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Abstract: The generation of images from electroencephalography (EEG) signals has become a popular
research topic in recent research because it can bridge the gap between brain signals and visual
stimuli and has wide application prospects in neuroscience and computer vision. However, due
to the high complexity of EEG signals, the reconstruction of visual stimuli through EEG signals
continues to pose a challenge. In this work, we propose an EEG-ConDiffusion framework that
involves three stages: feature extraction, fine-tuning of the pretrained model, and image generation.
In the EEG-ConDiffusion framework, classification features of EEG signals are first obtained through
the feature extraction block. Then, the classification features are taken as conditions to fine-tune
the stable diffusion model in the image generation block to generate images with corresponding
semantics. This framework combines EEG classification and image generation means to enhance
the quality of generated images. Our proposed framework was tested on an EEG-based visual
classification dataset. The performance of our framework is measured by classification accuracy,
50-way top-k accuracy, and inception score. The results indicate that the proposed EEG-Condiffusion
framework can extract effective classification features and generate high-quality images from EEG
signals to realize EEG-to-image conversion.

Keywords: electroencephalography; brain–computer interface; image generation; stable diffusion;
convolutional neural network

1. Introduction

Decoding the correlation between brain signals and human visual perception has
grown to be a research focus. It can promote the progress of cognitive neuroscience and
expand the application of brain signals. One of the most popular methods is to reconstruct
images from brain signals [1–3].

Brain signals can be obtained through both invasive and noninvasive methods. Nonin-
vasive methods have attracted much attention because of their advantages of high security,
high acceptance by users, and wide application [4]. The electroencephalogram (EEG) is
an important non-invasive brain signal, as well as functional magnetic resonance imaging
(fMRI) [5]. In recent years, owing to the consistency of the structure of fMRI and image data
as visual stimuli, many scholars have attempted to reconstruct images from fMRI [6–10].
However, owing to the large size of the fMRI equipment and the high level of professional
skills needed, its application scope is limited. On the other hand, EEG equipment that can
record signals wirelessly, is more portable, and is easier to operate, which reduces the cost
and difficulty of signal collection [11]. In addition, research in [12] has shown that brain
signals recorded by EEG can be used to decode visual stimuli. Therefore, methods that
can efficiently extract EEG features and reconstruct high-quality images urgently need to
be studied.

Currently, deep learning methods are broadly adopted in EEG decoding. Recurrent
neural networks (RNNs) and convolutional neural networks (CNNs) are two established
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deep learning structures. They not only can be trained end-to-end but can also be easily
combined with popular large artificial intelligence models, expanding the scope of EEG
applications. Spampinato et al. [12] recorded the EEG dataset of six subjects while watching
40 classes of images from the ImageNet dataset [13]. The long short-term memory (LSTM)
model [14] was employed to recognize the EEG signals. However, LSTM can usually
only process information in a single dimension, making it tough to understand the spatio–
temporal semantic information of EEG signals in detail. Palazzo et al. [1] processed EEG
information of different dimensions by designing time blocks and space blocks in layers
and verified the performance on the dataset [12]. Lawhern et al. combined the ideas of
CNNs and FBCSP [15] to propose a compact CNN structure called EEGNet [16]. EEGNet
can extract features of different dimensions simultaneously through two-step convolution.
In addition, good decoding accuracy has been achieved on the EEG signals of various
paradigms, indicating that the EEGNet has good robustness and generalizability.

EEG image generation methods have developed rapidly in recent years. The most
mainstream methods include generative adversarial networks (GANs) [17] together with
variational autoencoders (VAEs) [18]. Diffusion models are new developments [19–24]. A
VAE is a generative model based on variational inference, and its data distribution and loss
function tend to produce unrealistic and fuzzy samples. Kavasidis et al. [25,26] proposed
the Brain2Image method. They used extracted EEG features as a manifold to guide the
training of a GAN, generated more realistic images, and compared the effects of VAEs and
GANs on image reconstruction from EEG signals. We commonly employ the inception
score as a metric to assess the quality of generated images. Additionally, the results of
VAE [25] and GAN [25] are 4.49 and 5.07, respectively. They found that although images
generated by the GAN were not very realistic, they were clearer than those generated
by the VAE. Zheng et al. [27] applied a combined LSTM–CNN structure to extract EEG
features and adopted an improved spectral normalization generative adversarial network
(SNGAN) [28] for image generation. Khare et al. [29] proposed a NeuroVision architecture
that utilizes EEG classification features to guide the training of progressive growth of GANs
(ProGAN) [30] to improve image generation performance. Additionally, the inception
results of SNGAN [27] and cProGAN [29] are 5.53, and 5.15, respectively. GANs generate
higher-resolution images via adversarial learning. However, the training of a GAN can be
unstable and prone to problems such as mode crashes and training oscillations. Compared
to GANs, diffusion models avoid the problem of mode collapse and can simulate more
complex data distributions. In [22], it was confirmed that diffusion models can generate
images with higher resolutions than a GAN or VAE. However, training a diffusion model
from scratch requires not only a large number of EEG–image data pairs but also significant
computational resources. Therefore, we consider finding a suitable pretraining model to
solve this problem. Recently, methods based on diffusion models have made significant
breakthroughs in text-to-image generation [31–34], achieving the conversion of different
modality signals. In addition, a latent text-to-image diffusion model was jointly developed
by Stability AI and LAION based on [24]. This process was named stable diffusion (SD).
SD has developed rapidly in the field of AI painting and generation because of its efficient
and stable generation capabilities, simple model optimization, and portability [35–37].
This has also inspired research on generating images from brain signals. Some scholars
have combined the SD model with tasks of generating images from fMRI and obtained
high-quality reconstructed images [10,38,39]. They demonstrated the feasibility of the SD
model in brain-to-image tasks.

