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Abstract: Numerous human and animal studies have reported positive correlation between carcinogen-
DNA adduct levels and cancer occurrence. Therefore, attenuation of DNA adduct levels would be
expected to suppress tumorigenesis. In this investigation, we report that the antioxidants omega
3-fatty acids, which are constituents of fish oil (FO), significantly decreased DNA adduct formation
by polycyclic aromatic hydrocarbons (PAHs). B6C3F1 male mice were fed an FO or corn oil (CO)
diet, or A/J male mice were pre-fed with omega-3 fatty acids eicosapentaenoic acid (EPA) and/or
docosahexaenoic acid (DHA). While the B6C3F1 mice were administered two doses of a mixture of
seven carcinogenic PAHs including benzo(a)pyrene (BP), the A/J mice were treated i.p. with pure
benzo[a]pyrene (BP). Animals were euthanized after 1, 3, or 7 d after PAH treatment. DNA adduct
levels were measured by the 32P-postlabeling assay. Our results showed that DNA adduct levels in
the lungs of mice 7 d after treatment were significantly decreased in the FO or EPA/DHA groups
compared with the CO group. Interestingly, both qPCR and Western blot analyses revealed that FO,
DHA and EPA/DHA significantly decreased the expression of cytochrome P450 (CYP) 1B1. CYP1B1
plays a critical role in the metabolic activation of BP to DNA-reactive metabolites. qPCR also showed
that the expression of some metabolic and DNA repair genes was induced by BP and inhibited by FO
or omega-3 fatty acids in liver, but not lung. Our results suggest that a combination of mechanism
entailing CYP1B1 inhibition and the modulation of DNA repair genes contribute to the attenuation of
PAH-mediated carcinogenesis by omega 3 fatty acids.

Keywords: fish oil; eicosapentaenoic acid; docosahexaenoic; polycyclic aromatic hydrocarbons; DNA
adducts; CYP1; DNA repair; detoxification

1. Introduction

A total of 1,898,160 (254,170 for lung and bronchus) new cancer cases and 608,570
(137,040 for lung and bronchus) cancer deaths were predicted to occur in the U.S. in 2021 [1].
Human and animal data have shown that environmental factors (e.g., polycyclic aromatic
hydrocarbons (PAHs)) from cigarette smoke, air and water pollution contribute to the
etiology of cancers [2,3]. People living near Superfund sites are also exposed to PAHs [4].
PAHs are ranked to be 9th in the national priority list of toxic substances. Specifically,
benzo(a)pyrene (BP) and benzo(b)fluoranthene (BbF) are ranked high (8th and 10th), on
this list, and are considered to be contaminants of concern (COC) at Superfund sites. PAHs
by themselves are inert, but exhibit their cellular effects through metabolism by cytochrome
P450 (CYP) enzymes to reactive metabolites that cause the formation of protein and/or
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DNA adducts, which are associated with mutagenesis, carcinogenesis, and their toxicities.
DNA adducts play important roles in the initiation of carcinogenesis [5–10].

An epidemiological study [11] showed significant correlations between elevated levels
in blood (white blood cells) of aromatic DNA adducts and lung cancer development
for up to thirteen years later. Similar results were obtained in Italy [12,13], Spain [14]
and Denmark [15]. Animal studies have also shown positive correlations, which are
statistically significant, DNA adduct levels induced by PAHs at initial stages (1–7 days
after PAH exposure) and tumor incidence observed 10 months later [5]. Therefore, the
attenuation of DNA adduct levels is expected to decrease tumor incidence. Reduction in
PAH-DNA adduct levels could lessen DNA mutagenesis, which should in turn diminish
or inhibit tumorigenesis [16]. The formation of PAH-DNA adducts can be attenuated by
detoxification of parent PAHs. PAH-DNA-bound adducts can also be removed by DNA
repair processes [17–20], and injured cells can be eliminated by cell death including necrosis
and apoptosis [21–23]. During chronic exposures, DNA damage can readily reach steady-
state levels in target tissues. In contrast, failure to repair DNA adducts in essential genes
or to remove damaged cells containing such adducts is expected to result in accelerated
tumorigenesis.

