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Abstract: The antioxidant and anti-inflammatory effects of hormetic nutrition for enhancing stress
resilience and overall human health have received much attention. Recently, the gut–brain axis has
attracted prominent interest for preventing and therapeutically impacting neuropathologies and
gastrointestinal diseases. Polyphenols and polyphenol-combined nanoparticles in synergy with pro-
biotics have shown to improve gut bioavailability and blood–brain barrier (BBB) permeability, thus
inhibiting the oxidative stress, metabolic dysfunction and inflammation linked to gut dysbiosis and
ultimately the onset and progression of central nervous system (CNS) disorders. In accordance with
hormesis, polyphenols display biphasic dose–response effects by activating at a low dose the Nrf2
pathway resulting in the upregulation of antioxidant vitagenes, as in the case of heme oxygenase-1
upregulated by hidrox® or curcumin and sirtuin-1 activated by resveratrol to inhibit reactive oxygen
species (ROS) overproduction, microbiota dysfunction and neurotoxic damage. Importantly, modula-
tion of the composition and function of the gut microbiota through polyphenols and/or probiotics
enhances the abundance of beneficial bacteria and can prevent and treat Alzheimer’s disease and
other neurological disorders. Interestingly, dysregulation of the Nrf2 pathway in the gut and the
brain can exacerbate selective susceptibility under neuroinflammatory conditions to CNS disorders
due to the high vulnerability of vagal sensory neurons to oxidative stress. Herein, we aimed to
discuss hormetic nutrients, including polyphenols and/or probiotics, targeting the Nrf2 pathway and
vitagenes for the development of promising neuroprotective and therapeutic strategies to suppress
oxidative stress, inflammation and microbiota deregulation, and consequently improve cognitive
performance and brain health. In this review, we also explore interactions of the gut–brain axis based
on sophisticated and cutting-edge technologies for novel anti-neuroinflammatory approaches and
personalized nutritional therapies.

Keywords: Gut–brain axis; inflammation; Nrf2 pathway; hormesis; probiotics; polyphenols; neurological
disorders; organoids

1. Introduction

Growing evidence has highlighted the interaction of the gut–brain axis as a critical
determinant of human health and/or disease and a key regulator of host physiology, in-
flammatory responses and redox homeostasis [1]. The high prevalence of gut and brain
disorders poses serious public health challenges worldwide [2,3]. Perturbations in gut
microbiota composition are characterized by increased oxidative stress, neuroinflammation
and progressive neuronal death, leading to the development of brain disorders, particularly
Alzheimer’s disease (AD), Parkinson’s disease (PD), schizophrenia, autism spectrum disor-
der (ASD), depression and anxiety [4–8]. For this reason, the gut microbiota, the complex
ecosystem of microorganisms in the gastrointestinal tract, is also called “the second brain”
or “the forgotten endocrine organ” [9]. Indeed, an imbalance of the gut microbiota can
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lead to increased permeability of the intestinal epithelial barrier (IEB) with the release of
proinflammatory cytokines and promotion of a neuroinflammatory response [10]. Recently,
preclinical evidence suggests that gut dysbiosis is closely associated with increased cir-
culating neurotoxic mediators, such as TNF-α, IL-1β, IL-6 and C-reactive protein, which
can directly cause low-grade inflammation predisposing to progressive gastrointestinal
and nervous system disorders [11,12]. Furthermore, patients with brain damage and amy-
loidosis exhibit a perturbated gut microbiome with the abundance of Escherichia/Shigella
significantly associated with an increase in proinflammatory cytokine gene profiles and
a reduction in the abundance in the anti-inflammatory Eubacterium rectale [13]. It is well
established that oxidative stress induces progressive degeneration and neuronal death [14].
Specifically, the imbalance between free-radical production and the efficiency of antioxidant
defense pathways triggers neuronal dysfunction and degeneration, being vagal sensory
neurons particularly vulnerable to reactive byproducts species of oxidative stress including
hydrogen peroxide, 4-hydroxynonenal (4-HNE), malondialdehyde (MDA) and acrolein [15].
It is interesting to note that moderate stress is protective for the organism because it activates
adaptive resilience pathways of crucial importance for maintaining cell survival and an opti-
mal quality of life. However, when stress exceeds the intracellular defense capacity, sensory
neurons to counteract ROS overproduction activate neuroprotective pathways involving
the translocation of antioxidant nuclear factor erythroid 2–related factor 2 (Nrf2) from
cytosol into the nucleus and the upregulation of detoxification phase II enzymes, termed
vitagenes, particularly heat shock protein 70 (Hsp70), heme oxygenase-1 (HO-1), sirtuin-1
(Sirt1), thioredoxin (Trx)/thioredoxin reductase system, NADPH quinone oxidoreductase
1 (NQO1) and γ-glutamylcysteine synthetase (γ-GCs), which is part of the glutathione
redox system to protect against the initiation and progression of neurodegenerative dis-
orders [16–22]. Likewise, the disequilibrium in the function and composition of the gut
microbiota promotes the production of toxic metabolites and proinflammatory cytokines
that destroy the IEB with the activation of local and distant immune cells and deregulation
of enteric neurons, astrocytes and microglial cells, which ultimately reduces the amount of
beneficial substances such as short-chain fatty acids (SCFAs), neurotransmitters such as
gamma amino butyric acid (GABA), acetylcholine, serotonin, norepinephrine, histamine
and anti-inflammatory lipid mediators such as lipoxin A4 [23,24]. This culminates in a
BBB dysfunction that triggers a vicious circle converging in neuroinflammation, and pre-
disposing neuronal and glial cells to apoptotic death, primarily in the cerebral cortex and
hippocampus, underlying the development of dementia [25]. Of note, gut dysbiosis associ-
ated to the onset and progression of neurodegeneration is characterized by a significative
reduction in specific microbial species belonging to the Firmicutes and Bifidobacterium phyla,
and an increase in pathogenic species, mainly pro-inflammatory bacteria of the Proteobac-
teria and Bacteroidetes phyla [26]. Similarly, individuals with neuropsychiatric disorders
(i.e., depression, anxiety, schizophrenia and ASD) showed higher levels of Enterobacteri-
aceae, Alistipes and Clostridium, and lower levels of Faecalibacterium [27–30]. Therefore, the
gut–brain axis is emerging as an attractive target for the discovery of new natural dietary
supplements to restore intestinal inflammation due to alterations in gut microbiota bacteria
for brain health and cognitive function [31,32]. The human gut metabolome is the result of
a complex chemical interplay between commensal microbes and their hosts. Indeed, the
gut microbiota produces thousands of metabolites which specifically interact with various
bacterial species and strains, dietary interventions (e.g., probiotics and polyphenols) and
host molecules, including amyloids and dopamine, which may reach the brain to regulate
neurological function. In particular, the gut microbiota produces SCFAs that strengthen
the intestinal barrier, stimulate the intestinal L-cell to secrete glucagon-like peptide 1
(GLP-1) and gastrointestinal peptide (GIP) to directly or indirectly inhibit NLR family pyrin
domain-containing 3 (NLRP3) inflammasome activation, insulin resistance and ROS [33].
Furthermore, SCFAs stimulate intestinal gluconeogenesis (IGN) in intestinal epithelial cells
and, together with GLP-1/GIP, activate the vagus nerve from the enteric nervous system
(ENS) and brain-derived neurotrophic factor (BDNF) signaling in the brain, reinforcing the
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importance of gut and neural signaling networks to promote brain health [33]. Importantly,
a meta-analysis study observed that dietary anthocyanins effectively reduced the Firmi-
cutes/Bacteroidetes ratio and increased the content of SCFAs including acetic acid, propionic
acid and butyric acid to improve gut health depending on the duration and dosage of
treatment [34]. Recent clinical evidence reported that SCFAs levels are altered in the fecal
and urine samples of patients with ASD [35], as well as in gut and feces among patients
with AD and PD [36]. The interplay between polyphenols and gut–brain axis signaling
provides an important tool to modulate gut microbiota composition and the abundance of
specific beneficial bacteria for maintaining intestinal barrier integrity and CNS function [37].
Furthermore, the dietary intake of probiotics in adequate doses interferes with potential
pathogens alleviating the symptoms not only of inflammatory bowel diseases (IBD) but
also of neuropsychiatric and degenerative disorders via the gut–brain axis in experimental
models [38] and in patients [39,40]. This review integrates the emerging literature focused
on the molecular mechanisms and cellular pathways linking gut microbiota disorders
to IEB and BBB dysfunctions, underlying the development of nervous system disorders.
Therefore, identifying the mechanisms by which specific vital gut microorganisms and/or
dietary natural compounds influence intestinal immune cells or potentially cross the BBB
to affect central nervous system cells will help us achieve a deeper comprehension of
gut–brain axis crosstalk for human health. Finally, antioxidant and anti-inflammatory
signaling pathways activated by hormetic nutrients including polyphenols alone and/or in
synergy with probiotics using the innovative organoid technology for microbiota-based
neuroprotective and anti-neuroinflammatory therapeutic options are also discussed.

2. Hormetic Nutrition and Redox Resilience Signaling in Gut–Brain Axis

Hormetic nutrition is a novel idea that emerged from the extensive research over
the past two decades on the occurrence of hormesis in the biological and biomedical
sciences, especially in the areas of food science and nutrition. Hormesis represents the
confluence of a wide range of adaptive strategies that mediate the upregulation of sev-
eral highly co-ordinated series of processes at the cell, organ and organismic levels to
protect against endogenous and exogenous stress insults and/or events. The hormesis
adaptions are expressed via the occurrence of dose–time responses that are biphasic with
a low or moderate dose stimulation and a higher dose inhibition. Interestingly, the low-
dosage stimulating responses result in enhanced stress resilience/adaptive capacity via
anti-inflammatory and antioxidant molecular networks that promote healthy aging and
longevity, prevent the onset or slow the progression of neurodegenerative and chronic
gastrointestinal diseases. Thus, the hormetic dose response integrates the responses of both
single natural compounds and complex mixtures in their biological responses, showing
consistency with the quantitative features of the hormetic pattern in the gut–brain axis. It
is important to remember that toxic compounds including ROS, inflammatory cytokines
and microbial metabolites are also essential at low levels in the initial phases, as they
create minimal stress which is fundamental for the activation of antioxidant pathways
and resilience mechanisms promoting gut barrier integrity and neuroprotection. Of rele-
vance, the cellular stress resilience response activated by hormetic nutrients is emerging
as a promising preventive and therapeutic strategy to counteract oxidative stress, inflam-
matory states and gut microbiota dysregulation occurring both in gastrointestinal and
brain disorders [41,42]. Specifically, numerous polyphenols, including resveratrol, hidrox®,
curcumin, Crocus sativus L., mushrooms and blueberry modulate and upregulate the Nrf2
signaling pathway and stress resilience vitagenes to preserve gut and brain homeostasis
during pathological processes [43–48]. Several preclinical and clinical studies highlighted
that hormetic nutrition with appropriate dosages of antioxidant polyphenols alone and/or
in synergistic action with probiotics shows powerful neuroprotective and therapeutic ef-
fects by activating the Nrf2 pathway and related vitagenes to reduce gut dysbiosis and
attenuate mitochondrial dysfunction, neuroinflammation and cognitive impairment, as
well as symptoms of schizophrenia and depression (Figure 1) [49–54]. The neuroprotective
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potential of these natural substances is thought to be mediated via the ENS, neuroendocrine
system and vagus nerve, as well as the spinal nerves of the gut [55–61]. In this scenario,
probiotics also refer to “psychobiotics”, candidate species of live symbiotic bacteria that,
when ingested in adequate amounts, confer brain health effects to the host for an innovative
nutritional approach targeting gut microbiota to treat various neurological and psychiatric
disorders [62,63]. Notably, probiotics, such as Lactobacillus paracasei, Lactobacillus acidophilus,
Lactobacillus casei, Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus rhamnosus, Bi-
fidobacterium bifidum, Bifidobacterium longum, Bifidobacterium breve and Bifidobacterium infantis,
improve the central expression of BDNF, N-methyl-D-aspartatic acid (NMDA) receptor and
other neuroactive peptides involved in synaptic and neural plasticity to enhance memory,
cognition and behavior, and reduce microglial activation in a wide range of neurological
illness including anxiety and depression [64–67].

GUT-BRAIN AXIS

Psychobiotics 

Hormetic Nutrients
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Figure 1. Hormetic nutrition modulates redox stress resilience vitagenes via gut–brain axis.

A moderate intake of hormetic nutrients including polyphenols and psychobiotics
promotes gut and brain healthy effects through the activation of Nrf2 signaling and stress
resilience vitagenes [62,68,69]. In particular, polyphenols (i.e., hidrox®, curcumin, sul-
foraphane, resveratrol, blueberry and mushrooms), in synergy with psychobiotics, particu-
larly the Bifidobacterium and lactobacillus phyla, upregulate antioxidant vitagenes including
Hsp70, HO-1, γ-GCs, Sirt1 and Trx to inhibit oxidative stress and inflammatory NF-κB
dependent pathways (i.e., TNF-α, IL-6 and IL-1β), leading to gut dysbiosis and the onset of
CNS disorders via microbiota–vagus nerve–brain interactions. Therefore, hormetic nutri-
ents can be considered promising therapeutic agents capable of restoring gut homeostasis
and brain health during pathological conditions.