In this work, we intend to realize the EEG-to-image task by utilizing the powerful
generative ability of a pretrained SD model. However, on the one hand, EEG signals
have low spatial resolution and a low signal-to-noise ratio, and their distribution space
is different from that of images. On the other hand, the SD model is trained based on
text–image data, and it is difficult to obtain good results when the model is directly applied
to EEG-to-image tasks. To address these challenges, we propose a comprehensive EEG-
ConDiffusion framework for generating corresponding images from EEG signals. The EEG
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signal passed through the framework first passes through a feature extraction block, which
obtains effective input features. The feature extraction block is centered on convolutional
neural networks, combining the advantages of EEGNet and residual networks. It can not
only extract features from EEG data in both temporal and spatial dimensions but also avoid
problems such as gradient explosion, overfitting, and decreased learning ability, which
arise from deep networks. Then, we perform position encoding and shape transformation
on the obtained EEG features to adapt to the input format of the SD model. Finally, we use
EEG features and image pairs to fine-tune the SD model. We integrate the EEG classification
task with the image generation task and use features with obvious semantic distinctions to
generate images. The principal contributions of our work are outlined below:

• We designed a framework called EEG-ConDiffusion for generating images from EEG
signals. It integrates the powerful feature extraction capabilities of CNNs and the
image generation capabilities of the SD model to achieve decoding from EEG signals
to images. In addition, our framework has been validated on an EEG-based visual
classification dataset [12].

• We propose a convolutional neural network for EEG feature extraction. We design
temporal convolutional layers and spatial convolutional layers separately to achieve
multi-dimensional, comprehensive extraction of EEG features. At the same time, we
introduce multiple residual blocks to improve network depth while avoiding problems
such as gradient explosion and overfitting.

• We use the features extracted through the positional encoding network to change
the size of the input features to adapt to the input of the SD model. In addition, the
distribution of the input features more closely matches the text.

• In addition, we use processed EEG features and image data to fine-tune the stable
diffusion model, making it suitable for EEG-to-image tasks. Then, the extracted EEG
features are fed into the SD model with updated training parameters to complete the
image generation task.

Section 2 introduces the main components of EEG-ConDiffusion and the correspond-
ing implementation methods. In Section 3, we tested the proposed EEG-ConDiffusion
method on a public dataset [12] and displayed the results. In Section 4, we discuss the
validation results for each stage. Additionally, we summarize the whole paper in Section 5.

2. Materials and Methods

This section presents the dataset used for experimental verification in this paper.
In addition, the various components of the proposed EEG-ConDiffusion framework are
presented and explained in detail.

2.1. The Public Dataset

We conducted performance verification on the EEG-based visual classification dataset [12].
The dataset recorded 12,000 trials of EEG data from six subjects as they viewed visual stimuli.
The dataset was recorded using 128-electrode Brainvision EEG equipment with a sampling
frequency of 1000 Hz. A total of 2000 images were used as visual stimuli, including 50 for
each of the 40 different categories in the ImageNet dataset [13]. Each image was rendered
for 0.5 s.

We adopted the same data preprocessing method as [16] and selected 20–460 ms of
EEG data. Therefore, the EEG data shape for each trial was set (1,128,440). The dataset was
divided into 70%, 15%, and 15% ratios, which were utilized for training, validation, and
testing of experiments, respectively. Furthermore, we separately filtered the signals in the
frequency ranges of 1–70 Hz and 5–95 Hz for subsequent model evaluation.

2.2. The Proposed EEG-ConDiffusion Framework

Figure 1 shows the overall structure of our proposed EEG-ConDiffusion framework.
Our EEG-ConDiffusion framework is mainly composed of three stages: feature extraction,
fine-tuning of the SD model, and image generation. EEG signals are extracted by a convo-
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lutional neural network model, which we call EEGConvNet. With the EEGConvNet model,
we can obtain highly distinguishing class features. We use the category features as the
guiding conditions of the SD model, so as to ensure the authenticity of the generated images.
The EEG features are processed as the embedding input of the SD model through a position
embedding network and a pretrained text encoder, FrozenCLIPEmbedder. We refer to
this embedding input as conditional EEG (ConEEG). ConEEG was used as a condition
to input the SD model through U-Net, and then model fine-tuning and image generation
were performed.
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2.2.1. Feature Extraction

Extracting highly discriminative semantic features from EEG signals is a key step in
realizing EEG-to-image. Hence, we designed a CNN structure called EEGConvNet for
EEG feature extraction. As shown in Figure 2, the EEGConvNet model is composed of
a temporal convolution (TC) block, two residual (Res) blocks, a spatial convolution (SC)
block, a deep convolution (DC) block, and two-branch output networks.

Inspired by EEGNet [16], we jointly use TC and SC blocks to better extract the tem-
poral and spatial information of EEG signals. For the TC block, we set the parameter
of out_channels to 32 and the stride to (1,2) in the Conv2d layer. The parameters of the
out_channels correspond to the width of the network. Increasing the stride can reduce
the amount of computation and quickly obtain important information. For the SC block,
we also increased the number of out_channels in Conv2d to 64. In the DC block, we set
the out_channels parameter to 128 and the stride parameter to (1,2). To avoid semantic
confusion and gradient explosion caused by deepening the network and to further extract
richer semantic information from the EEG, we introduce residual networks [40] in EEG-
ConvNet. Two double-layer residual blocks are inserted between the TC block, SC block,
and DC block.

In addition, the EEG features output by the DC block pass through a linear layer and a
Conv2d layer, and the squeeze function is used to reduce the dimension. Thus, the output
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EEG feature shape is processed as (77,768), which can serve as the input of the SD model.
Our EEGConvNet structure has two output branches. One to output the EEG features for
the SD model and the other to output classification results.
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represent the number of residual blocks.