Natural dietary interventions have beneficial properties, including lesser toxicity and
side effects [21]. Dietary interventions could lead to the inhibition of adduct formation
through several mechanisms: (i) bio-inactivation of parent chemical carcinogens [22], (ii) the
enhancement of DNA repair; and (iii) apoptosis [23–25]. They may also inhibit the initiation,
promotion and/or progression phases of pre-neoplastic lesions to invasive cancers [26,27].
We previously reported that fish oil (FO), which contains omega-3 fatty acids, significantly
lowered the levels of total hepatic DNA adducts [28]. Histologica studies indicated that FO
played a hepato-protective role during the initial stages of carcinogenesis. It has been shown
that FO inhibits NNK-mediated lung carcinogenesis in the A/J mouse [29]. In addition,
DHA induces oxidative DNA damage and apoptosis, and augments chemosensitivity of
cancer cells [30].

In this study, we tested the hypothesis that the treatment of mice with omega-3 fatty
acids, followed by the administration of PAHs would lead to the attenuation of pulmonary
PAH-DNA adducts, and the modulation of CYP1 enzymes and DNA repair genes that
contribute mechanistically to the suppression of DNA adducts by FO and its components
DHA and EPA.

2. Materials and Methods
2.1. Chemicals

Benzo(a)pyrene (BP), benz(a)anthracene (BA), chrysene, benzo(b)fluoranthene (BbF),
benzo(k)fluoranthene (BkF), and dibenz(a,h)anthracene (DBA) were procured from Sigma-
Aldrich (St. Louis, MO, USA). Indeno(1,2,3-c,d)pyrene (IP) was obtained from Abso-
lute Standards (Hamden, CT, USA). Fish oil (from menhaden) was from Sigma-Aldrich
(St. Louis, MO, USA). Omega-3 fatty acids eicosapentaenoic acid (EPA) and docosahex-
aenoic acid (DHA) were from Cayman Chemical (Ann Arbor, MI, USA). Materials for DNA
extraction [31–34], RNA isolation [35], and 32postlabeling methods [31,36,37] have been
published previously.

2.2. Animals

B6C3F1 male mice (4–5 weeks) were purchased from Harlan Sprague Dawley (Hous-
ton, TX, USA). A/J mice (8–10 weeks) were procured from The Jackson Laboratory (Bar
Harbor, ME, USA).

2.3. Diets

FO diet and CO diet were obtained from Dytes Inc. (Bethlehem, PA, USA). All diets
contained 15% lipid by weight. The fatty acid compositions of FO and CO were from Dytes
Inc., as previously described [28]. In order to achieve essential fatty acid requirements,
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the FO diet contained 3.5 g of corn oil/100 g of diet [38,39]. To prevent the formation of
oxidized lipids, the diets were stored at −20 ◦C in the dark. The FO contained 1 g/kg
γ-tocopherol and 0.025% tertiarybutylhydroquinine (TBHQ) as antioxidants. Food grade
corn oil was also supplemented with α-tocopherol, γ-tocopherol and TBHQ to obtain
antioxidant levels equivalent to those in the fish oil.

2.4. Animal Experiments

B6C3F1 mice have been used extensively in chemical carcinogenesis. This strain of
mouse was used in our Superfund studies [5]. The A/J mouse is frequently used as a
model for testing of lung carcinogenesis. In this study, both strains were used to observe
the effects of omega-3 fatty acids on cancer prevention. All animal studies were conducted
according to the federal guidelines for the humane and ethical care and use of animals.
The studies were approved by the Institutional Animal Care and Use Committees of Texas
A&M University Health Science Center and Baylor College of Medicine.