The possibility of adopting natural antioxidant therapies in the prevention and initial
phases of intestinal and neuronal disorders has been documented as being able to restore or
delay the subsequent phases or to achieve remission [61,63]. Therefore, hormetic nutrition
is a new evolving field in its application to gut and brain health, in both preventative and
restorative study models. Accordingly, hormesis establishes that a low dose of polyphenols
and/or polyphenol-combined nanoparticles, in synergy with probiotics, may modulate
multiple antioxidant avenues, including Nrf2 and cellular phase II antioxidant enzymes
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(e.g., superoxide dismutase, catalase, glutathione peroxidases, thioredoxins/thioredoxin
reductases, peroxiredoxins) and non-enzymatic antioxidant molecules (e.g., glutathione,
hydrogen sulfide, carnosine, coenzyme Q and bilirubin), ultimately acting as neuroprotec-
tive and therapeutic agents [55]. In fact, the moderate consumption of natural compounds
exerts gut and brain healthy effects by promoting the activation of stress resilience vitagenes
and the inhibition of NF-κB-dependent pro-inflammatory pathways [53,56]. This postu-
lates antioxidant vitagenes as a promising target for anti-neurodegenerative approaches
based on the use of polyphenols in order to induce powerful neuroprotective and anti-
neuroinflammatory effects in synergy with probiotics of clinical relevance, as a potential
option to drugs, or the enhancement of classical neuro- and gastrointestinal therapies [58].
However, in the brain, a high dose of polyphenols can produce neurotoxicity related to the
increased production of ROS and inflammatory markers with subsequent neuronal apopto-
sis or depletion of cellular resilience pathways [60]. The bidirectional crosstalk between the
intestinal microflora and the brain occurs through a variety of pathways, including the va-
gus nerve, immune system, metabolic and neuroendocrine pathways and bacteria-derived
metabolites. Compelling evidence suggests a critical role of gut dysbiosis-derived neuroin-
flammation in exacerbating the onset of neurodegenerative and neuropsychiatric disorders,
opening up novel directions to explore gut–brain crosstalk and its underlying molecular
mechanisms. It is noteworthy that systemic inflammation triggered by bacterial products in
the blood stream may stimulate a strong production of pro-inflammatory cytokines by cells
from the innate and the adaptive immune system, which can spread through the blood,
promote the permeabilization of the BBB and reach the brain. Accordingly, CD4+ T-cells,
when stimulated, release high levels of NF-κB, chemokines and inflammatory cytokines
(e.g., TNF-α, IL-1β, IFN-γ and IL-6) and microglial activation markers (e.g., glial fibrillary
acidic protein (GFAP), Sox-10 and TLRs), which in turn produce increased levels of glu-
tamate, TNF-α and reactive oxygen and nitrogen species (ROS/RNS), inducing neuronal
death and the further generation of oxidized and nitrated proteins, thereby indicating
a tight association between neurodegenerative disorders and gut inflammation [70]. In
this scenario, the nutritional therapeutic approach using hormetic nutrients, including
polyphenols, in synergy with probiotics is attracting considerable interest in the scientific
community to prevent and treat inflammation associated to pathophysiological changes in
the diversity of the gut microbiota leading to nervous system disorders along the gut–brain
axis [71,72]. Of particular interest, probiotics in combination with polyphenols induce a
pharmacokinetic resilience to peripheral inflammation that ultimately protects against brain
neuroinflammation by modifying immune cell recruitment to potentially preserve BBB in-
tegrity and prevent cognitive dysfunction under chronic stress conditions [73]. Importantly,
microbial-derived metabolites modulate the intestinal immune response via the activation
of aryl hydrocarbon receptor (AHR) to promote resilience to stress-induced psychiatric
disorders by evoking adaptive changes [74]. Notably, it has been documented that a grape-
derived prebiotic, in synergistic combination with the probiotics Lactobacillus plantarum and
Bifidobacterium longum, acts as a ligand to the AHR on antigen-presenting cells or directly
on the naïve CD4+ T cells, impacting their response to stress and ultimately leading to a re-
duction in the proportions of the Treg and Th17 lymphocytes in the periphery, in particular
in the ileum and liver. The resilience response to inflammation in the periphery ultimately
protects against neuroinflammation in the brain (i.e., pre-frontal cortex and hippocampus)
by altering the recruitment of immune cells and potentially protecting BBB integrity in
gut–brain axis disorders [74]. In addition, magnolol, a lignan found in Magnolia officinalis
at a dose of 10 mg/kg, effectively increased the serum levels of tryptophan metabolites
including kynurenic acid, 5-hydroxyindoleacetic acid, indole-3-acetic acid, indolelactic acid
and indoxylsulfuric acid, which are endogenous AHR ligands to reduce pro-inflammatory
cytokines (TNF-α, IL-6 and IL-1β) and attenuate dextran-induced colitis in rodents [75].
Recent preclinical research described curcumin as capable of suppressing the activation
of the TLR4/NF-κB/STAT pathway that regulates the expression of pro-inflammatory
genes [71]. In addition, a treatment with curcumin nanoparticles significantly decreased the
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mucosal mRNA expression of TNF-α, IL-1β, IL-6, CXCL1 and CXCL2 in colonic epithelial
tissues [76]. Overall, according to hormesis, the dose is a crucial determinant in promoting
gastro- and neuroprotective or harmful effects of nutritional therapies, in particular with
polyphenols alone and/or in synergistic combination with probiotics; therefore, this must
be carefully assessed.

2.1. Resveratrol

The 3,5,4-trihydroxy-trans-stilbene also known as resveratrol is a natural polyphenolic
compound produced by various plants in response to injury or pathogens such as bacteria
or fungi. Food sources of resveratrol include the skin of grapes, berries and red wine [77]. It
promotes numerous pharmacological properties including antioxidant, anti-inflammatory,
anti-aging and anti-carcinogenic effects, gut microbiota homeostasis, neuroprotection, xeno-
hormetic effects and resilience to stress. In congruence with this, pre-clinical evidence has
shown that resveratrol is neuroprotective via modulating the intestinal flora and gut–brain
axis dose-dependently [78]. Interestingly, gut bacteria and, in particular, Bifidobacterium
infantis and Lactobacillus acidophilus, convert the glycosidic form, resveratrol-3-O-β-d glu-
coside, also called piceid, into the bioactive form, trans-resveratrol [79,80]. Resveratrol
and its derivative pterostilbene have been shown to protect against intestinal morphologi-
cal alterations, increased gut permeability, redox imbalance and dysbiosis. In particular,
the molecular mechanism of action of resveratrol on the gut microbiota is its ability to
act on duodenal-mucosal Sirt1 and, thus, improve insulin sensitivity and lower hepatic
glucose levels [81]. In addition to its action on duodenal mucosa, resveratrol improves
hypothalamic insulin sensitivity [81] and mitochondrial biogenesis [82], upregulating Sirt1
via the gut–brain axis. Furthermore, a study conducted by Chen et al. showed that a
resveratrol-supplemented diet (300 mg/kg) modulates the microbiota by inhibiting the
abundance of Escherichia and Actinobacillus and increasing the growth of Bacteroides, Lacto-
bacillus and Bifidobacterium after 2 weeks in piglets [83]. Furthermore, resveratrol regulates
the gut microbiota by activating anti-inflammatory lipid mediators including lipoxin A4,
resolvins, protectins and maresins [84]. Intriguingly, resveratrol confers neuroprotection
via modulating intestinal immune dysfunction. Specifically, the health effects induced by
resveratrol in the brain are attributed to promoting the Th1/Th2 balance towards Th2 po-
larization and skewing the Treg/Th17 balance towards Treg in the SI-LP and subsequently
reducing small intestinal pro-inflammatory cytokines (IL-17A, IL-23, IL-10, IFN-γ and IL-4)
and intestinal vascular permeability via attenuating the circulating levels of inflammatory
cytokines from the small intestine and alleviating cytokines-mediated BBB disruption and
neuroinflammation in mice with a focal cerebral ischemia/reperfusion injury [85]. Of
equal importance, resveratrol regulates the balance of neurotransmitters such as BDNF
and serotonin 5-hydroxytryptamine (5-HT) via the GLP-1 pathway and the activation of
Sirt1 and Foxo genes in the intestine and CNS [86]. Indeed, several authors demonstrated
that resveratrol exhibits anxiolytic and antidepressant effects similar to drugs in a range
from 10 mg/kg to 80 mg/kg per day in a dose-dependent manner, upregulating both ERK
and BDNF, as well as antioxidant markers (i.e., SOD and catalase), and downregulating
inflammatory markers in animal models [87–89]. Unfortunately, few clinical trials have
evaluated the health-promoting effects of resveratrol in gut–brain axis disorders. A recent
study of ten participants with a mild decline in cognition demonstrated that 72 g of grape
consumption for a 6-month period was related to a marked protection from longitudinal
changes in brain metabolism and cognitive function, with an amelioration in attention
and working memory performance [90]. In addition, another human study of 12 healthy
volunteers observed interindividual differences in trans-resveratrol metabolism closely
related to the microbial diversity in feces samples. In particular, the study showed that
an oral dose of 0.5 mg of trans-resveratrol induced lower abundances of Firmicutes and
higher abundances of Bacteroidetes, Actinobacteria (Bifidobacteriaceae and Coriobacteriaceae),
Verrucomicrobia and Cyanobacteria. The authors identified two new resveratrol metabo-
lites, 3,4′-dihydroxy-trans-stilbene and 3,4′-dihydroxybibenzyl (lunularin), produced by
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intestinal bacteria [91]. Furthermore, a recent double-blind, placebo-controlled randomized
clinical study on sixty-two participants demonstrated that resveratrol at a dosage of 250 mg
twice per day in synergy with risperidone reduced hyperactivity and secondary deficits
such as social withdrawal, stereotypic behavior and inappropriate speech in patients with
ASD compared to a placebo group [92]. Lastly, a randomized, placebo-controlled, double-
blind, multicenter 52-week phase 2 study demonstrated that resveratrol at an oral dose of
500 mg once daily was able to permeate the BBB, acting on the CNS and increasing brain
volume loss in patients with mild to moderate AD [93].

2.2. Curcumin

Curcumin is a polyphenolic compound present in Curcuma longa Linn rhizome (Zingib-
eraceae). The recent interest in its therapeutic potential derives from numerous biological
effects including antioxidant [94], anti-inflammatory [95], gut microbiota homeostasis [96]
and neuroprotection [97] in a dose-dependent manner. Emerging preclinical and clinical lit-
erature reported the health-promoting effects of curcumin in gut and brain disorders [98,99].
In the gut microbiota, a treatment of curcumin significantly altered the ratio between bene-
ficial/pathogenic bacterial strains by increasing the growth of Bifidobacteria and Lactobacilli
and reducing the loads of Prevotellaceae, Coriobacterales, Enterobacteria and Enterococci [100].
Indeed, a dose of 500 mg of curcumin and boswellia extracts significantly improved bloating
and abdominal pain symptoms in patients suffering from irritable bowel syndrome (IBS)
and small bowel dysbiosis after 30 days of supplementation [101]. In the CNS, curcumin
provided neuroprotection, ameliorating motor deficits, the aggregation of α-synuclein and
microglial activation with a remarkable abundance of Lactobacillacea and Lachnospiraceae,
increasing the serum levels of methionine, tyrosine, sarcosine and creatine, and depleting
the growth of Aerococcaceae and Staphylococcaceae in a mouse model of PD [97]. In particular,
the neuroprotection induced by curcumin resulted in the upregulation of redox sensory
genes such as HO-1 and NQO1 via the Nrf2-ARE pathway [102]. Moreover, low doses
(20 and 40 mg/kg) of curcumin decreased the sensitivity of the intestinal tract-produced
antidepressant- and anti-anxiety-like effects by elevating serotonin, BDNF and p-CREB
levels in the hippocampus in a rat model of IBS [103]. In humans, a randomized controlled
study conducted by Wynn et al. demonstrated the effectiveness of curcumin capsules at a
dose of 360 mg/day (twice daily as an oral dose) in ameliorating BDNF levels and enhanc-
ing cognitive performance in patients with schizophrenia after 8 weeks [104]. In addition,
a randomized, double-blind trial of 28 participants proved that oral supplementation of
curcumin (2.5 g) for three months was able to decrease uremic toxins such as p-cresyl sulfate
plasma levels in hemodialysis patients, modulating the gut microbiota [105]. Collectively,
curcumin could represent a potential therapeutic option against brain disorders through
the regulation of intestinal dysbiosis, thus improving the abundance of beneficial bacteria
and maintaining a proper gut–brain axis without any apparent toxicity.