When training the EEGConvNet model, the input shape size of the EEG data was
1,128,440. After passing through the TC block, the SC block, residual blocks, and the DC
block, the output shape of the EEG eigenvector is (128,1,7). Then, the EEG eigenvector
is further processed by a linear layer and a Conv2d layer with a kernel size of (1,1) to
obtain the shape output (77,1,768). Furthermore, the EEG feature vector (77,768) and
the classification vector (1,40) were output from the EEG data through two branches. In
addition, we apply operations such as BatchNorm, dropout, and average pooling in the
EEGConvNet model and use ReLU as the activation function. These layers can expand the
receptive field of the model and reduce overfitting.

2.2.2. Fine-Tuning the SD Model with EEG–Image Pairs

Diffusion models are currently one of the hottest directions in the research of artificial
intelligence-generated content (AIGC). The SD model is a text-to-image model developed
based on latent diffusion models (LDMs) proposed by Rombach et al. [24]. LDMs perform
the diffusion process on the latent space, which greatly reduces the computational complex-
ity and cost. In addition, the cross-attention method is proposed for multimodal training,
and the task of multimodal conditional generation is realized. In this paper, we input the
EEG features that passed through the feature extraction stage as a conditional input into
the cross-attention module in U-Net to guide the training of the model.

Jonathan et al. [19] were the first to provide a rigorous mathematical derivation of
diffusion models (DMs) and established a complete framework for the forward process,
reverse process, and model training. The positive diffusion propagation can be regarded as
a Markov process. Given an image x0, x0 ∈ RH×W×3, the distribution of the natural image
is defined as x0 ∽ q(x0). In the forward process, Gaussian noise is gradually added to the
input x0, resulting in multiple noisy samples x1, x2. . ., xT . The variance of the added noise
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is a fixed value βtϵ(0, 1). The mean value of the noise is determined by βt and xt. After
the T noise operation, image xT becomes a pure noise image that conforms to the standard
normal distribution. The forward process can be represented as follows:

q(x1 : xT |x0) :=
T

∏
t=1

q(xt|xt−1) (1)

The mathematical description of the conditional probability distribution of the process
is as follows:

q(xt|xt−1) := N
(

xt;
√

1 − βtxt−1, βtI
)

(2)

The reverse process is to denoise from the Gaussian noise and reconstruct the original
data, which is also a Markov process. In this process, we need to construct a parameter
distribution to make an estimate. The mean and variance of the predicted noise are
determined by the input time t and the current image xt. The process can be expressed as:

pθ(x0 : xT) := p(xT)
T

∏
t=1

pθ(xt−1|xt) (3)

The conditional probability distribution for the reverse process is expressed as follows:

pθ(xt−1|xt) := N (xt−1; µθ(xt, t), Σθ(xt, t)) (4)

During the inverse process, our goal is to denoise the pure noise image xT and recon-
struct the image that approximates the original x0. That is, the noise removed in the reverse
process is expected to approximate the noise added in the forward process. Therefore, this
process can be transformed into predicting a noise ϵθ(xt, t) to fit the noise ϵ added at time t.
Thus, the optimization of the inverse process can be simplified as follows [19]:

Lsimple
DM := Ex0,ϵ∼N (0,1),t

[
∥ ϵ − ϵθ(xt, t) ∥2

2

]
(5)

Compared with DMs, LDMs undergo the diffusion process in a lower-dimensional
latent space. As shown in Figure 1, the given real image x0 is mapped from the pixel space to
the latent space through an AutoEncoderKL ε and is represented as z = ε(x0), z ∈ Rh×w×3.
The reverse process can be simplified as the following formula [24]:

Lsimple
LDM := EE(x0),ϵ∼N (0,1),t

[
∥ ϵ − ϵθ(zt, t) ∥2

2

]
(6)

The optimization of the objective function is achieved by a time-conditional UNet. In
this paper, in addition to the time condition, we also need to introduce EEG signals as the
control condition y; that is, we also need to model the conditional distribution in the form
of p(z|y). This can be achieved by the conditional denoising autoencoder ϵθ(zt, t, y). Based
on the EEG–image pairs, we can train the model via the following formula:

LLDM := EE(x0),y,ϵ∼N (0,1),t

[
∥ ϵ − ϵθ(zt, t, τθ(y)) ∥2

2

]
(7)

where τθ(y) is the FrozenCLIPEmbedder in Figure 1. The encoder converts the conditional
EEG signal into an intermediate expression, which is then mapped to the middle layer of
U-Net via cross-attention blocks. The formula for cross attention is described as:

Attention(Q, K, V) = softmax
(

QKT
√

d

)
· V (8)
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where Q = W(i)
Q · φi(zt), K = W(i)

K · τθ(y), and V = W(i)
V · τθ(y). In addition, φi(zt) is the

intermediate representation when U-Net predicts ϵθ . W(i)
Q , and W(i)

K and W(i)
V are learnable

projection matrices.
During the model fine-tuning process, we fix the remainder of the SD model and

optimize the encoder τθ(y), cross-attention head, and projection head at the same time. We
used loss analysis based on Formula (7) to fine-tune the model. The encoder used in the SD
model is a pretrained FrozenCLIPEmbedder. It is a text–image alignment model pretrained
by the contrastive language–image pretraining (CLIP) [41] method. As shown in Figure 1,
the EEG signal undergoes position embedding after passing through the feature extraction
stage to match the text data. In this paper, EEG feature vectors that have undergone
feature extraction and position encoding are used instead of text input to the pretrained
FrozenCLIPEmbedder. The FrozenCLIPEmbedder was fine-tuned to help align the EEG
feature vector space with the image feature space. Fine-tuning the cross-attention head is
essential for bridging the pretraining conditional space and the latent space of the EEG
features.