2.4.1. Animal Experiment 1

Male B6C3F1 mice (4–5 weeks old) received the experimental diet (FO or CO) for
30 days, and animals were randomized into 7 groups of 5 mice each per diet, and then
exposed to a mixture of PAHs (higher dose; via i.p. administration) containing BP, 86 µg;
BA, 262.5 µg; chrysene, 262.5 µg; BbF, 107.5 µg; BkF, 66.5 µg; DBA, 5.5 µg and IP, 33.5 µg
per kg body weight. The concentrations of these PAHs were similar to those in residues
extracted from contaminated soils of Superfund sites [5]. The concentrations of lower dose
PAHs were decreased by 2.5-fold comoared to the higher dose PAHs mixture. These PAHs
were dissolved in DMSO:corn oil (50:50). Animals were maintained in the same diet after
treatment and were euthanized by CO2 asphyxiation and cervical dislocation at 1, 3, and
7 d after the PAH exposure. Lung tissues were dissected and then flash frozen under liquid
nitrogen, and stored at −80 ◦C until further analyses.

2.4.2. Animal Experiment 2

Male A/J mice (8–10 weeks old, 4–5 mice per group) were pre-treated with FO,
eicosapentaenoic acid (EPA) and/or docosahexaeoic acid (DHA) or CO by gavage for
3 days. On day 2, the mice were i.p. treated with BP (25 mg/kg). The mice were euthanized
48 h after BP treatment. The doses of EPA and DHA were calculated based on the amounts
of these chemicals in FO diet, i.e., 50 and 100 mg/kg for EPA, 30 and 60 mg/kg for DHA,
and combination of EPA (50 mg/kg) and DHA (30 mg/kg). EPA and DHA were first
evaporated with nitrogen to remove most of ethanol and then were dissolved in CO. The
gavage volume of CO or FO was 6.7 µL/g body weight.

2.5. DNA Adduct Analyses

DNA extracrion and 32P-postlabeling were conducted as reported previously [5,28].
DNA was isolated as reported earlier [33,34] and stored at −80 ◦C until analysis by 32P-
postlabeling [31,40], which entailed the nuclease P1-enhanced bisphosphate version of the
postlabeling assay [31] with modifications of chromatographic conditions [40].

Radioactively labeled digests were spotted on to modified PEI-cellulose thin layers and
chromatographed overnight (15–16 h) with solvent 1 (2.3 M sodium phosphate, pH 5.75),
to purify bulky adducts. The bulky DNA adducts were separated with solvents 2 (3.82 M
lithium formate, 6.75 M urea, pH 3.35) and 3 (0.72 M sodium phosphate, 0.45 M Tris-HCl,
7.65 M urea, pH 8.2) in the first and second dimensions, respectively [28]. 32P-labeled DNA
adducts were visualized by screen-enhanced autoradiography at −80 ◦C using Kodak
XAR-5 film or with the aid of an InstantImager (Packard Instruments) [32]. The levels
of DNA adducts were calculated, as previously reported [37]. Statistical analysis was
performed using one-way analysis of variance (ANOVA) with multiple comparison by
Newman–Keuls test [41].
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2.6. qPCR Analysis

Gene expression assays were used to determine gene expression alterations for se-
lected CYP1, AhR, and DNA repair genes using TaqManTM assay kits. Gene-specific probes
and primer sets were procured from from Applied Biosystems (Foster City, CA, USA,
Cat No. 4331182, 4351372, 4331348). The following TaqMan primers were used: Cyp1a1
(Mm00487217_m1 CYP1A1), Cyp1a2 (AIRRLEG CYP1A2 mouse), Cyp1b1 (Mm01232239_m1
CYP1B1), Ahr (Mm00478932_m1 AHR), Ddb2 (Mm00472175_m1 DDB2), Neil2
(Mm01310470_m1 NEIL2), Parp1(Mm01321084_m1 PARP1), Pnac (Mm05873628_g1 PCNA),
Xpc (Mm01183434_m1 XPC), and the reference gene 18S (Hs99999901_s1 18S). The assays
were conducted according to manufacturer’s protocol of TaqManTM RNA-to = CTTM 1-step
kit (Applied Biosystems, Foster City, CA, USA, Cat No. 4392656) on an ABI PRISMH
7900 HT sequence detection system (Applied Biosystems, Foster City, CA, USA). Quantifi-
cation was performed using the average 2−∆∆Ct value for each set of quadruplicates, and
the average of the biologic replicates was calculated. Mouse GRP78 gene was used as the
house-keeping control for quantitative RT-PCR. One-way ANOVA was applied in order to
compare the levels of gene expression in the lung and liver among five diet groups.