2.3. Blueberry

Blueberries are polyphenolic compounds rich in anthocyanins, fiber and sugars with
powerful antioxidant and anti-inflammatory properties capable of modulating the gut
microbiota and brain function in a biphasic dose response manner. It is noteworthy that
blueberry positively influences gut microbiota composition, exhibiting antimicrobial and
antiadhesion properties against pathogenic bacteria and ultimately contributing to brain
health [106,107]. Accordingly, recent preclinical evidence reported that the anthocyanin-rich
extract obtained from blueberries at a dose of 30 mg/day (i) reduced neuroinflammation
and gut dysbiosis by modulating gut microbiota composition, especially increasing the
abundance of Lactobacillales and decreasing the Clostridiales population; (ii) enhanced sero-
tonin levels in the cerebral prefrontal cortex and intestine; and (iii) reversed the synaptic dys-
function in rodent models of autism-like behaviors [106]. In addition, a dose of 300 mg/kg
per day of polyphenol-rich blueberry–mulberry extract significantly changed the gut mi-
crobiota by enhancing the abundance of Lactobacillus, Streptococcus and Lactococcus, and
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decreasing the abundance of Blautia and Allobaculum. This was positively correlated
with an increase in beneficial metabolites, such as α-linolenic acid, vanillic acid and N-
acetylserotonin, to alleviate inflammation and cognitive impairment along the gut–brain
axis in aged mice after 6 weeks of treatment [107]. Furthermore, low doses (6%) of blueberry
anthocyanin-rich extracts attenuate high-fat diet-induced oxidative stress and improve hip-
pocampal status, as well as neuronal function, through an increase in antioxidant enzymes
(i.e., SOD and GSH-Px). Notably, the modulation of the antioxidant pathway stimulated
probiotics (Bifidobacterium and Lactobacillus) and SCFAs producers (Roseburia, Faecalibaculum
and Parabacteroides), improving the colon environment in C57BL/6 mice [108,109]. Human
studies showed that the consumption of a wild blueberry powder beverage in men in-
creased live Bifidobacterium activity after six weeks [110]. Moreover, a pilot study conducted
on 17 women reported that a low dose of 38 g of polyphenol-rich fractions purified from
blueberry (i.e., anthocyanins/flavonol glycosides, sugar/acid fraction, proanthocyanidins
and total polyphenols) and/or prebiotic mix modulated the fecal microbiota composi-
tion of healthy adults and was correlated with an increase in the antioxidant activity in
blood. The study observed that the fecal microbiota fermented with total polyphenols
and sugar/acid fraction supplementation exhibited a higher abundance of Enterobacteri-
aceae and Bifidobacteriaceae, while anthocyanins/flavonol glycosides supplementation and
prebiotic mix produced a significant reduction in Escherichia/Shigella (Enterobacteriaceae)
and an increase in the Lachnospiraceae and Bacteroidaceae families [111]. In addition, a daily
supplementation with blueberry powder (0.5 c) whole-fruit equivalent improved cognitive
performance in middle-aged patients with insulin resistance after 12 weeks [112]. Similarly,
supplementation with blueberry powder at a dosage of 12.5 g per packet enhanced the
brain response and memory function in older adults with MCI and a risk of dementia [113].
Furthermore, a double-blind, parallel randomized controlled trial conducted in 61 healthy
older adults supplemented with 26 g of freeze-dried wild blueberry showed significant
improvements in vascular and cognitive function, as well as in the gut microbiota composi-
tion, by increasing beneficial bacteria such as Ruminiclostridium and Christensellenacea [114].
Another randomized, placebo-controlled clinical study reported that blueberry intake
(25 g/day) during a period of 18 days markedly decreased the plasma concentrations of
pro-inflammatory 9,10-, 12,13-dihydroxy-9Z-octadecenoic acids (diHOMEs), increased anti-
inflammatory docosahexaenoic acid (DHA)- and eicosapentaenoic acid (EPA)-generated
hydroxydocosahexaenoic acids and specialized pro-resolving oxylipins after intense ex-
ercise in untrained adults compared to a placebo [115]. Finally, a recent double-blind,
randomized, cross-over study reported that 30 g of highbush freeze-dried blueberry pow-
der produced from equal proportions of Tifblue® and Rubel® varieties (equivalent to 180 g
fresh blueberries) significantly attenuated abdominal symptoms and ameliorated general
markers of well-being, quality of life and life functioning compared to placebo in patients
with gastrointestinal disorders after six weeks of treatment [116].

2.4. Hidrox®

Hidrox® (HD) is a freeze–dried powder extract from the aqueous fraction of olives
obtained from defatted olive pulps, during the processing of Olea europaea L. after olive oil
extraction [117]. An amount of 12% HD extract contains polyphenols with high antioxidant
potential. The most abundant polyphenol in HD is hydroxytyrosol (40–50%), while 5–10%
contains oleuropein, approximately 20% oleuropein aglycone and gallic acid and 0.3%
tyrosol [118]. Recent preclinical evidence demonstrated that HD possesses significant
antioxidant and anti-neuroinflammatory effects by upregulating the Nrf2 pathway and
vitagenes and downregulating NF-κB signaling to prevent or delay the neurodegenera-
tive process characteristic of AD and PD [119,120]. Furthermore, other recent evidence
showed that low doses (10 mg/kg) of HD modulate oxidative stress and neuroinflamma-
tion through a significant reduction in proinflammatory mediators, such as IL-1β, IL-6 and
TNF-α, and a significant induction of the Nrf2/HO-1 pathway by restoring GSH, SOD and
catalase levels in the bladder and spinal cord of rodent models [121]. In addition, studies
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on Caenorhabditis elegans used as model of PD have reported that low doses of 250 µg of HD
display healthy effects by improving lifespan and stress resistance, mainly exerting a neuro-
protective action by reducing neurotoxic misfolded α-synuclein aggregates in dopaminergic
neurons [122,123]. Clinical research documented the health effects of hydroxytyrosol on
cognitive function. Notably, a randomized, double-blind, placebo-controlled, parallel-
group study on 72 subjects showed that 3 g twice daily of desert olive tree pearls (DOTPs)
containing 162 times more polyphenol hydroxytyrosol than olive oil, improved cognitive
function (memory, attention, reaction time and executive function) in middle-aged and
older adults [124]. Furthermore, in the intestine, hydroxytyrosol supplementation exerts
anti-inflammatory effects in dextran sodium sulfate-induced ulcerative colitis by augment-
ing the colonic Nrf2 pathway, inhibiting NLRP3 inflammasome activation (interleukin-18
and interleukin-1β levels) and modulating gut microbiota in rodents [125,126]. It is inter-
esting to note that an oral administration of 100 mg/kg body weight HT modulated colonic
gut microbiota by increasing the number of Firmicutes and Lactobacillus and reducing the
relative amount of Bacteroidetes. The gut beneficial effects were correlated with the activities
of serum Nrf2 antioxidant enzymes (i.e., SOD, GSH-Px, catalase and NQO1) in the small
intestine of mice [127]. Finally, another randomized, controlled, double-blind, crossover
human study of 12 participants showed that the ingestion of virgin olive oil (25 mL/day)
containing a mixture of olive oil and thyme phenolic compounds (500 mg) determined
changes in the gut microbiota by increasing Bifidobacteria populations, decreasing blood-
LDL in hypercholesterolemic patients after 3 weeks [128]. Overall, hidrox® can be taken
into consideration as a novel approach of therapeutic intervention for intestinal and brain
disorders as it leads to changes in gut beneficial bacteria and ultimately enhances the
cognitive function and quality of life in humans.

2.5. Crocus sativus L.

Crocus sativus L., widely known as saffron, is a perennial plant belonging to the Iri-
daceae family. Commonly, it is cultivated in Iran, Spain, Morocco, Turkey, India, Greece
and Italy [129]. The flowers comprise six purple tepals where both petals and sepals are
fused; moreover, they present a white style surrounded by three yellow stamens and a red
stigma separated into three threads. Saffron performs several pharmacological activities
such as antioxidant [130], anti-inflammatory [131], hepatoprotective [132], neuroprotec-
tive [133], antidepressant [134] and anti-carcinogenic activity [135], and maintains gut
microbiota balance [136]. Recent literature documented the heathy effects of saffron in
gut–brain axis disorders. Notably, it has been documented that there are significant an-
tibacterial dose-response effects of saffron polyphenols in the reduction of Lactobacillus and
Clostridium species in the cecal microbiome in vivo [136]. The major bioactive molecules
of saffron include crocin (C44H64O24), crocetin (C20H24O4), picrocrocin (C16H26O7) and
safranal (C10H14O). Interestingly, a study conducted by Khodir et al. showed the anti-
inflammatory and anti-oxidant activity of crocin at a low dose of 20 mg/kg orally via the
upregulation of Nrf2/HO-1 signaling and the downregulation of caspase-3 activity in the
colon of rats [137]. Furthermore, safranal inhibited gut tissue damage induced by dextran
sodium sulfate, ROS and intestinal epithelial cell death, showing significant protective ef-
fects in maintaining intestinal homeostasis in drosophila [138]. Furthermore, a recent study
demonstrated that a new herbal formulation containing Edgeworthia gardneri (Wall.) Meisn.,
Sibiraea angustata and Crocus sativus L., at a total dose of 26 g, improved hyperglycaemia
and modulated gut dysbiosis by reducing lipopolysaccharide (LPS) levels; the same study
also reported a dose-dependent decrease in circulating levels of IL-6 and TNF-α along
with an increase in the amount of Proteobacteria and Actinobacteria and a reduction in the
Firmicutes/Bacteroidetes ratio in diabetic fatty rats after 6 weeks [139]. In the brain, saffron
constituents have been shown to be neuroprotective by upregulating Nrf2 signaling and
stress resilience vitagenes in numerous brain disorders, including neurodegenerative and
neuropsychiatric pathologies, in a hormetic dose response manner [133]. In line with this,
saffron (40 mg/kg) was synergistically associated with endurance exercise, increased BDNF,
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serotonin and muscular neurotrophin-3 mRNA levels in the hippocampus of rats [140].
Furthermore, the neuroprotective efficacy of saffron tea infusion (90 mg styles/200 mL)
against aflatoxin B1-induced neurotoxic damage in terms of enhancing learning and mem-
ory performance and cholinergic activity, as well as reducing monoaminergic and oxidative
markers in the brain of rodent models after 2 weeks, has also been demonstrated [141].
Further evidence revealed that a low dose of 30 mg/kg via oral gavage of crocin improved
unpredictable chronic mild stress-induced anxiety and depression through a downregu-
lation of brain oxidative stress, cortical malondialdehyde, inflammatory mediators (i.e.,
TNF-α and IL-6) and corticosterone serum levels after 4 weeks in rats [142]. Finally, a
clinical trial conducted by Kell and coworkers on 128 participants with low mood showed
that affron® at a dosage of 28 mg per day for 4 weeks improved mood, anxiety and stress
management without side effects compared to a placebo group [143]. Overall, the data
suggest that saffron and its active compounds show an excellent safety profile and could
represent potential candidates for the prevention and treatment of gut and brain disorders.

2.6. Polyphenols of Nutritional Mushrooms

The recent literature has shown great attention to the beneficial effects of nutritional
mushroom polyphenols contained in Hericium erinaceus and Coriolus versicolor for treating
gut microbiota dysbiosis and cognitive damage [144,145]. Notably, extensive evidence
documented that the polyphenols of HE and CV inhibit neuroinflammation and oxidative
stress to prevent and/or slow the onset of major neurodegenerative diseases, including AD
and PD [55,146,147], and psychiatric disorders such as ASD [148].

2.6.1. Hericium erinaceus

Hericium erinaceus (HE) is a medicinal mushroom containing several bioactive con-
stituents with anti-cancer, anti-inflammatory, anti-oxidative and neuroprotective proper-
ties [55,148,149]. In particular, HE contains erinacines and hericerin that induce a neu-
rotrophic effect by stimulating the nerve growth factor (NGF) biosynthesis responsible for
the survival, growth and differentiation of neurons [150]. Interestingly, HE also contains a
great number of polyphenols acting as strong antioxidants for the inhibition of tyrosinase
and free radical scavenging [151]. Preclinical evidence showed that HE can be used as
a prebiotic to regulate the gut microbial community in animal models [152]. In particu-
lar, it has been demonstrated that an intake with 0.8 g of HE for 16 weeks can regulate
the gut microbial community including the pathogenic intestinal genera Campylobacter,
Streptococcus and Tyzzerella implicated in inflammation and obesity in aged dogs [152].
Moreover, the supplementation of HE improved gut microbiota composition, producing
SCFAs both in rats with ulcerative colitis [153] and in healthy adults [154] to enhance the
gut barrier function. In the brain, HE attenuated p-tau and amyloid-β deposition while
in the intestine it improved gut microbiota diversity by promoting the growth of SCFAs-
producing bacteria and by suppressing the abundance of Helicobacter. In the same study,
HE was also shown to enhance the activation of superoxide dismutase, catalase and glu-
tathione peroxidase, and inhibit the secretion of malondialdehyde and 4-hydroxynonenal,
confirming that in APP/PS1 mice this mushroom promotes neuroprotective effects via
upregulation of the Nrf2 pathway [155]. Furthermore, HE influenced the composition of the
intestinal microbiota, particularly increasing the relative abundance of beneficial bacteria
such as Lachnospiraceae, Ruminococcaceae and Akkermansiaceae, and reducing the microbial
population of Muribaculaceae, Rikenellaceae, Lactobacillaceae and Bacteroidaceae, promoting
the immunomodulatory effects via the NF-κB, MAPK and PI3K/Akt pathways in vitro
and in experimental animal models after 28 days [156]. In addition, HE mycelium-derived
polysaccharide supplementation at a dose of 500 mg/kg per day markedly improved the
nutritional status and decreased the incidence of diarrhea and intestinal inflammation
through an increase in Lactobacillus reuteri and a reduction in Streptococcus lutetiensis in
cynomolgus monkey used as a model of ulcerative colitis after 4 weeks [157]. In addition,
other authors also demonstrated that a new polysaccharide isolated from HE (HEP10)
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suppressed the LPS/DSS-induced production of iNOS and COX-2 and proinflammatory
mediators such as TNF-α, IL-6 and IL-1β, as well as NLRP3 inflammasome, in rodent mod-
els of colitis and in macrophages. Furthermore, HEP10 reversed the dextran sulfate sodium
(DSS)-induced changes in both composition and structure of intestinal bacteria by reducing
the Proteobacteria phylum and increasing Akkermansia muciniphila dose-dependently [158].
Finally, a recent pilot trial conducted by Xie et al. on 13 healthy individuals observed that
3 g/day of HE powder taken as a food supplement modulated gut microbiota composi-
tion and serum biochemical parameters. Notably, the study found that HE significantly
upregulated beneficial bacteria, such as Bifidobacterium and Bacteroidetes, as well as SCFAs-
producing bacteria, such as Roseburia and Faecalibacterium, and downregulated pathobionts,
such as Escherichia_Shigella, Streptococcus thermophilus, Bacteroides caccae and Anaerostipes
hadrus, in blood and fecal samples [159].