2.2.3. Image Generation

Image generation is sampled from the standard normally distributed xT . The recon-
structed image corresponding to x0 is calculated via the inverse diffusion process. In the
image generation stage, as shown in Figure 1, the feature vectors obtained from feature
extraction and position encoding are fed into the fine-tuned FrozenCLIPEmbedder to form
an intermediate expression for input to U-Net. After the fine-tuning of the EEG–image
pairs, the cross-attention head and projection head in U-Net learn the relationships between
the EEG signals and image features. The alignment of the EEG feature space and image
feature space is realized to some extent. Therefore, the feature vector output from the
fine-tuned U-Net is regarded as the expression of the generated image in the latent space.
AutoEncoderKL is used to decode the latent expression of the image and eventually recover

the image of the pixel space. αt = 1 − βt and αt =
t

∏
i=1

αt are defined using parametric

renormalization. The mean value at time t is calculated by the following formula:

µθ(xt, t) :=
1√
αt

(
xt −

1 − αt√
1 − αt

ϵθ(xt, t)
)

(9)

The process of image generation is shown in Algorithm 1.

Algorithm 1: The Pipeline of the Image Generation Stage

1: input EEG x ∈ R1×128×440

2: do: Feature extraction and position embedding → x0 ∈ R77×768, x0 ∽ q(x0)
3: do: FrozenCLIPEmbedder → E(x0)

4: for t = 1 · · ·T, do: q(x1 : xT |E(x0 ) :=
T
∏

t=1
q(xt|xt−1) → xT ∽ N (0, 1)

5: for t = T · · · 1, z ∽ N (0, 1) do:

6: xt−1 := 1√
αt

(
xt − 1−αt√

1−αt
ϵθ(xt, t)

)
→ E(x0) ∈ Rh×w×3

7: do: AutoEncoderKL
8: return x0 ∈ RH×W×3

As shown in Algorithm 1, the EEG feature generates the prompt representation
x0 ∈ R77×768 after feature extraction and position embedding. x0 ∽ q(x0) represents
the data distribution corresponding to the real image. x0 generates the expression E(x0) of
the potential space through the FrozenCLIPEmbedder. xT is formed through the forward
noise addition process. Then, step 6 in Algorithm 1 is carried out to complete the image
reconstruction of the potential space. According to step 6 and formula (9), we obtain
xt−1 = µθ(xt, t). Moreover, µθ(xt, t) has completed the prediction in model fine-tuning and



Brain Sci. 2024, 14, 478 8 of 19

can directly use the model with updated parameters for image reconstruction. Then, the
image is converted to pixel space through step 7. Therefore, the EEG-to-image task can be
realized according to the algorithm in Algorithm 1.

3. Results

The proposed EEG-ConDiffusion framework was validated on an EEG-based visual
classification dataset [12]. The visual stimuli in this dataset are derived from 40 classes of
images in the ImageNet dataset [13]. The proposed framework combines EEG classification
and image generation tasks, and we present the results of both tasks separately.

3.1. Results of EEG Classification

In the EEG classification experiments, we validated them separately on data within
the ranges of 1–70 Hz and 5–95 Hz. The data were divided according to percentages of
70%, 15%, and 15%. The input shape of the EEG data is X ∈ Rb×1×128×440. Additionally, b
represents the value of the batch size, which is designed to be 64. To train the model, we
used the Adam optimizer to run 1000 epochs to minimize losses. In addition, the initial
learning rate is configured as 0.01. Furthermore, in order to reduce computational resources
and save model training time, our classification model training in the feature extraction
stage and model fine-tuning in the image generation stage are conducted separately. The
EEG data are first fed into our proposed ConvNet, and, after sufficient training, the model
weights are saved. When generating images, we directly use the pretrained ConvNet to
obtain highly discriminative category features.

3.1.1. Evaluation Metrics for the EEG Classification Task

The classification accuracy along with kappa values were used to evaluate the classifi-
cation efficiency of our proposed ConvNet. The accuracy is calculated as follows:

accuracy =
TP + TN

TP + FP + FN + TN
(10)

where TP and FP represent true positives and false positives, respectively. TN and FN
represent true negatives and false negatives, respectively.

The formula for calculating kappa is as follows:

kappa =
P0 − Pe

1 − Pe
(11)

P0 represents the classification accuracy. Pe represents a completely random rate of the
classification accuracy. In the 40-category classification task in this paper, Pe = 0.025.

3.1.2. Classification Results Compared with the Baselines

To evaluate the feature extraction capability of the proposed EEGConvNet, we com-
pared it with recent methods such as LSTM [12], EEGNet [16], and ChannelNet [1]. As
shown in Tables 1 and 2, we compared the performances of the proposed EEGConvNet and
benchmark models on 5–95 Hz and 1–70 Hz data. We trained a single-person model for
six subjects and evaluated the accuracy and kappa values of the EEGConvNet model and
benchmark models. From Tables 1 and 2, we can observe that the proposed EEGConvNet
is verified on 5–95 Hz and 1–70 Hz data, and the average accuracy and average kappa
value obtained are better than those of the benchmark models. The average accuracy
of EEGConvNet was 67.97% on 5–95 Hz data, which was 56.34%, 30.60%, and 47.79%
higher than that of LSTM [12], EEGNet [16], and ChannelNet [1], respectively. The average
kappa value of EEGConvNet was 0.67, which was 0.58, 0.31, and 0.49 higher than that
of LSTM [12], EEGNet [16], and ChannelNet [1], respectively. On the 1–70 Hz data, the
average accuracy and average kappa value of EEGConvNet are 99.87% and 1.00, respec-
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tively, which are also better than those of the benchmark models. This indicates that the
classification performance and model stability of EEGConvNet are good.