2.7. Western Blot Analysis

Microsomes were obtained from lung and liver tissues by differential centrifugation to
analyze the protein expression of CYP1A1/1A2 and CYP1B1. Proteins were detected using
CYP1A1 monoclonal antibody that cross-reacts with CYP1A2 (1:1500, procured from Dr.
P.E. Thomas, from Rutgers University, Piscataway), CYP1B1 antibody (1:2000) (Invitrogen,
Carlsbad, CA, USA, Cat. No.: PA5-95277), or the microsome loading control GRP78 (1:500)
(Abcam, Cambridge, UK, Cat. No.: ab21685) followed by blotting with HRP tagged anti-
mouse and anti-rabbit secondary antibodies (1:10,000, Bio-Rad laboratories, Hercules, CA,
USA). Membranes were washed and developed with clarity Western ECL substrate and
the BioRad ChemiDoc Touch with Image Lab software (BioRad Laboratories, Hercules, CA,
USA). These analyses were performed in quadruplicates.

3. Results
3.1. Animal Experiment 1
3.1.1. Diet and Body Weights

B6C3F1 male mice were maintained on FO or CO diet for one month before the
treatment of PAH mixture. During the study, the diet consumption was measured every
day. No significant differences in diet consumption were noted (p > 0.05). At 7 days, body
weights were 23.89 ± 0.22 g and 23.86 ± 0.20 g for CO and FO group, and at 28 days, body
weights were 29.82 ± 0.31 g, and 30.49 ± 0.26 g, respectively. There were no significant
differences in body weights between FO and CO diet.

3.1.2. The Effects of Dietary Fish Oil on Pulmonary PAH-DNA Adducts

After one month on a special diet, mice were treated with two different doses of PAHs
by a single i.p. administration. Mice were euthanized at 1, 3, and 7 d after treatment. Lung
DNA from mice on dietary FO or CO displayed qualitatively similar profiles of PAH-DNA
adducts with the BPDE-dG being the major adduct in Figure 1.
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Figure 1. Representative DNA adduct profiles of lungs of B6FC3 mice fed with CO diet (Panel (A))
and FO diet (Panel (B)) treated Yeswith PAHs mixtures. After one month on a special diet, mice
were treated with a high dose of PAHs by a single i.p. injection. BPDE-dG, BP trans-7,8-diol-9,10-
epoxide-deoxy-guanosine. Mice were terminated at 7 d after PAHs treatment, and DNA adducts
were analyzed by 32P-postlabeling, as described under Materials and Methods.

Lung DNA adducts were formed after treatment with PAH mixture. High levels of
PAH DNA adducts were sustained from 1 d until 7 d after PAH treatment. Figure 2 displays
the comparisons of the pulmonary DNA adducts of mice treated with a high dose of PAHs
between the CO and FO groups. Overall, the levels of total pulmonary DNA adducts were
higher in CO groups at all three time points compared with FO groups. However, we
observed significant attenuation of PAH-DNA adducts in FO groups compared to those in
CO which were only observed at the 3 and 7 d time points, but not at 1 d (Figure 2). The
levels of BPDE-dG adducts [42] showed similar trends with total PAH-DNA adducts in
both CO and FO groups (Figure 2). After treatment with a low PAH dose, the values of
total pulmonary DNA adducts in the CO groups of mice were 38.84 ± 7.70 (mean ± SEM),
54.85 ± 5.51, and 36.35 ± 5.31 in 109 normal nucleotides for 1 d, 3 d, and 7 d, respec-
tively. Correspondingly, these values at FO groups were 37.03 ± 3.30, 42.46 ± 2.90, and
28.70 ± 3.41. Although pulmonary PAH-DNA adduct levels at FO groups displayed trends
of lower levels compared to those at CO groups, statistically significant differences were
not observed. Similar results of BPDE-dG adduct were obtained (data not shown). Overall,
dietary FO decreased the levels of total pulmonary PAH adducts by 22–32%. BPDE-dG
adduct displayed similar results.

