skewness, F3 Alpha permutation entropy, and F4 Beta hurst). As seen in Figure 7,
the mean z-normalized permutation entropy of the EEG signals from the F3 channel in the
beta band is relatively higher than other channels as well as the same channel in the baseline
state. Permutation entropy quantifies the amount of uncertainty and unpredictability in
an EEG signal [56]. Therefore, the higher permutation entropy in the F3 channel suggests
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that the neural activities of the left prefrontal cortex were forced to change as a result
of cognitive demands related to the execution of plans to solve the puzzle. Moreover,
having a relatively higher mean skewness of F3 EEG signals in the beta band (as seen in
Figure 7) may be indicative of changes in the amplitude of the signals related to execution of
plans. Mathematically, a highly skewed distribution may indicate the presence of outliers
or rare events [57]. In contrast, Figure 7 also shows that the Hurst exponent for EEG
signals recorded at F4 is relatively larger than that of the other electrodes and for the same
electrode in baseline state. A greater Hurst exponent suggests more pronounced long-term
correlations or persistence, where the signal tends to exhibit trends or patterns that persist
over time [45]. This may be related to the association of the right prefrontal cortex with
the strategic planning necessary to integrate and maintain information while solving the
puzzle [54].

On the other hand, the superior parietal region has been associated with the visu-
ospatial and visuomotor functions [58,59]. While some studies suggest that visuospatial
functions should not be considered as primarily right-lateralized, the fact that the right
superior parietal lobe is also involved in attention processes [53,60] might be the reason
why two features related to P4 and one related to Pz appeared in the final best features,
rather than a feature related to P3. The relatively higher kurtosis of EEG signals for P4 in
Figure 7, compared to other electrodes, likely reflects the difference in complexity of neural
dynamics underlying cognitive processes in this electrode in comparison to other ones [61].

5. Limitations

This is a proof-of-concept study that suggests that EEG combined with machine
learning approaches may have the potential to create a real-time measure of immersion.
We attempted to make the puzzle versions as similar as possible so that factors such as
effort, motivation, engagement, mental exertion, cognitive demand, and interest would be
similar for both puzzles; however, it is possible that these factors did vary between puzzle
versions, and thus, impacted the results of the machine learning approaches.

6. Conclusions

To the best of our knowledge, this study is the first to introduce a machine-learning-
based approach to identify markers of virtual reality immersion in EEG signals. Subjective
methods of studying immersion in virtual reality do not always provide reliable results and
cannot be administered in real time, while objective methods such as auditory event-related
potentials have provided heterogeneous and, in some cases, contradictory results. The
machine learning method used in the current study shows promising results in the test bed
of a protocol that attributes immersion to the difficulty level of the task in virtual reality.

The ML approach was able to classify the EEG data collected during three different
states (idle, easy, and hard) with accuracy rates of 86% and 97% for differentiating easy vs.
hard difficulty states and baseline vs. VR states. Utilizing more EEG channels and features
is recommended for future work in order to propose relevant biomarkers to differentiate
between high and low immersion levels related to the difficulty of the VR task and cognitive
load of a VR training. Similarly, in the future, we plan to include deep learning models in
order to compare their performance with the classical machine learning models used in
this paper.

Author Contributions: This work was completed in the Human Neurophysiology and Rehabilitation
Laboratories at Ontario Tech University. All persons who meet authorship criteria are listed as
authors, and all authors certify that they have participated sufficiently in the work to take public
responsibility for the content, including participation in the concept, design, analysis, writing, or
revision of the manuscript. The following is a breakdown of the individual contributions of each
author. Conceptualization, H.T., M.S.R.C., A.J.U.Q. and B.A.M.; methodology, H.T., M.S.R.C., A.J.U.Q.
and B.A.M.; validation, H.T. and M.S.R.C.; formal analysis, H.T. and M.S.R.C.; investigation, H.T. and
M.S.R.C.; data curation: H.T. and M.S.R.C.; writing—original draft preparation, H.T. and M.S.R.C.;



Brain Sci. 2024, 14, 470 14 of 19

writing—review and editing, H.T., M.S.R.C., A.J.U.Q. and B.A.M.; supervision, A.J.U.Q. and B.A.M.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Sciences and Engineering Research Council of
Canada (NSERC) through NSERC Discovery Grant (BM): 2022-04777 and NSERC Discovery Grant
RGPIN-2018-05917 (AQ) as well as an Ontario Tech University Graduate Scholarship (HT).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki and approved by the Institutional Review Board (or Ethics Committee) of University of
Ontario Institute of Technology (Ontario Tech University), REB #17351.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
Written informed consent has been obtained from the participant(s) to publish this paper.