Table 1. Accuracy and kappa values of the EEG classification task on the EEG-based visual classifica-
tion dataset. The frequency range of the EEG data is 5–95 Hz.

Subjects

Method

LSTM [12] EEGNet [16] ChannelNet [1] EEGConvNet

Acc (%) Kappa Acc (%) Kappa Acc (%) Kappa Acc (%) Kappa

S1 7.03 0.04 18.75 0.17 5.47 0.03 56.25 0.55
S2 9.38 0.07 54.69 0.53 26.56 0.25 79.69 0.79
S3 8.81 0.05 50.78 0.49 25.78 0.24 67.97 0.68
S4 4.69 0.02 32.81 0.31 25.78 0.24 78.12 0.77
S5 23.43 0.22 35.94 0.34 25.00 0.23 64.84 0.64
S6 16.41 0.14 31.25 0.30 12.50 0.10 60.94 0.60

Mean 11.63 0.09 37.37 0.36 20.18 0.18 67.97 0.67

Table 2. Accuracy and kappa values of the EEG classification task on the EEG-based visual classifica-
tion dataset. The frequency range of the EEG data is 1–70 Hz.

Subjects

Method

LSTM [12] EEGNet [16] ChannelNet [1] EEGConvNet

Acc (%) Kappa Acc (%) Kappa Acc (%) Kappa Acc (%) Kappa

S1 75.78 0.75 98.43 0.98 93.75 0.93 100.00 1.00
S2 53.12 0.51 98.43 0.98 85.93 0.85 99.22 0.99
S3 61.71 0.61 100.00 1.00 96.87 0.97 100.00 1.00
S4 73.43 0.72 99.21 0.99 99.21 0.99 100.00 1.00
S5 58.59 0.57 99.21 0.99 93.75 0.93 100.00 1.00
S6 45.31 0.44 99.21 0.99 92.18 0.92 100.00 1.00

Mean 61.32 0.60 99.08 0.98 93.61 0.93 99.87 1.00

In addition, we conducted a Wilcoxon signed-rank test between the proposed EEG-
ConvNet and the benchmark models in Table 3. EEGConvNet was tested with LSTM [12],
EEGNet [16], and ChannelNet [1], and the p values obtained were 1, 2, and 3, respectively,
all of which were less than 0.05. This shows that the improvement in the classification
effectiveness of our proposed EEGConvNet model is statistically significant compared to
that of the benchmark model.

Table 3. Wilcoxon signed-rank test between the proposed EEGConvNet and the baselines.

Frequencies
Method

LSTM [12] EEGNet [16] ChannelNet [1]

P-Acc (%) P-Kappa P-Acc (%) P-Kappa P-Acc (%) P-Kappa

5–95 Hz 0.016 0.016 0.016 0.016 0.016 0.016
1–70 Hz 0.016 0.016 0.027 0.024 0.016 0.016

Additionally, by comparing Tables 1 and 2, we observe that the average accuracy and
average kappa values obtained by the tested model in the signals of 1–70 Hz are better than
those obtained at 5–95 Hz. We list the differences between the results in Table 4. The average
accuracies of LSTM [12], EEGNet [16], ChannelNet [1], and EEGConvNet at 1–70 Hz are
improved by 1%, 1%, 1%, and 1%, respectively, compared to those at 5–95 Hz. This shows
that different frequencies have an important impact on the classification results of the
model, and the data make it easier to extract and classify features at 1–70 Hz. Therefore,
in the subsequent image generation stage, we use data at 1–70 Hz for model fine-tuning.



Brain Sci. 2024, 14, 478 10 of 19

Furthermore, the EEGConvNet model has achieved an average classification accuracy of
99.87% on data ranging from 1 to 70 Hz, demonstrating its ability to accurately classify EEG
data. However, to further enhance classification accuracy, it is usually necessary to increase
the depth and width of the network, which will increase the complexity and training time
of the model. Therefore, EEGConvNet is already sufficiently and excellently suited for the
feature extraction stage prior to classification tasks.

Table 4. Differences in the classification performances of EEGConvNet and the baselines on 1–70 Hz
and 5–95 Hz data.

Frequencies

Method

LSTM [12] EEGNet [16] ChannelNet [1] EEGConvNet

Acc (%) Kappa Acc (%) Kappa Acc (%) Kappa Acc (%) Kappa

5–95 Hz 11.63 0.54 37.37 0.36 20.18 0.18 67.97 0.67
1–70 Hz 61.32 0.60 99.08 0.98 93.61 0.93 99.06 0.99

Difference 49.69 0.06 61.71 0.62 73.43 0.75 31.09 0.32

3.2. Results of Generating Images from EEG Signals

From the analysis in Section 2, it can be seen that the data with a frequency range of
1–70 Hz can be better extracted by the proposed EEGConvNet. In the image generation
stage, we use the data extracted by EEGConvNet from 1 to 70 Hz as a condition and input
a fine-tuned SD model to guide image generation. The images we need to reconstruct
come from 40 categories of data from the ImageNet [13] dataset. To evaluate the image
generation of the EEGConDiffusion framework, we generated three predicted images for
each category for comparison with the real image. When fine-tuning the model, we trained
the SD model with 500 epochs using a learning rate of 5.3 × 10−5. Due to limited laboratory
conditions, we trained with a GPU model RTX 3090 (24 GB) from Intel Corporation in
the United States with a batch size set to three. The total training time for each subject is
approximately 58 h. We train six individual models in parallel using six servers of the same
model. In addition, the number of sampling steps for the SD model is set to 250. In the
image generation stage, the number of sampling steps for the SD model is also 250.