3.1.3. Histological Examination

Mice did not show significant histological changes in the lungs in both CO and FO
groups 7 d after PAH treatment (data not shown).
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Figure 2. Effect of dietary fish oil on pulmonary DNA adduct levels. Dietary fish oil significantly
decreased PAH-DNA adducts compared to CO diet at 3 and 7 days after treatment of high dose of
PAH mixture, but not at 1 day. *, p < 0.05 (n = 4–5, one-way ANOVA).

3.2. Animal Experiment 2
3.2.1. The Effects of Omega-3 Fatty Acids EPA and DHA on Pulmonary PAH-DNA Adducts

To further confirm that omega-3 fatty acids played major roles in FO mediated attenu-
ation of carcinogenic PAH-DNA adducts, pure omega-3 fatty acids EPA and DHA were
used in a separate animal experiment.

Representative profiles of pulmonary DNA adducts in A/J mice, received CO, FO, EPA,
DHA, and EPA + DHA, treated with BP, and are shown in Figure 3. The typical patterns
of BP-DNA adducts were highly similar in all five groups with only slight differences. As
shown in Figure 3, BPDE-dG was the major adduct.

The levels of BP-DNA adducts in lung of mice treated with BP were very high in
the control (CO) group. However, animal treatments with FO, EPA, or DHA, resulted in
significant decreases in total lung BP-DNA adducts and/or BPDE-dG, compared to those
in mice that received CO (Figure 4). EPA and DHA, given in combination, displayed more
pronounced effects in decreasing levels of total pulmonary DNA adducts and BPDE-dG
by 42% and 45%, respectively (Figure 4). FO contains about 30% omega-3 fatty acids, and
EPA and DHA are major omega-3 fatty acids in FO. These results suggested that omega-3
fatty acids including EPA and DHA may play key roles in FO-mediated attenuation of
PAH-DNA adduct levels.
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Figure 4. Effect of dietary fish oil and EPA/DHA on pulmonary DNA adduct levels. FO, EPA, and
DHA significantly decreased pulmonary BPDE-dG and total DNA adducts in A/J mice compared to
CO. *, p < 0.05, **, p < 0.01; (n = 4–5, one-way ANOVA). E, EPA; D, DHA, h, high dose; l, low dose.

3.2.2. The Effects of Omega-3 Fatty Acids EPA and DHA on Hepatic PAH-DNA Adducts

The levels of hepatic BP-DNA adducts were also determined to further understand
BP metabolism and target organs. These results provided us information regarding the
mechanisms by which EPA and DHA prevent the liver from PAH-mediated DNA mutation
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and damage. Overall, BPDE-dG adduct levels in the liver were lower (Figure 5) than those
in the lungs, suggesting that the lung is a target organ for carcinogen BP. FO, EPA, DHA, or
EPA+DHA significantly suppressed the formation of BPDE-dG adduct compared to CO
control with P-values being small than 0.05 or 0.01 (Figure 5). The levels of total hepatic
DNA adducts were also significantly decreased by DHA or EPA+DHA (Figure 5).
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3.2.3. The Modulation of CYP and AHR Genes by BP and Omega-3 Fatty Acids

In order to understand the mechanisms by which omega-3 fatty acids prevent mice
from chemical carcinogenesis and the formation of DNA adducts, we analyzed the ex-
pression of genes involved in PAH metabolism (e.g., Cyp1a1, 1a2, 1b1, Ahr). As shown in
Figure 6, carcinogen BP significantly induced gene expression of Cyp1a1, 1a2, and 1b1 in
both the liver and lungs compared to the control (CO). However, omega-3 fatty acids signif-
icantly inhibited the expression of these CYP1 genes as well as Ahr gene in the liver. Lung
Cyp1a1 and 1b1 were also significantly inhibited by omega-3 fatty acids. The lung’ lacks
CYP1A2, so it was not determined. It is well known that CYP1B1 and 1A1 enzymes play
pivotal roles in the bio-activation of BP to DNA-reactive metabolites. Inhibition PAH-DNA
adducts by omega-3 fatty acids could be detoxification of PAH through the downregulation
of CYP1B1 as well as 1A1 mRNA. Our results suggest that EPA and DHA may play a role
as nutritional inhibitors of CYP1B1.