2.6.2. Coriolus versicolor

Coriolus versicolor (CV) is another nutritional mushroom that acts as a prebiotic to
modulate the intestinal microbiome composition [160] and brain function [60]. Recent
evidence reported the anti-inflammatory and antioxidant properties of CV in experimental
models [161–163]. In line with this, it has been shown that CV at a dose of 200 mg/kg
induced antioxidant and anti-inflammatory effects, upregulating the Nrf2/HO1 pathway
and downregulating the Toll-like receptors 4 (TLR4)/NF-kB cascade in a murine model of
colitis [161]. Interestingly, the synergistic combination of HE and CV at a dose of 200 mg/kg
orally for 28 days upregulated antioxidant Nrf2/HO-1 redox signaling and increased anti-
inflammatory lipoxin A4 to inhibit the neuroinflammation (NF-κB pathway) and apoptosis
of dopaminergic neurons in a rodent model of PD [162] and TBI [147]. In addition, a
very recent clinical study by our research group demonstrated that a CV treatment for
6 months at a moderate dosage promoted neuroprotective effects by downregulating α-
synuclein and NF-κB-mediated pro-inflammatory cytokines and upregulating the Nrf2
pathway and stress resilience of vitagenes to counteract oxidative damage, particularly of
protein carbonyls and 4-hydroxynonenal (4-HNE), in the lymphocytes of patients with
Meniere’s disease and at increased risk of developing neurodegenerative disorders [163].
Finally, more recent evidence has shown that CV improves gut dysbiosis, predominantly
suppressing Clostridium (belonging to Firmicutes) and increasing the Bacteroides phylum
both in the serum and cecal contents [164].

3. Allostasis and Resilience in Gut and Brain

Stress adaption to environmental challenges is also defined as “allostasis”. The concept
of allostasis emerges as a new view of stress and resilience to it, specifically referring to
the process that maintains cellular homeostasis and drives other physiological changes
in response to environmental perturbations [165]. Allostasis responses are not consid-
ered negative but reflect the fact that stress adaptive responses are crucial for survival,
healthspan and lifespan extension [165]. The gut and brain are central organs of oxidant
stress and resilience/adaptation to stress (allostasis), but they also contribute to pathophys-
iology (“allostatic load/overload”) when they are overused or perturbated. Brain resilience
denotes the capacity of an organism to cope to neuronal insults (e.g., neurotoxicity, neu-
roinflammation and oxidative stress) or psychological perturbations through the activation
of allostasis mechanisms and neuronal mediators to promote stress adaptation and mental
health. In line with this, the neuronal mediators of stress adaptation implicated in gut
and brain homeostasis—such as HPA; cortisol; the autonomic nervous system and vagus
nerve; metabolic hormones and immune system mediators; neurotrophins, such as BDNF;
endogenous neurotransmitters such as GABA, glutamate, acetylcholine and serotonin;
cellular stress response mediators such as Nrf2 and vitagenes; and anti-inflammatory lipid
mediators (lipoxin A4)—promote adaptation to several stressors (e.g., oxidative stress,
inflammation and mitochondrial disfunction), but the same mediators display biphasic
effects and can also participate in pathophysiology when they are dysregulated or overused
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with respect to their physiological balanced network (allostasis load and overload) [166].
Therefore, acute stress, also defined as “eustress”, is beneficial in the short term since it
enhances the adaptive capabilities of an organism and increases the antioxidant resilience
responses, hormesis and cross-tolerance mechanisms, and is considered an example of
allostasis; however, in the long term it turns into chronic stress, also called “distress”, and
is maladaptive, leading to a dysregulated Nrf2 pathway and predisposing one to the onset
and progression of central nervous system disorders [167]. For instance, proinflammatory
cytokines can modulate the production of corticosteroids, which in turn can suppress
inflammatory cytokine production. Likewise, the sympathetic and parasympathetic sys-
tems exert different effects on inflammatory cytokines, with the former stimulating their
production and the latter inhibiting them. It is important to emphasize that allostasis and
allostatic load and overload apply to the gut–brain axis [168]. An optimal gut equilib-
rium due to the amounts of beneficial bacteria and their metabolites promotes functional
neural activity that drives synaptic plasticity, mediated in part by the vagus nerve and
systemic hormones, but also by endogenous excitatory and inhibitory neurotransmitters,
amino acids, neurotrophic factors and other mediators. Changes in how such adaptive
mediators respond likely explain the changes in the vulnerability of the gut microbiome
to environmental stressors such as proinflammatory cytokines produced by pathogenic
bacteria, leading to intestinal dysbiosis or favoring mental illnesses including AD, PD,
depression and autism. Indeed, the gut and brain are constantly adapting to a changing
environment. This is the very essence of allostatic load/overload applied to the gut and
brain [168]. Therefore, allostatic overload results in dysregulated HPA axis regulation,
elevated chemokines and inflammatory cytokines, reduced synaptic plasticity and persis-
tently activated enteric microglia, culminating in a dysbiotic gut microbiota. The functional
crosstalk between the gut–vagal sensory neurons–brain axis is also implicated in allostasis
for stress adaptation and resilience [168]. Several independent pathways and bioactive
molecules contribute to the gut–brain axis bidirectional signaling. These pathways include
proinflammatory mediators, metabolic signaling, oxidative markers, stress modulators,
dietary nutrients, neuroendocrine factors and a direct neuronal crosstalk via the vagus
nerve [169,170]. Inflammatory processes protecting the body from injury or invasion also
impose an allostatic load and the vagus nerve mediates the inflammatory reflex. Notably,
afferent vagus sensory fibers sense peripheral inflammatory cytokines produced by gut bac-
teria and convey signals to the brain to generate an adaptive or maladaptive response. The
latter triggers a neuroinflammatory cascade and dysregulated BBB, culminating in impaired
cognitive function. On the other hand, inflammatory signals activate the hypothalamus
via vagal afferents, triggering cholinergic vagal efferent fibers to suppress the release of
local and serum proinflammatory cytokines and macrophages, restoring the control mecha-
nisms of the adaptive anti-inflammatory reflex [171]. Importantly, afferents and efferent
vagal sensory fibers in allostasis are implicated in modulating the potentially detrimental
effects of allostatic load/overload for gut and brain health. Importantly, allostatic load is a
cumulative measure of physiological dysregulation and is influenced by multiple factors
including nutrition. Emerging evidence reported that berries intake and their bioactive
polyphenols alleviate stress by modulating the BDNF and HPA axis in the hippocampus,
which in turn reduces neuroinflammation and attenuates allostasis load scores, ultimately
improving resilience and potentially reducing the severity of stress-related disorders [172].
Similarly, probiotics are known to affect the composition and function of microbiota for
the maintenance of allostasis adaptations, ultimately promoting brain resilience in the
context of environmental stress challenges related to perturbations of gut microbial diver-
sity (dysbiosis), leading to systemic inflammation/neuroinflammation [170]. In the same
way, the ingestion of a strain of Lactobacillus in mice has been shown to attenuate stress-
induced neurogenic skin inflammation (allostasis) and the inhibition of hair growth along
the skin–gut–brain axis [173]. Overall, the antioxidant nutritional approach in synergy
with psychobiotics targeting crucial pathways and neuronal mediators including the Nrf2
pathway to modify the composition of the gut microbiota and stimulate vagal sensory
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neurons could provide an effective alternative treatment paradigm to promote allostasis
and resilience during stressful challenges in gut–brain axis disorders.

4. The Role of Epigenomics and Nutrition in Gut–Brain Axis

Epigenomics has grown rapidly over the past two decades due to its importance
in numerous physiological and pathophysiological processes, including gut–brain axis
disorders [174]. Epigenetics consists of DNA methylations, histone modifications and
the dysregulation of micro-RNAs in order to regulate the accessibility of specific DNA
regions to transcription factors and allow them to adapt the genomic expression to the
environmental changes [175]. Emerging evidence demonstrated that epigenetics mediates
gene–environment interactions and contributes to the vulnerability of neurodegenerative
and psychiatric disorders such as depression and anxiety, schizophrenia and autism [176].
Accordingly, studies documented epigenetic aberrations such as DNA methylations, hi-
stone modifications or miRNAs dysregulations found in the postmortem brain or blood
cells of patients with psychotic or autism-spectrum disorders tightly linked to the patho-
genesis [177]. Epigenetics plays a crucial role in regulating host physiology by altering
the metabolic activity of the intestinal microbiome, which depends on the environment
and nutrition. Interestingly, gut microbiota bacteria synthesize and modulate their hosts to
produce metabolites, such as SCFAs [178], tryptophan and indole derivatives [179] and neu-
rotransmitters including GABA, glutamate, acetylcholine, dopamine, norepinephrine [180],
Nrf2 and polyphenols [181]. The epigenetic interactions between the gut–brain axis via
several bacterial-produced metabolites and cytokines and their ability to cross the BBB
allow them to explicate their neuroactive properties that are potentially implicated in
mental health and/or disease. Importantly, SCFAs are important mediators by which
bacteria affect the host epigenome and can inhibit the activity of histone deacetylases
(HDACs), resulting in chromatin changes generally associated with increased histone
acetylation of non-coding target genes [182]. Among SCFAs, butyrate and propionate pro-
duced by commensal microbials induced the differentiation of Treg cells and ameliorated
intestinal inflammation and the development of colitis via an enhancement of histone H3
acetylation in the promoter of naïve T cells and expression of the Foxp3 gene in vitro and
in vivo [183]. Of relevance, changes in DNA methylation have been ascribed to an increase
in pro-inflammatory cells, in particular promoters of IL-6 and IL-1β, as well as promotors
of chemokine and chemokine receptors, such as CXCL13 and CXCR3, with significantly
hypomethylated and elevated levels of neutrophils found in stools of children affected by
ASD specifically associated with dysbiosis, an inflammatory state and gut permeability
features [184]. Nowadays, nutritional therapy through polyphenols and/or probiotics that
interact with DNA, also referred to as “nutriepigenomics”, represents a complementary
and alternative approach in gut and nervous system disorders, demonstrating positive
effects in subjects with epigenetic variations and drug resistance [185].

4.1. Tryptophan, Kynurenine and Indole Pathways

Tryptophan metabolism along the serotonin, kynurenine and indole pathways can be
directly influenced by gut microbials. Some bacteria strains (i.e., Escherichia coli, Clostridium
sp. and Bacteroides sp.) harbor a tryptophanase enzyme responsible for the conversion
of tryptophan into indole and its derivatives, such as indole-3-aldehyde (IAld), indole-
3-acetic-acid (IAA) and indole-3-propionic acid, which can give rise to a wide range of
neuroactive signaling molecules. Additionally, tryptophan can be metabolized into 5-HT
via aromatic amino acid decarboxylase (AAAD) activity, or kynurenine by the enzymes
tryptophan-2,3-dioxygenase (TDO) or the ubiquitous indoleamine-2,3-dioxygenase (IDO).
Lipopolysaccharides (LPS), an inflammatory cell wall component from Gram-negative
bacteria, can induce the expression of IDO, increasing the conversion of tryptophan to
kynurenine. The latter, produced from the periphery, is also a potent agonist of AHR capa-
ble of crossing the BBB to regulate the intestinal immune system [186]. On the other hand,
circulating SCFAs, such as butyrate, can directly modulate central kynurenine pathways.



