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Abstract: With the introduction of the influenza vaccine in the official immunization schedule of
most countries, several data regarding the efficacy, tolerability, and safety of influenza immunization
were collected worldwide. Interestingly, together with the confirmation that influenza vaccines
are effective in reducing the incidence of influenza virus infection and the incidence and severity
of influenza disease, epidemiological data have indicated that influenza immunization could be
useful for controlling antimicrobial resistance (AMR) development. Knowledge of the reliability
of these findings seems essential for precise quantification of the clinical relevance of influenza
immunization. If definitively confirmed, these findings can have a relevant impact on influenza
vaccine development and use. Moreover, they can be used to convince even the most recalcitrant
health authorities of the need to extend influenza immunization to the entire population. In this
narrative review, present knowledge regarding these particular aspects of influenza immunization is
discussed. Literature analysis showed that the specific effects of influenza immunization are great
enough per se to recommend systematic annual immunization of younger children, old people,
and all individuals with severe chronic underlying diseases. Moreover, influenza immunization
can significantly contribute to limiting the emergence of antimicrobial resistance. The problem of
the possible nonspecific effects of influenza vaccines remains unsolved. The definition of their role
as inducers of trained immunity seems essential not only to evaluate how much they play a role
in the prevention of infectious diseases but also to evaluate whether they can be used to prevent
and treat clinical conditions in which chronic inflammation and autoimmunity play a fundamental
pathogenetic role.

Keywords: antibiotics; antimicrobial resistance; autoimmunity; chronic inflammation; influenza
vaccination; influenza vaccine

1. Introduction

Influenza virus infections are very common worldwide [1]. It has been calculated
that around a billion cases of seasonal influenza annually occur. Most of them remain
asymptomatic or present with mild upper respiratory tract symptoms without fever. In
20% to 40% of cases, influenza presents with the traditionally reported influenza-like illness
manifestations, such as fever, sore throat, cough, headache, muscle and joint pain, and
severe malaise [2–5]. Many of these patients require at least one medical visit. Moreover,
about 3–5 million cases develop a severe illness that leads to hospitalization and, in some
patients, needs admission to the intensive care unit [6]. Among these, between 290,000 and
650,000 cases die. Children younger than 5 years, old people, pregnant women, people with
chronic severe underlying diseases including primary or secondary immunodeficiency, and
long-term care facility residents are considered at increased risk for influenza complications;
those at the highest risk are at risk of hospitalization and death [7].

Due to its high frequency and the relevant number of cases that require medical
visits such as hospitalization and yet, despite careful assistance, die, influenza significantly
impacts the health system and is associated with a substantial social and economic burden.
In the USA, it has been calculated that the direct medical costs of every influenza season that

Vaccines 2024, 12, 384. https://doi.org/10.3390/vaccines12040384 https://www.mdpi.com/journal/vaccines

https://doi.org/10.3390/vaccines12040384
https://doi.org/10.3390/vaccines12040384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com
https://orcid.org/0000-0002-3468-5568
https://orcid.org/0000-0003-4103-2837
https://doi.org/10.3390/vaccines12040384
https://www.mdpi.com/journal/vaccines
https://www.mdpi.com/article/10.3390/vaccines12040384?type=check_update&version=1


Vaccines 2024, 12, 384 2 of 15

originate from inpatient and outpatient care settings account for USD 3.2 billion. Indirect
costs that mainly derive from lost work time and the reduced productivity of patients and
caregivers are estimated at USD 8 billion [8,9].

To face these problems, influenza vaccines were developed. After the first inactivated
vaccine (IIV) was authorized in the 1940s, several different preparations including inacti-
vated split- and subunit-type and live attenuated vaccines (LAIV) were developed [10]. In
some cases, adjuvants were added to improve the immune response [11]. Moreover, innova-
tive tools, such as recombinant technologies and intra-dermal devices, were tested. Initially,
preparations potentially effective against three influenza viruses (A/H1N1, A/H3N2, and
B) were licensed. More recently quadrivalent vaccines, including a second B virus, were
prepared [10]. The exact composition of the influenza vaccine regarding both the type
and number of viruses is annually determined by the World Health Organization (WHO,
Geneva, Switzerland) [12] based on the most frequent strains isolated in the previous season
during continuous surveillance. As of recently, the inclusion of the second B virus was no
longer recommended by WHO advisers because in recent years, no confirmed detection
of this strain has been documented [13]. With time, the immune response and clinical
efficacy of influenza vaccines were progressively improved while maintaining a good safety
and tolerability profile. There is evidence that, although with some limitations, mainly
in younger children and old people, the use of influenza vaccines significantly reduced
the total burden of seasonal influenza and has induced health authorities to progressively
extend the list of subjects for whom the vaccine had to be recommended [14]. Initially
reserved only for subjects at the highest risk of influenza-related complications, presently,
the influenza vaccine is recommended in several countries for all people, regardless of
age and health conditions. Even in those countries where universal vaccination is not
recommended, younger children and old people are always included in the list [15].