3.2.4. Western Blot Analysis

Western blot analysis for each group showed (Figure 7, Table S1) that the omega-3 fatty
acids (EPA and DHA) also significantly attenuated the expression of Cyp1b1 in both the liver
and lungs, as well as 1a1 in the liver only compared to CO. These results further support
and confirm the results from gene expression. CYP1B1 expression in the lungs at protein
and mRNA levels was induced significantly by PAHs but was suppressed by about 50–70%
in the lungs of EPA/DHA-treated mice. This study entailed using at least 4 individual
mice per group, and statistical comparisons were performed by one or two-way ANOVA,
followed by modified t-tests. Our results suggest that EPA and DHA may play a role as
nutritional inhibitors of CYP1B1.
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3.2.5. The Modulation of DNA Repair Genes

Since the DNA repair system could play an important role in removing adducted
nucleotides by nucleotide excision repair (NER) or base excision repair (BER), we analyzed
several genes that are involved in DNA repair. We observed that the expression of Ddb2,
Neil2, Parp1, Pcna, and Xpc genes were significantly inhibited by omega-3 fatty acids in
liver but not in lung (Figure 8) compared to CO group. The lungs are a target organ for
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PAH exposure and there was more DNA adduct formation in the lungs compared to the
liver. These results suggested that DNA repair genes show higher expression when DNA
is damaged, such as the formation of DNA adducts. High levels of the expression of DNA
repair genes will help to remove DNA adducts and prevent from DNA mutation during
replications. Eventually, the attenuation of DNA damage and PAH-DNA adducts will
reduce the risk of tumor formation.
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4. Discussion

PAHs including BP are carcinogenic environmental pollutants to which humans are
exposed daily. Epidemiological and basic scientific studies have shown that most cancers,
including lung cancers, are caused by environmental exposure to complex mixtures (e.g.,
PAHs from cigarette smoke, PM 2.5, and through diet [43]). DNA adducts are considered
biomarkers for carcinogenic PAH exposure in many organs of human [20,44], including
smokers [6]. Experimental animal and epidemiological studies have shown that the levels
of carcinogen DNA adducts correlated with the incidence of tumors in rodents [5,45] and
humans [11,14,15]. Therefore, it is imperative that approaches are developed that can
decrease the formation of carcinogen-DNA adducts, repair adducted nucleotides, and
remove damaged cells caused by DNA adducts. These effective strategies are expected to
significantly decrease lung cancer risk, especially in high-risk populations such as cigarette
smokers and in people subjected to occupational exposures.

Several reports have demonstrated omega-3 fatty acids to decrease cancer risk [46]. It
has been reported [47] that omega-3 polyunsaturated fatty acids in FO show a variety of
health benefits and inhibit the development of human lung and other cancers. Recently,
Vega et al. [48] reported that omega-3 fatty acids and their metabolites are thought to alter
pivotal pathways underlying the progression of lung cancer. We previously reported that
dietary FO decreased hepatic PAH-DNA adduct levels by about 45% in the mice treated
with complex PAHs [28]. These observations suggest that such omega-3 fatty acids could
act as chemopreventive agents and antioxidants to reduce the liver cancer risk in people
exposed to PAH carcinogens [49].
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In current studies, we also confirmed that dietary FO and pure omega-3 fatty acids
EPA and DHA significantly diminished the formation of pulmonary PAH-DNA adducts.
We recently reported [5] there are mechanistic relationships between hepatic PAH-DNA
adducts and tumor incidence in B6C3F1 mice treated with PAH mixtures. It is expected that
attenuation of PAH-DNA adducts will play a key role in cancer prevention. Menhaden FO
contains approximately 30.5% omega-3 polyunsaturated fatty acids (PUFA) including EPA
(12.9%) and DHA (8.19%) [29]. Several studies have shown that omega-3 fatty acids play
very significant roles in cancer prevention [22,50–52] through increasing apoptosis [53–55],
and by inhibiting cell proliferation [29,56].