3.2.1. Evaluation Metrics for the Image Generation Tasks

To assess the quality of image generation, we used the Fréchet inception distance
(FID) [42], inception score (IS) [43,44], and top-k [45] classification task accuracy as evalua-
tion metrics. FID evaluates the differences between the generated image and the ground
truth image by measuring the distance between their feature levels. Its mathematical
description is as follows:

FID =
∥∥µr−µg

∥∥2
+ Tr

(
∑r +∑g −2

(
∑r ∑g

)1/2
)

(12)

where µr and µg represent the feature means of the authentic image and the reconstructed
image, respectively. ∑r and ∑g represent the covariance matrix of the real picture and the
generated picture, respectively. Tr represents the trace. The IS is used to evaluate the clarity
and diversity of image generation. It uses the pretrained Inception model [44] to perform
category discrimination and calculates the authenticity score and diversity score of the
generated images. Its mathematical expression is:

IS = exp
(
Ex∼pg DKL(P(y|x)∥P(y) )

)
(13)

where Ex∼pg represents the average value of the traversed images. DKL stands for KL
divergence. P(y|x) and P(y) represent the conditional distribution and edge probability
distribution of the image category, respectively. The top-k classification task is used to
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evaluate the category accuracy of image generation. In this paper, we use the pretrained
ImageNet1K [45] model to evaluate the classification accuracy of the 50-way top-1 and
top-5 classification accuracies of the generated images.

3.2.2. Ablation Experiments

Since the training and fine-tuning of the SD model require considerable time and
computational costs, we need to determine the conditions for the input of the SD model
before the fine-tuning stage. To this end, we performed four types of ablation experiments
before fine-tuning the SD model. They are described as follows:

• The EEG data were used directly. The data shape is changed to (77,768) through a
linear layer and a conv1d layer and then imported into a fixed SD model;

• Position embedding was performed on the EEG data. The input shape is then changed
to (77,768) through the linear and conv1d layers, and the fixed SD model is then
entered;

• The pretrained EEGConvNet model was used to extract features from the EEG data.
The features output by the classification model, with a shape of (77,768), are then used
as input to the pretrained SD model;

• After extracting the EEG features using the pretrained EEGConvNet model, position
embedding was performed on the EEG data. The shape features (77,768) are then fed
into the pretrained SD model.

As shown in Table 5, we evaluated the image generation performance under four
different experiments using FID. We expect the generated image to have a smaller FID
value. From the FID results, we can see that the average FIDs for EEGs with shape
adaptation are 243.88 and 243.03 for position embedding. Position embedding slightly
improves the generation effect of images. The FID after feature extraction is 46.37, which
is quite different from the result without feature extraction. This shows that EEG feature
extraction through EEGConvNet plays an important role in improving image generation
performance. Therefore, we finally use EEG features that have undergone feature extraction
and positional embedding as the guiding conditions for the SD model.

Table 5. FID results of four ablation experiments and the proposed EEG-ConDiffusion framework.

Subjects

Ablation Experiments

EEG with Shape
Adaptation

EEG with Shape
Adaptation and

Position Embedding

EEG with Feature
Extraction

EEG with Feature
Extraction and

Position Embedding

FID FID FID FID

S1 239.48 240.99 56.10 47.64
S2 246.41 246.04 42.84 34.78
S3 245.48 239.08 57.23 42.43
S4 242.57 246.44 48.98 33.73
S5 246.18 241.82 47.16 42.20
S6 243.13 243.80 25.89 48.92

Mean 243.88 243.03 46.37 41.62

3.2.3. Image Generation Results Compared with the Baselines

To test the image generation quality of our EEG-ConDiffusion framework, we com-
pared it with five methods developed in recent years. Kavasidis et al. [25] combined LSTM
feature extraction and conditional GAN to improve the image generation effect and verified
the effect of VAE and GAN for image generation. Zheng et al. [27] combined feature
extraction and the SNGAN to generate images. Khare et al. [29] proposed a NeuroVision
framework for image generation in combination with conditional ProGAN (cProGAN).
We used the IS to evaluate the image generation performance by comparing the proposed
EEG-ConDiffusion framework with the four baseline models. The higher the value of IS,
the better the image is generated. In addition, we used the top-1 and top-5 tasks to verify
the classification accuracy of the images generated by the proposed EEG-ConDiffusion
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framework. The IS and top-k classification results of the proposed EEG-ConDiffusion
framework are shown in Table 6. In addition, as shown in Figure 3, the classification
accuracy of the EEG-ConDiffusion framework on the top-1 and top-5 classification tasks
is visualized.

Table 6. The IS and top-k classification results of the proposed EEG-ConDiffusion framework.

Subjects
Metrics

IS Top-1 Acc (%) Top-5 Acc (%)

S1 12.86 32.36 42.56
S2 11.95 23.56 29.64
S3 12.49 20.16 26.16
S4 12.47 35.00 44.64
S5 12.46 23.48 35.72
S6 12.03 16.72 25.76

Mean 12.38 25.21 34.08
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Table 7 shows the average IS results of the EEG-ConDiffusion framework and the
baselines. The IS result obtained by our EEG-ConDiffusion method is 12.38, which is 7.89,
7.31, 6.85, and 7.23 higher than that of VAE [25], GAN [25], SNGAN [27], and cProGAN [29],
respectively. We can see that the IS results of GAN-based image generation methods are
better than those of VAE. Our EEG-ConDiffusion IS results are better than those of all
baseline models, and the improvement effect is obvious. This shows the powerful ability of
pretrained SD models to generate images from EEG signals.

Table 7. The IS results of the EEG-ConDiffusion framework and baseline models.