Data Availability Statement: The data sets generated during and/or analyzed during the current
study are available from the corresponding author on reasonable request.

Acknowledgments: The research team would like to acknowledge all individuals who took part in
this study, thank you for making this possible.

Conflicts of Interest: All authors certify that they have no affiliations with or involvement in any
organization or entity with any financial or non-financial interest in the subject matter or materials
discussed in this manuscript. The funders had no role in the design of the study; in the collection,
analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish
the results.

Appendix A

The following tables summarize the parameters used for running different classifiers
in this study.

Table A1. Parameters used for running classifier differentiating the easy and hard puzzle as classes
(3 channels).

Classification Parameters—(Easy vs. Hard) 3 Channels

Classifier 6 Best Features 12 Features All Features

SGD

alpha = 0.01 loss = log loss = huber
loss = squared_error max_iter = 10 max_iter = 100
max_iter = 100 penalty = elasticnet penalty = elasticnet
tol = 0.0001 tol = 10 tol = 0.0001

SVC
C = 100 C = 1 C = 1
kernel = linear kernel = linear kernel = poly
tol = 0.01 tol = 0.01 tol = 0.01

DT
ccp_alpha = 0.001 ccp_alpha = 0.001

ccp_alpha = 0.001
max_features = auto

criterion = entropy criterion = entropy
max_features = auto max_features = auto

GNB var_smoothing = 1 var_smoothing = 0.01 var_smoothing = 1

KNN
leaf_size = 10 leaf_size = 10 leaf_size = 10
metric = euclidean metric = cityblock metric = euclidean
weights = distance n_neighbors = 7 n_neighbors = 17

RF
max_depth = 10

max_depth = 5
max_features = auto

max_depth = 10
max_features = auto max_features = auto
n_estimators = 500 n_estimators = 500
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Table A1. Cont.

Classification Parameters—(Easy vs. Hard) 3 Channels

Classifier 6 Best Features 12 Features All Features

MLP

activation = tanh alpha = 0.001 activation = logistic
alpha = 0.001 hidden_layer_sizes = 500 alpha = 0.001
hidden_layer_sizes = 500 max_iter = 5000 hidden_layer_sizes = 500
max_iter = 5000 solver = sgd max_iter = 5000

Table A2. Parameters used for running classifier differentiating the easy and hard puzzle as classes
(9 channels).

Classification Parameters—(Easy vs. Hard) 9 Channels

Classifier 20 Best Features 36 Features All Features

SGD

alpha = 0.01 alpha = 0.01
loss = modified_huber
penalty = l1
tol = 0.0001

loss = perceptron loss = modified_huber
max_iter = 10 max_iter = 100
penalty = elasticnet penalty = l1
tol = 0.0001 tol = 0.01

SVC
C = 100 C = 100 C = 100
kernel = poly kernel = linear kernel = poly
tol = 0.01 tol = 0.01 tol = 0.01

DT
ccp_alpha = 0.0001 ccp_alpha = 0.001

ccp_alpha = 0.001
max_features = auto

criterion = entropy criterion = entropy
max_features = auto max_features = auto

GNB var_smoothing = 1 var_smoothing = 0.1 var_smoothing = 0.01

KNN

leaf_size = 10 leaf_size = 10
metric = cityblock
n_neighbors = 13

leaf_size = 10
metric = cityblock metric = cityblock
n_neighbors = 7 n_neighbors = 7
weights = distance weights = distance

RF
max_depth = 10 max_depth = 10 max_depth = 10
max_features = auto max_features = auto max_features = auto
n_estimators = 500 n_estimators = 200 n_estimators = 1000

MLP

activation = tanh alpha = 0.001 activation = logistic
alpha = 0.001 hidden_layer_sizes = 500 alpha = 0.001
hidden_layer_sizes = 500 max_iter = 5000 hidden_layer_sizes = 500
max_iter = 5000 solver = sgd max_iter = 5000

Table A3. Parameters used for running classifier differentiating the Baseline and difficulty (easy and
hard) as classes (3 channels).