Antioxidants 2024, 13, 484 14 of 41

Specifically, butyrate has been demonstrated to inhibit IDO activity and to modulate the
kynurenine pathway in a STAT1/HDAC-dependent manner [187]. In addition, in stressed
mice, the production of H2O2 by Lactobacillus strains, such as Lactobacillus reuteri, can be
protective against the development of despair behaviors by directly inhibiting intestinal
indolamine 2,3-dioxygenase 1 (IDO1) expression and decreasing the circulating kynure-
nine levels [187]. Conversely, the reduction in Firmicutes and the subsequent decrease in
SCFAs synthesis observed in MDD patients has been linked to increased inflammation,
and cytokines are also known to promote tryptophan utilization for kynurenine synthesis
via IDO activity [188]. This pathway gives rise to the neurotoxic metabolite quinolinic
acid that crosses the BBB to reach the CNS and reduces central serotonergic availabil-
ity [189]. Clinical research showed that children with ASD exhibit an altered tryptophan
metabolism, with reduced levels of tryptophan and an increased kynurenine to tryptophan
ratio in the plasma [190], suggesting a shift in the tryptophan metabolism from serotonin
synthesis to the kynurenine pathway. Furthermore, in these ASD children, a correlation
was observed between altered concentrations of tryptophan and serotonin with gut dys-
biosis thorough a significant decrease in Dorea and Blautia, as well as Sutterella, and an
increase in Clostridiales associated with the severity of the symptoms [190]. Probiotic species
belonging to Lactobacillus and Bifidobacterium may shift the host tryptophan metabolism
by suppressing the kynurenine pathway. Furthermore, Lactobacillus are reported to be
able to degrade tryptophan into indole compounds, such as IAld, ILA and IAA [191].
In addition, the administration of Lactobacillus rhamnosus leads to the remodeling of the
DNA methylation code at the BDNF and Tph1A promoter genes in the gut and brain
of zebrafish after 28 days [192]. Recent evidence reported that indole-3-lactic acid can
regulate gut homeostasis. Notably, an Escherichia coli strain isolated from the feces of
tinidazole-treated individuals showed that indole-3-lactic acid reduced the susceptibility of
mice to dextran sulfate sodium-induced colitis by inhibiting the production of epithelial
CCL2/7, thereby reducing the accumulation of inflammatory macrophages in vitro and
in vivo [193]. Similarly, the supplementation of polyphenols extracted from Fu brick tea
(post-fermented tea) promoted the transformation by gut microbiota bacteria of tryptophan
into indole-3-acetic acid attenuating colitis, immune cells infiltration and inflammatory
cytokines release through a direct enhancement of AHR-mediated protection in rodents,
dose-dependently [194]. The dietary enrichment of fibers from oat and rye brans enhanced
the production of SCFAs, leading to improved gut integrity, reduced liver inflammation
and the expression of genes related to tryptophan metabolism, in particular, tryptophan
hydroxylase 1 (TPH-1) mRNA activity and enhanced indole propionic acid production in
mice [195] and in humans [196].

4.2. γ-Aminobutyric Acid

γ-aminobutyric acid (GABA) is the main inhibitory neurotransmitter of the CNS. It
is produced by various bacteria, including Bacteroides, Bifidobacterium, Lactobacillus and
Escherichia spp., and this involves ENS homeostasis and disturbance, such as acid secretion,
bowel motion, gastric emptying and abdominal pain [197]. Alterations in GABAergic gene
promotors, such as GAD2, NPY and SST, involves H3K4 methylation as well as histone
modifications leading to prefrontal dysfunction and the development of schizophrenia and
autism [198]. Probiotic therapy with L. rhamnosus (JB-1) reduced GABA(Aα2) mRNA expres-
sion in the prefrontal cortex and amygdala, but increased GABA(Aα2) in the hippocampus,
inhibiting stress-induced corticosterone and anxiety- and depression-related behavior in
a rodent model via the vagus nerve [199]. Translational studies showed that L. reuteri
PBS072 and B. breve BB077 are potential probiotic candidates for improving stress resilience,
cognitive functions and sleep quality through the inhibition of the epigenetic enzyme LSD1,
promotion of GABA and expression of serotonin [200]. Furthermore, probiotic-fermented
buckwheat significantly increased the contents of GABA, rutin, total polyphenols and
total flavonoids by improving oxidative stress and chronic inflammation, reversing the
high-fat diet-induced intestinal dysbiosis through a reduction in the ratio of Firmicutes
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and Bacteroidetes and improving the abundance of SCFA-producing bacteria, such as
Bacteroides, Lactobacillus and Blautia, in murine models of dyslipidemia [201]. Finally, a pre-
natal treatment with resveratrol-activating histone deacetylase Sirt1 prevented epigenetic
alterations caused by valproic acid in the GABA receptor and synaptic proteins and the
expansion of initial damage resulting in the maintenance of the neuronal composition in
the medial prefrontal cortex and hippocampus in a rat model of autism [202].

4.3. Hypothalamic–Pituitary–Adrenal Axis

Epigenetic modifications are involved in neurophysiological changes, the inflamma-
tory response, hypothalamic–pituitary–adrenal (HPA) axis activity and glucocorticoid
receptor resistance, and they increase the risk for the development of metabolic and mental
disorders [203]. Preclinical genetic evidence demonstrated that prenatal stress induces
manic behavior in female offspring rats accompanied by hyperactivity of the HPA axis,
epigenetic adaptations in the activity of HDAC and DNMT, and acetylation in the histones
H3K9 and H3K14, as well as increased levels of adrenocorticotropic hormone (ACTH) [204].
Glucocorticoid receptor (NR3C1) is an important target for epigenetic regulation in the HPA
axis. Importantly, decreased expression of the glucocorticoid receptor (NR3C1) gene, which
is also susceptible to epigenetic modulation, is a strong indicator of impaired HPA axis
control and function. Accordingly, recent evidence demonstrated that epigenetic changes
driving the reprogramming of NR3C1 expression and regulation contribute to the aberrant
expression profile of genes, particularly variations in FKBP5 underlying the HPA axis
impairment which likely decreases resilience to the adaptive stress response and increases
susceptibility to psychiatric disorders and suicide in teenagers [205]. In addition, epigenetic
variations of the NR3C1 gene have also been associated with early-life experiences in both
animals and humans. Studies of early experiences in rats showed that DNA methylation
at CpG islands on the NR3C1 promoter in specific regions of the brain was altered by
maternal care, resulting in NR3C1 expression and HPA responses to stress [206]. In hu-
mans, stressful life events (e.g., trauma and abuse) have been correlated with higher DNA
methylation at the NR3C1 promoter region and biological markers of HPA axis activity,
such as salivary cortisol [207]. The gut microbial balance and/or a modified diet through
probiotics supplementation and polyphenols may prevent or restore epigenetic alterations
(e.g., proinflammatory genes in autism) [208]. Notably, children with autism and LPS-
exposed rat model of autism exhibited lower SCFA concentrations and an overactivation
of the HPA axis. Notably, SCFA-producing bacteria, such as Lactobacillus, might be the
key differential microbiota between the control and LPS-exposed offspring [208]. Inter-
estingly, a sodium butyrate treatment contributed to regulate the HPA axis, in particular
corticosterone and corticotropin-releasing hormone receptor 2 expressions, ultimately im-
proving anxiety and social deficit behaviors in autism-like rats [209]. Finally, a recent study
demonstrated that a polyphenols-enriched diet, such as with quercetin (20 mg/day), xan-
thohumol (10 mg/day) and phlorotannins (20 mg/day), ameliorated the dysregulation of
the HPA axis and monoamine neurotransmitters (i.e., dopamine and 5-hydroxyindoloacetic
acid) and this was correlated with marked changes in bacterial composition and diversity,
with a significant increase in Enterorhabdus, Asteroplasma, Lachnospiraceae and Coprococcus,
ultimately reversing depression in animal models of early-life stress caused by maternal
deprivation [210].

5. Polyphenol Nanoparticle Delivery Systems in Gut and Brain Disorders

Recently, several scientists have highlighted the importance of novel polyphenol
nanoparticle delivery systems to enhance the bioavailability and stability of circulating
polyphenols and ultimately preserve gut and brain health [211,212].

5.1. Polyphenol Nanoparticles for Brain Health

Nowadays, nanotechnology increasingly represents a promising approach for the
delivery of therapeutic agents into the CNS, in particular polyphenol nanoparticles capable
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of improving the overall bioavailability and therefore diffusing more efficiently across the
BBB to enhance brain delivery [213]. Preclinical evidence demonstrated that an intravenous
injection of curcumin loaded with T807-modified nanoparticles at a dosage of 5 mg/kg was
capable of effectively crossing the BBB by enhancing its permeation into the brain. Notably,
curcumin loaded with T807-modified nanoparticles displayed a high binding affinity to the
hyperphosphorylated form of tau protein in neurons by reducing its levels and inhibiting
neuronal cell death to attenuate AD progression both in vitro and in vivo [214]. More-
over, other authors observed the neuroprotective potential of curcumin-loaded lipid-core
nanocapsules in a murine model of AD. The results of this study showed that a low dosage
of 10 or 1 mg/kg p.o. of curcumin-loaded lipid-core nanocapsules for 14 days provided
higher neuroprotection than the high dose of 50 mg/kg p.o. of free curcumin by reducing
levels of Aβ1-42-induced proinflammatory circulating cytokines, such as TNF-α, IL-6,
IL-1β and IFN-γ, in the prefrontal cortex, hippocampus and serum of aged mice [215]. In
addition, Sadegh et al. documented the low doses (4 mg/kg) of curcumin-nanostructured
lipid carriers passing through the BBB and targeting oxidative stress markers (ADP/ATP ra-
tio, lipid peroxidation and ROS formation) in the hippocampal tissue, resulting in enhanced
learning and memory performance in vitro and in AD rats [216,217]. Moreover, curcumin
loaded with chitosan and bovine serum albumin nanoparticles at a dosage of 100 µg/mL
effectively increased the drug penetration across the BBB, promoted the phagocytosis of
the Aβ peptide and further supported the activation of microglia by repressing TLR4-
MAPK/NF-κB signaling and M1 macrophage polarization in vitro [218]. In particular,
selenium nanoparticles raised the number of beneficial bacteria including Bifidobacterium,
Dubosiella, Desulfovibrio and Gordonibacter to inhibit the Aβ aggregate-induced neurotoxicity,
downregulating the expression of NLRP3 inflammasome and the inflammatory cytokine
secretion nitrite (NO), interleukin-6 (IL-6), IL-1β and TNF-α, leading to neuroinflamma-
tion and death in vitro and in vivo models of AD [211]. A recent clinical study evaluated
the effects of daily oral use of curcumin dispersed with colloidal nanoparticles (named
Theracurmin®), a highly bioavailable form of curcumin, on memory performance. This
study demonstrated that Theracurmin® containing 90 mg of curcumin taken twice daily
improved both the memory and attention in non-demented adults, and this was strongly
associated with reductions in amyloid plaque and tau accumulation in the hypothalamus
and amygdala after 18 months of treatment without any toxic effects [219].

5.2. Polyphenol-Nanoparticles for Gut Health

In the intestine, oral treatment (0.2%) with curcumin nanoparticles through the inhibi-
tion of NF-κB activation repressed mucosal inflammation and increased butyrate-producing
bacteria, Clostridium cluster IV and XIVa, with an elevation of fecal butyrate levels and
an expansion of regulatory T cells (Tregs) in the colonic mucosa in experimental ani-
mal models of IBD [220]. Notably, the prebiotic effects of oral polyphenol nanoparticles
in modulating gut microbiota and brain function relieving anxiety- and depression-like
behaviors and cognitive impairment in a mouse model of acute colitis have been also
reported [218]. Specifically, an oral treatment (dose of 1 mg mL−1, 200 µL) of polyphenol
armored with TNFα–small interfering RNA and gallic acid-mediated graphene quantum
dot (GAGQD)-encapsulated bovine serum albumin nanoparticle, with a chitosan and tan-
nin acid multilayer, prolonged the residence time in the colon and regulated gut microbial
homeostasis by increasing Lactobacillus and inhibiting the expression of GABA receptors
via gut–brain axis crosstalk, consequently alleviating neuroinflammation and improving
the mood and cognitive recovery of IBD model mice [221]. Furthermore, it has been shown
by Li et al. that an oral treatment of TGN-Res@SeNPs nanocomposites effectively improved
AD by inhibiting Aβ aggregation and deposition in the hippocampus, decreasing ROS
and enhancing antioxidant enzyme activities, leading to a downregulation of the neuroin-
flammatory cascade, particularly the NFκB/MAPK/Akt signaling pathway, and ultimately
alleviating gut microbiota disorders by decreasing proinflammatory gut pathogens such as
Alistipes, Helicobacter, Rikenella, Desulfovibrio and Faecalibaculum in cells and rodents [222].
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Interestingly, the health effects of selenium nanoparticles coated with dihydromyricetin
(DMY), a natural polyphenol extracted from grapevine tea (Tg-CS/DMY@SeNPs), in mod-
ulating gut microbiota diversity have been proven. Despite numerous preclinical studies,
unfortunately, clinical trials investigating the potential effects of polyphenol nanoparticle
delivery systems in the prevention and treatment of gut disorders are lacking [223,224].
A recent clinical study demonstrated that a treatment with Theracurmin® (360 mg/day)
for 3 months was effective and safe in patients with Crohn’s disease, and is capable of
ameliorating symptoms [225]. Finally, a placebo-controlled trial revealed that an oral dose
of 500 mg/tablet of curcumin–phospholipid supplementation (Meriva®) taken twice daily
decreased plasma pro-inflammatory cytokines, such as monocyte chemoattractant protein-1
(MCP-1), IFN-γ and IL-4, and lipid peroxidation by modulating gut microbiota composition
through a reduction in the bacterial community of Enterobacter and Escherichia-Shigella, and
a significant increase in the relative abundance of Lachnoclostridium, Lactobacillaceae and
Prevotellaceae after 6 months in subjects with chronic kidney disease [224]. Taken together,
the data indicate that polyphenol-based nanoparticles could represent natural candidates
for innovative therapeutic purposes in gastrointestinal and brain disorders as they are
more bioavailable and stable in the intestine, and are capable of modulating the gut mi-
crobiota and crossing the BBB with potential pharmacological effects at lower doses than
polyphenols alone.