Metric
Method

Kavasidis et al.
VAE [25]

Kavasidis et al.
GAN [25]

Zheng et al.
SNGAN [27]

Khare et al.
cProGAN [29]

Our EEG-
ConDiffusion

IS 4.49 5.07 5.53 5.15 12.38
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Figure 4 shows the images of pandas generated by our EEG ConDiffusion and bench-
mark models. The images generated using the VAE method are the most blurry. The
images generated using our EEG-ConDiffusion method not only have higher clarity than
the benchmark model but also have higher realism.
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Figure 4. Comparison of the proposed EEG-ConDiffusion framework and benchmark models for
generating images of pandas. This figure includes images generated with VAE [25], GAN [25],
SNGAN [27], cProGAN [29], and our EEG-ConDiffusion, as well as GT images. GT represents the
ground truth images.

In addition, we compared our EEG-ConDiffusion framework with Visual GAN [46].
Shimizu et al. proposed a Sinc-EEGNet model to extract features of brain signals. The
Sinc-EEGNet model combines a CNN model and attention mechanism, and its classification
accuracy is 45%. Then, the Sinc-EEGNet model was combined with the GAN model for
image generation. The average classification accuracy of the images generated with the test
set is 18.4%. As can be seen from Tables 2 and 6, the average classification accuracy of our
EEG-ConDiffusion framework is 99.87% in the feature extraction stage, and the average
classification accuracy of the top-1 task in the image generation stage is 25.21%. As shown
in Figure 5, renderings of 40 category images were generated for the EEG-ConDiffusion
framework and the Visual GAN [46] model. We can see that the images generated by the
EEG-ConDiffusion framework are sharper and more realistic.

To further demonstrate the generation effect of our EEG-Diffusion method, we present
the generated images of pizzas, elephants, cars, and pianos in Figure 6 and compare them
with the ground truth images.

The above discussions are based on intra-subject experiments. In order to evaluate the
generalization performance of our proposed model. We used the model of subject 1 with
the highest IS as the optimal model. The model was used to combine the test set data of
other subjects to generate corresponding images. As shown in Table 8, we calculated the IS
of S2~S6, and the average IS result was 11.74, which was better than the four benchmark
models. As shown in Figure 7, the images generated by model migration are of high
quality. Thus, the generalization performance of our EEG-ConDiffusion framework is
demonstrated.
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Table 8. The IS results of the EEG-ConDiffusion framework in the inter-subject transfer learning
experiment.

Subjects S1 S2 S3 S4 S5 S6 Mean

IS 12.86 11.73 11.57 12.12 10.49 11.66 11.74



Brain Sci. 2024, 14, 478 15 of 19

Brain Sci. 2024, 14, x FOR PEER REVIEW 15 of 19 
 

Table 8. The IS results of the EEG-ConDiffusion framework in the inter-subject transfer learning 
experiment. 

Subjects S1 S2 S3 S4 S5 S6 Mean 
IS 12.86 11.73 11.57 12.12 10.49 11.66 11.74 

 
Figure 7. Comparison between the images generated by our EEG ConDiffusion and the ground 
truth in the inter-subject transfer learning experiment. S1, S2, S3, S4, S5, and S6 represent the 6 sub-
jects. GT represents the ground truth. 

4. Discussion 
In this work, we propose a framework called EEG-ConDiffusion that combines fea-

ture extraction and pretrained conditional diffusion to generate images from EEG signals. 
We divide the EEG-ConDiffusion framework into three stages: feature extraction, SD 
model fine-tuning, and image generation. 

In the feature extraction stage, we propose an EEGConvNet to perform feature ex-
traction on EEG signals. The output EEG features are reshaped and positionally embed-
ded to accommodate the input of the SD model. We validated the classification perfor-
mance of the EEGConvNet and baselines on EEG data at 5–95 Hz and 1–70 Hz, respec-
tively. The EEG data are derived from the EEG-based visual classification dataset [12]. As 
shown in Table 4, all the tested models achieved better results on the 1–70 Hz data than 
on the 5–95 Hz data. This shows that the data in the dataset with a filter range of 1–70 Hz 
can be better extracted for features. Therefore, in the subsequent SD model fine-tuning 
and image generation stages, we use data with a frequency range of 1–70 Hz. In addition, 
Table 1 shows that the average accuracy of EEGConvNet is 67.97%, which is 56.34%, 
47.79%, and 30.60% higher than that of LSTM [12], ChannelNet [1], and EEGNet [16], re-
spectively. As shown in Table 2, the average accuracy of EEGConvNet is 99.87%, which is 
38.55%, 6.26%, and 0.79% higher than that of LSTM [12], ChannelNet [1], and EEGNet 
[16], respectively. When EEGConvNet is validated in both frequency ranges, the average 
kappa values are also greater than those of the baseline models. In addition, as shown in 
Table 3, we also performed a Wilcoxon signed-rank test on the results between the EE-
GConvNet and the baseline models. The obtained p values were all less than 0.05, which 
proved the statistical significance of EEGConvNet. 

In the model fine-tuning stage, we use the EEG features that have gone through the 
process of feature extraction, shape adaptation, and position embedding as the conditions 
of the SD model to train the model. The SD model is a pretrained text-to-image model 

Figure 7. Comparison between the images generated by our EEG ConDiffusion and the ground truth
in the inter-subject transfer learning experiment. S1, S2, S3, S4, S5, and S6 represent the 6 subjects. GT
represents the ground truth.

4. Discussion

In this work, we propose a framework called EEG-ConDiffusion that combines feature
extraction and pretrained conditional diffusion to generate images from EEG signals. We
divide the EEG-ConDiffusion framework into three stages: feature extraction, SD model
fine-tuning, and image generation.