Classification Parameters—(Baseline vs. VR) 3 Channels

Classifier 6 Best Features 12 Features All Features

SGD

alpha = 0.01 alpha = 0.01
loss = log
max_iter = 100
penalty = elasticnet
tol = 0.0001

alpha = 0.01
penalty = elasticnet
max_iter = 100

loss = squared_error
max_iter = 10
tol = 0.0001

SVC
C = 10 C = 1 C = 100
kernel = linear kernel = linear kernel = linear
tol = 0.01 tol = 0.01 tol = 0.01
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Table A3. Cont.

Classification Parameters—(Baseline vs. VR) 3 Channels

Classifier 6 Best Features 12 Features All Features

DT
ccp_alpha = 0.001 ccp_alpha = 0.001

max_features = auto
splitter = random

ccp_alpha = 0.001
criterion = entropy
max_features = automax_features = auto

GNB var_smoothing = 1 var_smoothing = 1 var_smoothing = 10

KNN
leaf_size = 10 leaf_size = 10 leaf_size = 10
metric = cityblock metric = cityblock metric = cityblock
n_neighbors = 25 n_neighbors = 27 n_neighbors = 7

RF
max_depth = 7 criterion = entropy

max_depth = 10
max_features = auto
n_estimators = 10

max_depth = 10
max_features = auto max_features = auto
n_estimators = 1000 n_estimators = 50

MLP
alpha = 0.001 alpha = 0.001

hidden_layer_sizes = 500
max_iter = 5000
solver = sgd

activation = logistic
alpha = 0.001
hidden_layer_sizes = 500
max_iter = 5000

hidden_layer_sizes = 200
max_iter = 5000

Table A4. Parameters used for running classifier differentiating the baseline and difficulty (easy and
hard) as classes (9 channels).

Classification Parameters—(Baseline vs. VR) 9 Channels

Classifier 5 Best Features 10 Best Features 20 Best Features 36 Features All Features

SGD max_iter = 100
tol = 0.0001

alpha = 0.01
max_iter = 100
penalty = l1

alpha = 0.01
loss = epsilon_insensitive
max_iter = 10
penalty = elasticnet
tol = 0.0001

alpha = 0.01
max_iter = 10
penalty = elasticnet
tol = 0.01

alpha = 0.01
max_iter = 100
tol = 0.0001

SVC
C = 100
kernel = linear
tol = 0.01

C = 100
kernel = linear
tol = 0.01

C = 10
kernel = linear
tol = 0.01

C = 10
kernel = linear
tol = 0.01

C = 10
kernel = linear
tol = 0.01

DT

ccp_alpha = 0.01
criterion = entropy
max_features = auto
splitter = random

ccp_alpha = 0.001
max_features = auto

ccp_alpha = 0.01
criterion = entropy
max_features = auto
splitter = random

ccp_alpha = 0.001
max_features = auto

ccp_alpha = 0.001
max_features = auto

GNB var_smoothing = 1 var_smoothing = 1 var_smoothing = 1 var_smoothing = 0.1 var_smoothing = 10

KNN
leaf_size = 10
metric = euclidean
n_neighbors = 11

leaf_size = 10
metric = euclidean
n_neighbors = 17
weights = distance

leaf_size = 10
metric = euclidean
n_neighbors = 11

leaf_size = 10
metric = euclidean
n_neighbors = 17

leaf_size = 10
metric = cityblock

RF

criterion = entropy
max_depth = 5
max_features = auto
n_estimators = 50

max_depth = 10
max_features = auto
n_estimators = 1000

criterion = entropy
max_depth = 10
max_features = auto
n_estimators = 50

criterion = entropy
max_depth = 10
max_features = auto
n_estimators = 10

criterion = entropy
max_depth = 10
max_features = auto
n_estimators = 1000

MLP
alpha = 0.001
hidden_layer_sizes = 200
max_iter = 5000

alpha = 0.001
hidden_layer_sizes = 500
max_iter = 5000
solver = sgd

activation = logistic
alpha = 0.001
hidden_layer_sizes = 500
max_iter = 5000
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