6. The Probiotics for Gut and Brain Health

Gut–brain crosstalk influences neural, endocrine and immune pathways. Probiotics
activating signaling molecules involved in the cellular stress response could represent
an innovative strategy to counteract oxidative stress in gut–brain axis disorders. Recent
evidence has documented that changes in the microbiota due to probiotic consumption can
modify resilience to stress in vitro, in vivo and in humans [71,226–228].

6.1. Neuropsychiatric Disorders

Emerging evidence suggests the potential therapeutic benefits of psychobiotics act-
ing through the gut–brain axis to affect neuronal development, function and behavior,
representing a novel approach for mental health in neuropsychiatric disorders including
anxiety and depression, ASD and schizophrenia [229]. In line with this, Hao et al. demon-
strated that Faecalibacterium prausnitzii (ATCC 27766) exhibited psychobiotic effects by
increasing cecal SCFAs and plasma IL-10 levels, and decreasing corticosterone and IL-6
levels in rats with anxiety and depression-like behaviors caused by chronic unpredictable
mild stress [230]. Furthermore, Bifidobacterium breve CCFM1025 significantly inhibited
depression- and anxiety-like behaviors by mitigating HPA axis hyperactivity and inflamma-
tion, upregulating BDNF levels and downregulating c-Fos levels, raising the serotonergic
system in the gut and brain of chronic stressed mice after 5 weeks [231].

6.1.1. Depression and Anxiety

Recent evidence reported that Lactobacillus gasseri NK109 alleviated colitis and gut
dysbiosis, leading to psychiatric disorders such as depression and memory deficits induced
by exposure to Escherichia coli K1 by inhibiting neuroinflammatory NF-κB signaling and
IL-1β expression and increasing BDNF levels in the hippocampus of mice via the gut–vagus
nerve–brain axis [232]. Similarly, the oral administration of Lactobacillus reuteri NK33 in
synergistic combination with Bifidobacterium adolescentis NK98 at a dosage of 1 × 109 colony
forming unit (CFU)/day significantly inhibited NF-κB activation, IL-6 expression and LPS
levels, and induced hippocampal BDNF expression and CREB phosphorylation, alleviating
anxiety and depression symptoms by suppressing gut dysbiosis through the inhibition of
Proteobacteria in cells and in rodents [233]. In addition, the oral administration of Lactococ-
cus lactis (1 × 109 CFU mL−1) attenuated anxiety and depressive-like behaviors in response
to chronic unpredictable mild stress with the improvement of 5-hydroxytryptamine (5-HT)
metabolism in serum and colon via the modulation of gut microbiome composition after
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5 weeks in vivo [234]. Numerous clinical studies highlighted the protective and therapeu-
tic role of neuroactive probiotics in reducing the inflammatory cascade and kynurenine
levels and increasing BDNF expression via a functional crosstalk between the gut–brain
axis in major depressive disorders [235,236]. Indeed, the SANGUT study conducted in
120 patients with depression for 12 weeks demonstrated that a gluten-free diet and the
synergistic combination of psychobiotics, particularly Lactobacillus helveticus and Bifidobac-
terium longum at a dosage of 3 × 109 CFU, inhibited the immune–inflammatory cascade
and improved both psychiatric symptoms and gut barrier integrity [237]. In addition, a
recent randomized, double-blind, placebo-controlled study demonstrated in 63 participants
with chronic stress that the intake of Lactiplantibacillus plantarum HEAL9 significantly re-
duced the plasma concentrations of two pro-inflammatory markers (soluble fractalkine
and CD163) in subjects exposed to acute stress compared to placebo after four weeks [238].
Interestingly, gut inflammation induced by pathogenic bacteria and their products can
directly reach the brain via the systemic circulation, triggering neuroinflammation with the
activation of a cytokine cascade and the release of TNF-α, IL-6 and IL-1β, which in turn
influenced various neuronal processes and promote depressive-like behaviors along the
gut–vagus nerve–brain axis. Notably, gut microbiota inflammation triggers an alteration of
tryptophan–kynurenine metabolism and the formation of neurotoxic quinolinic acid in the
brain, resulting in mental health problems including depressive and schizophrenia symp-
toms [186]. Accordingly, a double-blind, randomized, placebo-controlled study conducted
on 60 patients with depressive and anxiety symptoms showed that the probiotic bacteria
Lactobacillus Plantarum 299v decreased plasma kynurenine levels, improving cognitive
performance and function compared to the placebo [235]. Moreover, depressed patients
had an altered fecal microbiota composition, with increased abundance of Enterobacteriaceae
and Alistipes and reduced levels of Faecalibacterium compared to controls [27]. In addition, a
randomized, double-blind, placebo-controlled clinical trial of 40 participants with a diagno-
sis of major depressive disorder (MDD) showed that probiotic capsules containing strains
of Lactobacillus acidophilus (2 × 109 CFU/g), Lactobacillus casei (2 × 109 CFU/g) and Bifidobac-
terium bifidum (2 × 109 CFU/g) increased antioxidant biomarkers including plasma GSH
levels and decreased serum high-sensitivity C-reactive protein (hs-CRP) and insulin levels
compared to the placebo after 8 weeks [239]. Lastly, a recent randomized placebo-controlled
trial of 82 patients with depression documented that the probiotic OMNi-BiOTiC® Stress
Repair plus biotin with at least 7.5 billion organisms per 1 portion (3 g) increased beneficial
bacteria including Ruminococcus gauvreauii and Coprococcus in the gut and upregulated
vitamin B6/B7 metabolism, improving psychiatric symptoms compared to the placebo
after 28 days of treatment [240].

6.1.2. Autism

Importantly, a randomized controlled study demonstrated in children with ASD,
anxiety and gastrointestinal symptoms that a probiotic formulation (Vivomixx®) contain-
ing 450 billion lyophilized bacterial cells belonging to Lactobacillus and Bifidobacterium
taken twice a day exerted health effects not only in reducing gut dysbiosis but also in
improving language and cognitive functions, as well as neurotransmission and connec-
tivity attenuating inflammatory markers (TNF-α, IL-6) plasminogen activator inhibitor-1
(PAI-1) and chemical pollutants (phthalates) in plasma and urine after 6 months [241].
Another randomized, double-blinded, placebo-controlled pilot trial revealed that a daily
intake of a Lactobacillus plantarum PS128 probiotic (6 × 1010 CFU) in combination with oxy-
tocin reduced serum inflammatory markers such as IL-1 β with positive socio-behavioral
symptoms related to the increase of Eubacterium hallii in ASD patients after 28 weeks [242].

6.2. Neurodegenerative Disorders

Recently, probiotic supplements have been considered to improve cognitive function
via the gut–brain axis in major neurodegenerative disorders including AD and PD [39,243].
Preclinical evidence demonstrated that a new formulation of lactic acid bacteria and bifi-
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dobacteria (SLAB51) at a dosage of 200 bn bacteria/Kg/day improved the cognitive function
and plasma concentration of gut hormones such as ghrelin, leptin, GLP1 and GIP, as well
as reduced pro-inflammatory cytokines, by modulating the gut microbiota composition
with an increase in Bifidobacterium spp. and a reduction in Campylobacterales in 3xTg-AD
mice after 24 weeks [244]. The same authors also observed that probiotic SLAB51 showed
antioxidant effects, upregulating the Sirt1 pathway, which in turn reduced ROS production
and preserved brain redox homeostasis in 3xTg-AD mice after 16 weeks [245]. Furthermore,
Ma et al. demonstrated that a synergistic treatment with Lactobacillus mucosae NK41 and
Bifidobacterium longum NK46 promoted anti-inflammatory effects by inhibiting LPS levels,
NF-κB activation and TNF-α expression, resulting in an increase in BDNF expression,
modulating the gut microbiota composition by enhancing the population of Bacteroides
including Odoribactericeae and reducing Firmicutes and Proteobacteria phyla, as well as
suppressing Aβ amyloid accumulation in the hippocampus of 5xFAD mice [246]. Numer-
ous clinical trials reported that a daily intake of probiotics reduces oxidative stress, gut
dysbiosis, neuroinflammatory cytokines and cognitive impairment in patients with AD
and PD [247–249]. In congruence with this, a recent study observed that probiotic supple-
mentation with kefir at the minimum dose of 2 ml/kg for 90 days influenced CNS function
via the gut–brain axis, impacting positively on brain function (ameliorating memory,
language, visual-spatial function, executive functions, conceptualization and abstraction
abilities), systemic pro-inflammatory cytokines (downregulating IL-1, IL-6, IL-8, IL-12
and TNF-α), systemic antioxidant enzymes (upregulating GSH, GPx and SOD) and DNA
repair/apoptosis (enhancing PARP-1 and p53 expression) in elderly patients with AD [247].
Recent randomized clinical controlled studies have demonstrated that the probiotic for-
mulation containing Lactobacillus acidophilus, Bifidobacterium bifidum and Bifidobacterium
longum (2 × 109 CFU/day each) co-supplemented with selenium (200 µg/day) significantly
improved cognitive function in AD patients [248] and the movement in PD patients [249]
via a reduction in C-reactive protein and malondialdehyde, and an enhancement of antioxi-
dant GSH after 12 weeks. In addition, a randomized study performed by Aljumaah et al.
demonstrated that Lactobacillus rhamnosus GG reduced the relative abundances of Prevotella
ruminicola and Bacteroides thetaiotaomicron, improving cognitive dysfunction in patients with
MCI and promoting healthy brain aging in an elderly population [250]. Another recent
randomized, double-blind placebo-controlled study conducted on 130 patients with MCI
observed that a daily intake of Bifidobacterium breve MCC1274 (2 × 1010 CFU) for 24 weeks
changed the gut microbiota composition by preventing the brain atrophy progression that
ultimately improved the cognitive function in older patients with MCI [251]. Taken together,
data from the emerging literature highlight that the gut microbiota and brain communicate
with each other via the gut–brain axis, and this bidirectional crosstalk implicates that
bacteria-derived metabolites can have a positive or negative impact on the CNS, leading to
brain health and/or the onset of neurodegenerative disorders. Therefore, a proper dose of
probiotics could represent great promise for the treatment of dementia in humans, as they
interfere with a range of metabolic and antioxidant signaling pathways involved in the
maintenance of cellular resilience homeostasis, which is of crucial importance for neural
cells’ survival and the quality complex of human life.

7. The Vagus Nerve a “Neurometabolic Sensor” of Gut–Brain Axis

The gut–brain axis involves the autonomic nervous system (ANS), including the
parasympathetic nervous system, that is, the vagus nerve (VN), originating from the cranial
parasympathetic nucleus and innervates numerous structures and organs such as the
heart and gastrointestinal tract. The VN is the longest nerve of the organism and a key
neural pathway between the gut and the brain, containing 80% and 20% of afferent and
efferent fibers, respectively [252]. It plays an essential role in interoceptive awareness.
Notably, the VN acts as a “neurometabolic sensor” because it is able to sense the microbiota
metabolites through its afferent fibers to transmit this information from the gut to the brain,
where it is then integrated in the central autonomic network to generate an adequate or
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maladaptive response. The latter could perpetuate a pathological state of the digestive
tract or could favor psychiatric and neurodegenerative disorders, as well as gastrointestinal
diseases [253,254]. Under physiological conditions, the VN is involved in gut and brain
homeostasis because it senses the “milieu intérieur” of the gut through the interaction of
nutrients and/or gut peptides (i.e., cholecystokinin, GLP-1, leptin and serotonin), with
vagal afferents boosting the responses to maintain neurological and gastrointestinal health
status [255]. The VN possesses anti-inflammatory properties by regulating gut dysbiosis
due to peripheral cytokines release through its vagal afferent fibers and the activation
of the HPA axis, which in turn stimulates the secretion of cortisol by the adrenal glands,
whereas through vagal efferent fibers it induces a vagovagal reflex called the cholinergic
anti-inflammatory pathway [256]. The cholinergic anti-inflammatory pathway is mediated
by enteric neurons that innervate intestinal lamina propria to stimulate the release of
acetylcholine (ACh) at the synaptic junction, which, via binding to the α-7-nicotinic ACh
receptors (α7nAChR) of macrophages, ultimately inhibits the release of TNFα, IL-1β
and IL-6 [256] (Figure 2). Perturbations of vagal homeostasis due to oxidative stress
trigger a neuropathological cascade with the release of pro-inflammatory cytokines and
glucocorticoids that act on vagal receptors and the microbiota, leading to dysbiosis and the
onset of gastrointestinal disorders, ultimately promoting brain damage [257].