In order to further confirm that omega-3 fatty acids play an important role in FO-
mediated inhibition of PAH-DNA adduct formation and potential prevention of chemical
carcinogenesis, we performed studies with pure omega-3 fatty acids EPA and/or DHA
studies. Short-term (3 days) intakes of EPA and/or DHA significantly decreased levels of
carcinogen-DNA adducts in the lungs (Figure 3) and the liver (Figure 4) of mice treated
with BP. Interestingly, we discovered that EPA and/or DHA significantly inhibited the
expression of genes and proteins involved in PAH metabolism such as CYP1A1, 1B1,
1A2, and ARH by qPCR (Figure 5) and Western blot analysis (Figure 7). These results
could partially explain the mechanisms how omega-3 fatty acids suppressed the formation
of PAH-DNA adducts. It is well known that PAHs are metabolically activated through
CYP1B1 [57,58]. CYP1B1 plays an important role in the metabolic activation of PAHs to
DNA-reactive metabolites [59]. The inhibition of CYP1B1 could detoxify carcinogenic
PAHs, block the formation of PAH-DNA adducts, and suppress tumor formation.

PAH carcinogens have the ability to elicit the formation of DNA damage through a
variety of mechanisms, including covalent binding of PAHs with DNA, and oxidative DNA
damage [20,60]. It was reported that BP significantly augmented the levels of 8-hydroxy-2′-
deoxyguanosine (8-OHdG) and BPDE-DNA adducts in many organs [61]. Although this
study did not determine the oxidative DNA lesions by PAHs, and inhibition of oxidative
DNA damage by FO, EPA, and DHA, many studies showed that EPA and DHA can
decrease oxidative stress and inflammation by acting as antioxidants [62,63]. Wiest et al.
reported that EPA and DHA guard against cigarette smoke-induced oxidative stress [64].

Omega-3 fatty acids may play multiple roles in the protection of DNA from damage
induced by carcinogenic PAHs. One of the mechanisms is DNA repair pathways which are
able to remove mutated or adducted nucleotides [65,66]. DNA repair mechanisms elicit
genomic stability by removing DNA damage induced prior to replication completion [67].
In our short-term study, we found that five DNA repair genes were inhibited by omega-3
fatty acids in liver but not in lung. DNA damage including DNA adducts could lead
to the augmentation of the expression of genes involved in DNA repair, but this could
have happened at a later time point. Consistent with this idea, we observed an increased
trend in the expression of pulmonary DNA repair genes in mice exposed to omega-3 fatty
acids, especially EPA (Figure 6). Long-term animal experiments that are in progress would
confirm these mechanisms.

The possible mechanisms of the attenuation of PAH-DNA adducts and the potential
decrease in the risk of tumor formation in mice by omega-3 fatty acids are displayed
in Figure 9. It was reported that CYP1A1 played important roles in detoxification of
carcinogenic PAHs rather than in metabolic activation [68–70]. Therefore, the conversion of
carcinogenic PAHs to relatively non-toxic chemicals by enzymes will significantly decrease
the formation of DNA adducts. Alternatively, omega-3 fatty acids may enhance DNA repair
and induce apoptosis when DNA or cells are damaged by carcinogenic PAHs. Omega-3
fatty acids were shown to attenuate cell growth [71] and enhance apoptosis in many human
cancer cells [51] including colon [72], prostate [73], pancreas [74], lung [29], and mammary
cancers [75]. We have also shown [23] that retinoic acid suppresses BP-adducts in HepG2
cells by inducing apoptosis. However, FO, EPA, an DHA did not cause apoptosis in our
current experiments.
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differently in regard to chemical carcinogenesis. Therefore, novel approaches are needed to
develop highly effective chemopreventative agents.

5. Conclusions

Our results revealed that omega-3 fatty acids significantly attenuated levels of PAH-
DNA adducts in lungs of mice exposed to carcinogenic PAHs. FO, EPA and DHA signifi-
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