In the feature extraction stage, we propose an EEGConvNet to perform feature extrac-
tion on EEG signals. The output EEG features are reshaped and positionally embedded
to accommodate the input of the SD model. We validated the classification performance
of the EEGConvNet and baselines on EEG data at 5–95 Hz and 1–70 Hz, respectively. The
EEG data are derived from the EEG-based visual classification dataset [12]. As shown
in Table 4, all the tested models achieved better results on the 1–70 Hz data than on the
5–95 Hz data. This shows that the data in the dataset with a filter range of 1–70 Hz can be
better extracted for features. Therefore, in the subsequent SD model fine-tuning and image
generation stages, we use data with a frequency range of 1–70 Hz. In addition, Table 1
shows that the average accuracy of EEGConvNet is 67.97%, which is 56.34%, 47.79%, and
30.60% higher than that of LSTM [12], ChannelNet [1], and EEGNet [16], respectively. As
shown in Table 2, the average accuracy of EEGConvNet is 99.87%, which is 38.55%, 6.26%,
and 0.79% higher than that of LSTM [12], ChannelNet [1], and EEGNet [16], respectively.
When EEGConvNet is validated in both frequency ranges, the average kappa values are
also greater than those of the baseline models. In addition, as shown in Table 3, we also
performed a Wilcoxon signed-rank test on the results between the EEGConvNet and the
baseline models. The obtained p values were all less than 0.05, which proved the statistical
significance of EEGConvNet.

In the model fine-tuning stage, we use the EEG features that have gone through the
process of feature extraction, shape adaptation, and position embedding as the conditions
of the SD model to train the model. The SD model is a pretrained text-to-image model based
on LDMs [24]. LDMs transform the diffusion process of DMs [19] into a low-dimensional
latent space, which reduces the computational complexity and cost. This allows us to
fine-tune the SD model with just a single RTX3090 GPU. In addition, LDMs introduce
cross-attention in U-Net, thus enabling multimodal transitions. This is also the key to the
realization of text-to-image in the SD model. This inspired us to use LDMs to implement
EEG-to-image tasks. However, training LDMs from the start to the finish requires a large
computational cost, long computation time, and problems such as schema crashes during
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training. To overcome this difficulty, we used a pretrained SD model, which has gained
great attention in the text-to-image field. Only small EEG–image data pairs are needed to
fine-tune the SD model to realize the consistency of image and EEG features.

In the image generation stage, we send the EEG features that have gone through the
process of feature extraction, shape change, and position embedding into the cross-attention
module of the fine-tuned SD model. To validate the performance of the images generated by
our EEG-Condiffusion framework, we tested them on the EEG-based visual classification
dataset [12] and the ImageNet dataset [13]. As shown in Table 5, we performed ablation
experiments for different EEG preprocessing methods and evaluated them with FID results.
The results show that the FID of the EEG input obtained through EEGConvNet and position
embedding is 41.62, which is 202.26, 201.41, and 4.75 lower than that obtained through
shape adaptation only, shape adaptation, and position embedding and feature extraction
only, respectively. The process of position embedding slightly reduces the FID results.
The feature extraction process has a significant impact on the FID results. This suggests
that feature extraction plays an important role in image generation. As shown in Tables 6
and 7, we show the image generation results of the EEG-ConvDiffusion framework and
benchmark models and evaluate them with the IS results. The results show that the average
IS of the EEG-ConDiffusion framework is 12.38, which is 7.89, 7.31, 6.85, and 7.23 higher
than those of the VAE [25], GAN [25], SNGAN [27], and cProGAN [29], respectively. In
addition, as shown in Figure 3, we show the accuracy of the top-1 and top-5 classification
tasks for images generated by the model for each subject based on the EEG-ConDiffusion
framework. The results show that this method can guarantee the authenticity of image
generation to a certain extent. Figure 4 shows the panda images generated by our EEG-
ConDiffusion framework and benchmark models and compares them with the ground
truth images. The results show that the images generated by the VAE [25] method are
the fuzziest, while the clarity of the images generated by the GAN [25], SNGAN [27],
and cProGAN [29] methods is improved, but the generated images lack authenticity. The
images generated by our EEG-ConDiffusion method are improved in terms of clarity and
image authenticity. In addition, we compare the classification accuracy of the proposed
framework with Visual GAN [46] in the feature extraction and generation stages. This
proves that our EEG-ConDiffusion framework improves the quality of image generation
with effective EEG features. In addition, as shown in Table 8, we performed model transfer
experiments between subjects based on the model of subject 1 and obtained high-quality
generated images. The generalization performance of our proposed EEG-ConDiffusion
framework is demonstrated. To further demonstrate the generative performance of our
EEG-ConDiffusion framework, we show the images of pizzas, elephants, cars, and pianos
generated by the framework and the corresponding ground truth images in Figure 5. The
images generated by each single-person model are similar to the ground truth images.

5. Conclusions

In summary, we combined EEG feature extraction and image generation tasks to
construct an EEG-ConDiffusion framework for generating images from EEG signals. Our
work explored the feasibility of using multimodal large models to study EEG signals. The
EEG-ConDiffusion framework uses EEGConvNet to extract highly discriminating semantic
information from EEG signals and then uses the LDM-based SD model to generate high-
resolution images. We evaluated the feature extraction stage and the image generation stage
and revealed the powerful feature extraction ability and image generation performance of
the EEG-ConDiffusion framework.

In future work, we will make more efforts in EEG–image feature matching. Addition-
ally, the use of multi-level EEG features to match image features proposed by Shen et al. [47]
is a very good inspiration. In addition, we will optimize the inter-subject transfer experi-
ments to enhance the model’s generalizability.
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