Figure 2. Schematic overview of the vagus nerve as “neurometabolic sensor” of the gut–brain
axis. The vagus nerve is a “neurometabolic sensor” of the gut–brain axis, since it senses microbiota
metabolites, including SCFAs, LPS, tryptophan and GABA, generated by pathogenic bacteria, as
well as those produced by beneficial bacteria such as Bifidobacteria through its afferent fibers, to
transfer this gut information to the brain, where it is integrated into the central autonomic network
and then generates an adapted or inappropriate response. The abundance of pathogenic bacteria
implicates a shift towards a pro-inflammatory state in the gut, yielding increased gut permeability
and the subsequent triggering of a peripheral inflammatory response, which in turn impacts vagal
sensory neurons through its afferent fibers, culminating in neuroinflammation and impaired cognitive
function. Elevated inflammatory cytokines in the bloodstream and stress activate the HPA axis
through ACTH, leading to cortisol secretion which affects the immune cells and contributes to cytokines
release. On the other hand, the efferent sensory fibers activate the cholinergic anti-inflammatory
pathway that stimulates the release of acetylcholine (ACh) to inhibit the secretion of proinflammatory
cytokines such as TNFα, Il-1β and Il-6. At the appropriate dose, hormetic nutrients, especially polyphenols



Antioxidants 2024, 13, 484 21 of 41

in synergy with psychobiotics, as well as Bifidobacteria produced-metabolites such as lipoxin A4,
GLP-1, leptin, SCFAs, BDNF, IAA, AHR and serotonin targeting the Nrf2 pathway, can directly
stimulate the vagus nerve through its afferent sensory fibers to attenuate or reverse the pathophysi-
ological process, converging in the onset of IBD and central nervous system disorders in order to
restore gut and brain homeostasis to environmental challenges (hormesis/allostasis response). IBD:
inflammatory bowel diseases, CNS: central nervous system, AHR: aryl hydrocarbon receptor, IAA:
indole-3-acetic acid, LPS: lipopolysaccharide, HPA axis: hypotalamic pituitary-adrenal axis, ACTH:
adrenocorticotropic hormone, SCFA: short-chain fatty acids, GABA: γ-aminobutyric acid.

The stimulation of vagal afferent fibers in the gut increases the transmission of the
monoaminergic brain system, especially norepinephrine, serotonin and dopamine, and
recently it has emerged as an interesting nondrug therapy not only for the treatment of
gastrointestinal and neurodegenerative disorders, such as IBD and PD, but also of ma-
jor psychiatric conditions, such as depression and anxiety disorders, in which gut–brain
crosstalk is dysfunctional [257,258]. More recently, effective natural therapeutic options,
in particular, dietary supplementation with polyphenols and/or probiotics targeting an-
tioxidant pathways to enhance the vagal tone and inhibit cytokine production in both
neurological and gut disorders via VN modulation, have also been documented [259,260].
For this reason, polyphenols alone and/or in synergy with probiotics are important non-
drug therapies to promote gut and brain resilience to pathological challenges (i.e., stress,
inflammation and gut dysbiosis). In line with this, preclinical and clinical studies docu-
mented the healthy effects of probiotics in repressing neurological and gut disorders via VN
stimulation [199,261–263]. Accordingly, Bravo et al. reported that Lactobacillus rhamnosus
(JB-1) represses stress-induced corticosterone and anxiety- and depression-related behavior
in mice through VN stimulation [199]. In addition, it has been also reported that Lactobacil-
lus reuteri (~1 × 108 organisms/day) reversed the social behavioral deficits in the gut in
a VN-dependent manner via increasing the oxytocin levels in the brain and specifically
in the ventral tegmental area of dopaminergic neurons, ultimately promoting synaptic
plasticity between enteroendocrine cells and vagal afferents in mouse models of ASD [262].
Human studies, especially a double-blind randomized clinical trial on 60 women affected
by normal weight obese and obesity, demonstrated that an intake for 3 weeks of a psy-
chobiotics oral suspension containing strains of Streptococcus thermophilus, Streptococcus
thermophiles, Bifdobacterium animalis subsp. Lactis, Bifdobacterium bifdum, Lactococcus lactis
subsp. Lactis, Lactobacillus delbrueckii spp. Bulgaricus, Lactobacillus acidophilus, Lactobacillus
plantarum and Lactobacillus reuteri at a dose of 3 g/day modulated the body composition,
microbial contamination, psychopathological scores and eating behavior via the VN in pre-
obese–obese women [263]. Intriguingly, Takada and colleagues demonstrated that a daily
administration of milk fermented with Lactobacillus casei strain Shirota (1.0 × 109 CFU/mL)
for 8 weeks markedly repressed salivary cortisol levels, preventing the onset of physical
symptoms in academically stressed students compared to the placebo group [261]. In
support of this, the same authors also observed that an intragastric administration of Lacto-
bacillus casei strain Shirota (2 × 1010 CFU/mL) stimulated gastric vagal afferent activity and
sent sensory signals through the VN to the nucleus tractus solitarius (NTS) of the brain,
thereby modulating HPA axis reactivity and subsequently suppressing the stress-initiated
cortisol response dose-dependently [261]. Likewise, compelling evidence documented that
a daily intake of polyphenols, such as resveratrol and polyunsaturated fatty acids (PUFAs),
modulates the gut microbiota via the endocannabinoid pathway and light, odor and taste
receptors, which, in turn, transfer their messages to the other organs, in particular to the
brain via the VN [264]. The protective mechanism of resveratrol on the intestinal microbiota
is mediated by the upregulation of the Sirt1 pathway, which increases insulin sensitivity
and reduces hepatic glucose production through the activation of the hypothalamic KATP
channel and the innervation of the hepatic VN [265]. Importantly, polyphenols, in partic-
ular flavones and flavone metabolites, are able to modulate neural transmission. In this
regard, Ishii et al. observed that a single oral dose of 50 mg/kL of flavan-3-ols, a catechin
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and procyanidin fraction, crosses nerves and affects adipose tissue through sympathetic
nerve activation and by upregulating thermogenic transcription factors, such as eroxisome
proliferator-activated receptor γ coactivator (PGC)-1α, PR domain-containing PRDM16 and
mitochondrial uncoupling protein 1 (UCP-1), in mouse adipose tissues [266]. The active
flavonoid isoliquiritigenin (10 µM) contained in Glycyrrhiza glabra L. root, Kaempferol-3-
rhamnoside and rosmarinic acid exerted neuroprotection, activating GABA receptors and
decreasing intracellular Ca2+ and glutamate release into cerebrocortical terminals from
synaptic vesicles in murine models [267–269]. In addition, a dose of 25 or 50 mg/kg of epi-
gallocatechin gallate remarkably attenuated the neuronal expression of NADPH-d/nNOS
and cell death in the motor neurons following peripheral nerve injury [270]. Equally im-
portantly, genistein isoflavone, a tyrosine kinase inhibitor, reduced the Ca2+ influx through
T-type CaV3.3 voltage-gated ion channels, affecting nerve activation in a concentration-
dependent manner in vitro and in silico [271]. Furthermore, it has been reported that a
daily supplementation with matured hop-derived bitter acids (35 mg/day) found in beer
enhanced the hippocampal memory and prefrontal cortex-related to cognitive function
via VN stimulation in rodent models of neurodegeneration [272]. Recently, Skiba et al.
evaluated the pharmacometabolic effects of pteryxin (20 µM), a natural coumarin com-
pound, demonstrating that this substance purposely augmented and restored whole-body
acetylcholine, choline and serotonin levels in zebrafish larvae mediated by VN stimulation.
Therefore, pteryxin could be considered an adjunctive therapeutic approach to treat refrac-
tory epilepsy [273]. Interestingly, it has been also demonstrated that ayurvedic medicine,
particularly centella asiatica extract (200 mg), alleviated colitis by inhibiting inflammatory
cell infiltration with reduced myeloperoxidase activity in the colon and upregulated the
expression of tight junction protein (ZO-1, claudin-1 and E-cadherin) to enhance the intesti-
nal mucosa permeability and the abundance of beneficial bacteria, such as the Firmicutes
phylum, and reduce the abundance of the Proteobacteria phylum in order to restore intestinal
motility and promote c-Kit expression in the colon and 5-HT in the brain [274]. Finally, a
very recent randomized, double-blind, placebo-controlled cross-over trial performed on
11 healthy subjects observed that the consumption of 500 mg of UP360 containing Aloe vera,
Poria cocos mushroom and Rosmarinus officinalis extract increased chemokine levels through
the activation of innate immune cell markers (i.e., NKT cells, monocytes, CD8+ T cells
and γδT cells), which was followed by an increase in the antioxidant pathways (i.e., su-
peroxide dismutase and catalase), leading to a significant reduction in TNF-α levels via
vagal communication [275]. Overall, the therapeutic effects of psychobiotics and/or natural
compounds on intestinal inflammation and brain damage are likely due to the activation
of the Nrf2-dependent antioxidant pathways that inhibit gut-mediated cytokine release
via VN stimulation.

8. Ferroptosis and Nrf2 Signaling in Gut–Brain Axis: Relevance to Natural Therapy

Ferroptosis is a newly iron- and lipid peroxidation-dependent cell death cascade first
described by Dixon and colleagues in 2012 [276]. It is caused by the redox state depletion of
the intracellular antioxidant microenvironment, which is tightly controlled by glutathione
(GSH) and glutathione peroxidase 4 (GPX4) and is responsible for regulating ROS levels
via the Nrf2 pathway. Therefore, the depletion and inhibition of GSH antioxidant levels in-
activates and represses the decomposition of toxic lipid hydroperoxides into lipid alcohols
to initiate ferroptosis. Ferroptosis is thus promoted by the suppression of cysteine uptake,
reduced GSH levels or inactivation of the lipid repair enzyme GPX4. Emerging evidence
indicates that lipid peroxidation and GSH metabolism dysfunction trigger ferroptosis by
promoting neuronal loss and CNS-associated damage in a range of neurodegenerative dis-
orders, as well as affecting gut microbiota homeostasis, leading to the pathogenesis or pro-
gression of gastrointestinal diseases [277]. Nrf2 is known to regulate ferroptosis in multiple
pathways and the mechanism of action in which natural compounds target Nrf2 to inhibit
ferroptosis is attracting the attention of many researchers. It is equally noteworthy that the
upregulation of Nrf2 and its target vitagenes (HO-1, NQO-1 and Trx) activated by dietary
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polyphenols, such as flavonoids, contributes not only to neuroprotection, delaying brain
degeneration [278], but is also highly linked to gut microbiota homeostasis during ferropto-
sis [279,280]. Consistent with this, recent preclinical evidence elucidated the underlying
molecular mechanism of quercetin, a natural flavonoid, on gastrointestinal inflammation
and revealed that at a concentration of 50 mg/kg it reduced dietary mycotoxins-induced
intestinal ferroptosis by attenuating the inflammatory TLR4/NF-κB signaling pathway
in mice [281]. In addition, quercetin reduced lipid peroxidation (e.g., downregulating
4-HNE and upregulating the GSH/GSSG ratio) and lipid accumulation, inhibiting hepatic
ferroptosis in vitro and in vivo [282]. In the brain, low doses of quercetin have shown
significant neuroprotective effects by attenuating cognitive impairment and ameliorating
motor behavioral disorders via the inhibition of ferroptosis and the activation of the Nrf2
pathway in vitro and in vivo models of AD and PD [283,284]. In addition, curcumin has
been reported as a novel ferroptosis inhibitor due to its protective effects as an iron chelator,
thus preventing GSH depletion, GPX4 inactivation and lipid peroxidation in pancreatic
cells [285], as well as 6-hydroxydopamine-induced nigral dopaminergic neuronal degen-
eration in PD rats [286] in a dose-dependent manner. Sulforaphane is known as an Nrf2
activator, a mechanism of action for anti-oxidative and anti-inflammatory activities and a
key negative regulator of ferroptosis [287]. Notably, evidence indicated that sulforaphane
inhibited ferroptosis, downregulating lactate dehydrogenase, Fe2+, malondialdehyde and
acyl-CoA synthetase long-chain family member 4 (ACSL4), and upregulating Nrf2, GSH,
glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 (SLC7A11) in vitro
and in vivo [288] (Figure 3).
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Figure 3. Potential mechanism of action of nutrients in preventing ferroptosis via Nrf2 pathway.
Hormetic nutrients, such as polyphenols, in synergy with probiotics upregulate the Nrf2 antioxidant
pathway and intracellular resilience scavengers including GPX4, GSH, SLC7A11, HO-1, ferritin
heavy chain 1 (FTH1), which in turn activates anti-inflammatory lipid mediators such as lipoxin
A4, maresins, resolvins and protectins generated by polyunsaturated-fatty-acid (PUFA) to block
ferroptosis and lipid peroxidation triggered from pro-inflammatory lipid mediators such as 4-HNE,
acrolein, COX-2 and MDA; F2-isoprostanes; inflammatory cytokines including NF-κB; and apoptotic
mediators such as P53, Bax and Caspase-3 [277,280,289]. In particular, GPX4 is able to oxidize glutathione
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(GSH) to oxidized glutathione (GSSG) to reduce lipid peroxides and restore cellular redox homeostasis.
GSH-reductase (GSR) reproduced GSH from GSSG, which was also synthesized by γ-GCs. Cystine
enters cells through a system Xc- transporter and is reduced to cysteine via the thioredoxin reductase
1 (TrxR1) to synthesize GSH. The inhibition of cystine input blocks the synthesis of GSH in cells
and promotes ferroptosis. PUFA activated by acyl-CoA synthetase long-chain family member 4
(ACSL4) starts lipid peroxidation and converts to PUFA acyl-CoA to generate phospholipid (PUFA-
PL) by lysopho-sphatidylcholine acyltransferase 3 (LPCAT3) in the lipid membrane, which reacts
with molecular oxygen through the Fenton reaction to generate peroxide radicals that promote the
dehydrogenation of PUFA to toxic phospholipid hydroperoxide (PLOOHs), which is mediated by
lipoxygenases (LPXs) to drive lipid peroxidation and form the corresponding alcohol (PLOH) and
lipid radicals. The storage of iron is mediated by ferroportin 1 (FPN1) and ferritin is responsible for
the regulation of iron homeostasis. Lipoxin A4 and other anti-inflammatory lipid mediators activated
by nutrients block the toxic lipid cascade via activation of the Nrf2 pathway and antioxidant systems
of crucial importance for maintaining functional intracellular repair mechanisms such as GPX4 and
GSH, thus preventing ferroptosis in both the gut and the brain.

Similarly, epigallocatechin-3-gallate (EGCG) protected against radiation-induced in-
testinal damage by scavenging ROS and inactivating ferroptosis via the upregulation of the
Nrf2 pathway and its antioxidant proteins SLC7A11, HO-1 and GPX4 [289]. A recent study
showed that EGCG exhibits therapeutic effects against the nonalcoholic steatohepatitis
induced by a deficient diet in methionine and choline through shifting gut dysbiosis (i.e.,
Oxalobacter, Oscillibacter, Coprococcus_1 and Desulfovibrio versus Bacteroides, Bifidobacteria
and Lactobucillus), improving the hepatic injury, lipid accumulation, fibrosis and ferrop-
tosis pathway after 4 weeks in animals [280]. Ginkgolide B, a terpenoid found in Ginkgo
biloba, by targeting the Nrf2/GPX4 signaling pathway, has been shown to ameliorate AD-
related cognitive impairment in senescence mice by decreasing the iron content in the
brain, transferrin receptor 1 (TFR1) and nuclear receptor coactivator 4 (NCOA4) expression,
and by increasing ferritin heavy chain (FTH1) expression [290]. Interestingly, salidroside,
a polyphenol contained in Rhodiola Rosea L., effectively reduced intracellular Fe2+ levels,
attenuating lipid peroxidation and mitochondrial damage and enhancing the expression
of GPX4 and SLC7A11 by targeting Nrf2/HO1 signaling to block neuronal ferroptosis
in hippocampal cells and Aβ1-42-induced AD mice [291]. In the same way, the probi-
otic formulation containing three strains of Lactobacilli (Lacticaseibacillus rhamnosus LR04
(DSM16605), Lactiplantibacillus plantarum LP14 (DSM33401) and Lacticaseibacillus paracasei
(LPC09)) and two strains of Bifidobacteria (Bifidobacterium breve BR03 (DSM16604) and B632
(DSM24706)) completely restored the harmful effects of ferroptosis and gut inflammation
due to dinitrobenzene sulfonic acid exposure in colon tissues of ex vivo models (organ-
on-chip) [292]. Taken together, the abovementioned recent findings elucidate the crucial
role of the Nrf2 pathway and vitagenes activated by natural mitigators (i.e., polyphenols
or probiotics) as a rational line of therapy for ferroptosis-induced neurodegeneration and
intestinal dysfunction.

9. Nutritional Therapeutic Interventions Using Innovative In Vitro Modeling

Recent research in stem cell biology has led to the successful three-dimensional culture
of tissue in vitro, also known as “organoids”, or three-dimensional organ-like structures
composed of functional, live cells that can self-renew and spatially organize. The ENS
strongly influences mucosal immunity and epithelial function, and is currently suggested
as an important contributor to IBD development and progression [293]. On the other hand,
ENS dysfunction may lead to bidirectional consequences for the gut and the nervous sys-
tem, as various neurotransmitters are released from ENS neurons and can in turn act on the
intestinal epithelium (gut–brain axis), exacerbating peripheral inflammation and the devel-
opment of neuropathologies [294]. Notably, the direct crosstalk between the gut epithelium
and specific primary afferent fibers is conducted by enterochromaffin cells (EC), which are
proposed as chemosensors of the intestinal epithelial that modulate vagal sensory neurons,
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bacteria products and metabolites, chemical irritants, inflammatory mediators and neuro-
transmitters from the gut directly to the nervous system [295]. In this light, intestinal and
brain organoids provide an innovative in vitro platform to explore cellular communication
and molecular mechanisms of host–microbe interaction and inter-organ crosstalk between
the intestine and CNS in health and/or disease. To note, the discovery of novel natural ther-
apeutic candidates, including polyphenols and/or probiotics tested on organoids, could
be relevant for personalized nutritional medicine of gut and brain disorders, ultimately
revolutionizing research in the fields of neuroscience and gastroenterology (Figure 4) [296].
Recent findings have found that ferulic acid, a polyphenolic compound, promotes the sur-
vival and differentiation of mouse intestine organoids, prevents inflammation and ensures
gut health by protecting the intestinal epithelial barrier; thus, it could be considered as a
potential preventive or alleviating component in the diet of IBD patients [297]. Furthermore,
a study revealed that a low dose (0.1%) of mixture composed of functional amino acids
(L-arginine, L-leucine, L-valine, L-isoleucine and L-cystine) and 100 ppm of a polyphenol-
rich extract from grape seeds and skins regulates epithelial homeostasis and modulates
the gut microbiota in vivo and in intestinal organoids [298]. In addition, another study
by Tveter et al. demonstrated that the administration of proanthocyanidin-rich extract
of grape polyphenols improves glucose metabolism, decreases pathogenic gut bacteria
associated with nuclear transcription factor farnesoid X receptor (FXR) inhibition and
downregulates ceramide synthesis genes (e.g., Smpd3, Cers4 and Sptlc2) in the intestine
of db/db mice after 4 weeks [299]. Interestingly, a recent research conducted by Elbadawi
et al. showed that a low dose of 10 g/mL of a new herbal preparation termed STW 5-II
and consisting of six synergistic medicinal extracts, i.e., Iberis amara L., Glycyrrhiza glabra L.,
Chamomilla recutita R., Menthae piperitae L., Melissa officinalis L. and Carum carvi L., reduced
levels of corticotropin-releasing factor (CRF), mediating IL-6, IL-1β and TNFα expression
and serotonin release, using mouse intestinal organoids as a model of IBS disorder dose-
dependently [300]. Likewise, the application of intestinal organoids and the effectiveness
of probiotics in maintaining gut epithelial regeneration and homeostasis against inflam-
mation have been extensively documented [301–303]. In particular, Hou et al. showed the
efficacy of Lactobacillus reuteri D8 (106 CFU/g) in regenerating the intestinal barrier and
activating the intestinal epithelial proliferation of organoids subjected to TNF-α damage.
The authors observed that Lactobacillus reuteri D8 reduced TNF-α and stimulated intestinal
organoids with lamina propria lymphocytes (LPLs) to secrete IL-22 via STAT3 pathway
ex vivo and in vivo [301]. Furthermore, Wu and coworkers confirmed that Lactobacillus
reuteri D8 protected the intestinal mucosal barrier’s integrity, repaired intestinal damage
and reduced inflammation induced by TNF in intestinal organoids or C. rodentium infection
in mice via the activation of the Wnt/β-catenin signaling pathway [302]. Intriguingly, other
recent evidence showed postbiotic effects of a new probiotic strain of Lactobacillus reuteri
DS0384 isolated from the feces of a healthy newborn, and found that it promotes intestinal
epithelial maturation and protects the intestinal epithelium from IFNγ/TNFα-induced
injury in human intestinal organoids and infant mice [303]. Furthermore, Engevik et al.
demonstrated that Lactobacillus reuteri ATCC PTA 6475 metabolites, including ethanol,
upregulate the serotonin transporter (SERT), restoring normal serotonin levels for main-
taining intestinal homeostasis in mouse colonic organoids [304]. The same authors also
investigated another probiotic, Bifidobacterium dentium, and showed that its metabolites, par-
ticularly acetate, stimulated enterochromaffin cells to secrete 5-hydroxytryptamine (5-TH)
within the intestinal epithelium of human enteroid cells and adult mice via the gut–brain
axis. Notably, the study revealed that Bifidobacterium dentium changed the expression of
key intestinal serotonin receptors, particularly isoforms 2a (Htr2a) and 4 (Htr4), and the
5-HT transporter, a serotonin transporter (Sert), upregulating the expression of Htr2a in
the hippocampus and normalizing anxiety like-behaviors in mice [305]. Most recently,
an intriguing study showed the beneficial effects of the intestinal bacterium Lactobacillus
plantarum in modulating the intestinal microbiota and improving gut barrier integrity by
reducing inflammation-related pathways (TNF-alpha and NF-κB) and increasing levels of
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L-arginine in both hepatic and intestinal organoids and in mouse models of nonalcoholic
steatohepatitis [306]. Concerning neurodegenerative disorders, recent advances using
the human midbrain organoids documented that mutation in the DNAJC6 gene encoding
HSP40 auxilin caused PD pathogenesis including autophagy defects, α-syn aggregation and
dopaminergic neuron degeneration, contributing to juvenile-onset PD [307]. Lastly, a recent
study conducted by Ji and collogues reported that exosomes from brain organoids relieved
H2O2-induced oxidative stress and apoptosis in rat midbrain astrocytes by suppressing
ROS overproduction, lipid peroxidation, mitochondrial dysfunction and the expression
of pro-apoptotic genes, and they promoted the differentiation of human-induced pluripo-
tent stem cells (iPSCs) into dopaminergic neurons via homeobox transcription factor 1
alpha (LMX1A) upregulation due to increased levels of neurotrophic factors including
neurotrophin-4 (NT-4) and glial-cell-derived neurotrophic factor (GDNF) [308]. Taking to-
gether, to date, there are few studies in the literature that have investigated the therapeutic
potential of a nutritional approach with polyphenols and/or probiotics using organoid
models to prevent or inhibit gut and brain inflammation and related disorders in order to
improve human health. It is hoped that in the future personalized nutritional medicine in
this interesting field will become more promising and will be taken into consideration.
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Figure 4. Personalized nutritional therapy using organoid models in gut–brain axis disorders.

An altered gut–brain crosstalk due to an increase in pathogenic bacteria, such as
Streptococcoceae, Clostridiaceae, Enterobacteriaceae and Proteobacteriaceae, as well as a reduction
in beneficial bacteria, such as Bifidobacteriaceae and Lactobacillaceae, triggers gut dysbiosis
and neuroinflammation, which in turn leads to enteric glia and microglia activation and,
consequently, BBB and IEB dysfunctions, ultimately culminating in the development of
gastrointestinal diseases including inflammatory bowel diseases (i.e., ulcerative colitis and
Crohn’s disease), pancreatitis and colorectal cancer and CNS disorders (i.e., AD, PD, de-
pression and anxiety, autism and schizophrenia). Personalized nutritional therapy through
polyphenols and probiotics at low doses (hormesis) tested in innovative in vitro models,
especially the brain and intestinal organoids, can prevent or inhibit an inflammatory cas-
cade and restore the physiological composition of the gut microbiota and subsequent brain
function in order to promote human health. ↑ increase, ↓ decrease.



Antioxidants 2024, 13, 484 27 of 41

10. Conclusions and Future Perspectives

In conclusion, both indirect and direct crosstalk between intestinal microbiota and the
CNS along the gut–brain axis provides a rationale for non-invasive and affordable thera-
peutic innovations in brain disorders including neurodegenerative and psychiatric diseases.
In this new way, hormetic nutrition through polyphenols and/or probiotics targeting the
antioxidant Nrf2 pathway and stress resilient vitagenes to inhibit oxidative stress and inflam-
matory pathways, as well as ferroptosis, could represent an effective therapy to manipulate
alterations in the gut microbiome leading to brain dysfunction in order to prevent or slow
the onset of major cognitive disorders. Notably, hormetic nutrients can stimulate the vagus
nerve as a means of directly modulating microbiota–brain interactions for therapeutic
purposes to mitigate or reverse the pathophysiological process, restoring gut and brain
homeostasis, as reported by extensive preclinical and clinical studies. Interestingly, emerg-
ing research highlighted that gut microbiome composition and function can predict healthy
aging and longevity in humans. Indeed, a positive correlation was attributed to the phylum
of Firmicutes and a negative association was attributed to the abundance of Bacteroides [309].
Notably, the abundance of pathogenic bacteria involves a shift towards a pro-inflammatory
state in the gut, yielding increased gut permeability and subsequent triggering of a periph-
eral inflammatory response, which in turn impacts vagal sensory neurons, culminating in
neuroinflammation and impaired cognitive function. Therefore, a deeper understanding
of the composition, function and expression of gut microbiota bacteria, as well as their
modulation through low doses (hormesis) of probiotics in synergistic combination with
polyphenols, and especially with the more bioavailable polyphenol nanoparticles, can
restore intestinal homeostasis and promote brain health (allostasis/adaptive response) in
both young and elderly populations. Lastly, novel and sophisticated in vitro modeling
through the use of gut and brain organoids to explore the relationship between the in-
testinal microenvironment, host–microbes interaction and inter-organ crosstalk, as well as
the underlying mechanism of action of polyphenols/probiotics targeting the antioxidant
Nrf2 pathway, could shed more light on personalized nutritional therapies to prevent or
attenuate intestinal dysbiosis and peripheral inflammation/neuroinflammation leading
to the degeneration of sensory neurons and cognitive impairment, and could ultimately
predict positive outcomes in gut–brain axis disorders.
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