With the introduction of the influenza vaccine in the official immunization schedule
of most countries, several data regarding the efficacy, tolerability, and safety of influenza
immunization were collected worldwide. Interestingly, together with the confirmation that
influenza vaccines are effective in reducing the incidence of influenza virus infection and
the incidence and severity of influenza disease, epidemiological data have indicated that
influenza immunization could be useful for controlling antimicrobial resistance (AMR)
development [16,17]. Moreover, in some studies, results have suggested that influenza
vaccines could have nonspecific effects, i.e., induce protection against non-targeted infec-
tions and modulate the incidence and course of several immune-mediated diseases [18].
Knowledge of the reliability of these findings seems essential for precise quantification of
the clinical relevance of influenza immunization. If definitively confirmed, these findings
can have a relevant impact on influenza vaccine development and use. New frameworks
for testing, approving, and regulating vaccines capable of collecting data on the overall
health of vaccinees during long-term follow-up could be planned. This could allow us to
know whether and which influenza vaccine preparations have relevant nonspecific effects,
which external factors can influence their clinical importance, and how influenza vaccines
should be administered to obtain the greatest cost–benefit balance [19]. Moreover, they can
be a relevant additional factor to convince even the most recalcitrant health authorities of
the need to extend influenza immunization to the entire population [20]. In this narrative
review, present knowledge regarding these particular aspects of influenza immunization is
discussed. The MEDLINE (Northfield, IL, USA)/PubMed (Bethesda, MD, USA) database
was searched from 1993 to 30 November 2023 to collect the literature. The search included
randomized placebo-controlled trials, controlled clinical trials, double-blind, randomized
controlled studies, systematic reviews, and meta-analyses. Abstracts were excluded. The
following combinations of keywords were used: “influenza vaccine” OR “influenza vac-
cination” AND “efficacy” OR “effectiveness” OR “effect” OR “antimicrobial resistance”
OR “antibiotics”.
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2. Influenza Vaccine Administration as a Measure to Contain Antimicrobial
Resistance Development

In the last decade, AMR to commonly used antibiotics has significantly increased
(Figure 1), making bacterial infections harder to treat and increasing the risk of disease
spread, severe illness, and death or development of persistent disability.
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A comprehensive analysis of the burden of antimicrobial resistance has shown that
in 2019, AMR has been associated with 4.95 million deaths among which 1.27 million
could be directly attributed to this microbiological problem [21]. As abuse and misuse of
antibiotics have been identified as the main cause of AMR development [22,23], reducing
and improving antibiotic use through high-quality surveillance and usage guidelines has
been considered the most important solution to face AMR problems. Several national
governments and scientific institutions, such as the European Union Commission [24], the
United States Government [25], and the World Health Organization [26], have initiated
or accelerated the development of action plans to combat AMR. Criteria useful to ensure
the rational use of antibiotics and reduce AMR have been prepared. Moreover, in many
hospitals, especially in industrialized countries, antimicrobial stewardship programs to
ensure that these criteria were regularly applied have been implemented [27,28]. However,
the results of these initiatives were frequently found to be only partly satisfactory. For
some bacteria and in some countries, the percentage of resistant strains has remained high
or even increased, leading health authorities to predict that, in the absence of effective
measures, in 2050, the annual number of deaths from infections caused by multi-resistant
bacteria could reach 10 million, a value significantly higher than that due to cancer or
cardiovascular diseases today [29]. Examples in this regard are those collected in the
countries of the European Union and the European Economic Area where, from 2017
to 2021, for example, the percentage of methicillin-resistant Staphylococcus aureus and
penicillin-resistant Streptococcus pneumoniae was only slightly reduced or increased,
respectively. Substantially unchanged or only slightly reduced were the percentage of
resistant strains among Escherichia coli, Pseudomonas spp., and Klebsiella pneumoniae [30].
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Vaccines, when significantly effective against pathogens that are very common causes
of infection and disease, can play a significant role in conditioning AMR emergence [10].
On the other hand, vaccination to reduce AMR is seen as an important global public health
issue by WHO, although not all national AMR plans include immunization programs in
their AMR plans [31]. Regarding viral vaccines, the reduction in the number of infections
due to the virus against which the vaccine had been prepared translates into a parallel
reduction in the number of antibiotic prescriptions. The misuse of antibiotics that frequently
occurs in patients with viral infection is reduced [10,31]. Moreover, superimposed bacterial
infections are reduced, leading to a further limitation in antibiotic use [32,33].

Influenza vaccine characteristics suggest that its use can be very effective in this re-
gard. As previously mentioned, influenza is very common [1]. Influenza vaccine is always
significantly effective in reducing influenza virus infections and disease although absolute
effectiveness can vary according to several factors, such as the strain matching, type of
vaccine and time of administration, and age and health of the vaccinee [10]. Moreover,
some clinical studies seem to indicate that in people receiving influenza immunization,
antibiotic prescriptions in the months following vaccination are significantly reduced.
Details on influenza vaccine effectiveness are summarized in a recent systematic review
and network meta-analysis of the placebo- or no vaccination-controlled in head-to-head
randomized clinical trials (RCT) published through December 15th, 2020 [34]. A total of
220 RCTs including 100,677 children (<18 years), 329,127 adults (18–60 years), and the
elderly (≥61 years)] were included. All vaccines cumulatively achieved major reductions in
the incidence of laboratory-confirmed influenza, despite differences according to the previ-
ously reported factors. In children, live-attenuated vaccine (LAIV) and inactivated vaccine
(IIV) adjuvanted with MF59/AS03 were more efficacious than the inactivated vaccine (IIV)
in reducing the risk of laboratory-confirmed influenza virus infection. Compared with
3-IIV, the relative risk (RR) of infection with 3-LAIV and IIV adjuvanted with MF59/AS03
were 0.52 (95% credible interval [CrI] 0.32–0.82) and 0.23 (95% CrI 0.06–0.87), respectively.
In adults and the elderly, all vaccines, except the trivalent inactivated intradermal vaccine
(3-IIV ID), were more effective than the placebo. RR varied from 0.33 (95% CrI 0.21–0.55)
for 3-IVV high-dose (3-IIV HD) and 0.56 (95% CrI 0.41–0.74) for 3-LAIV. However, in the
elderly, vaccine efficacy was less pronounced as a significant difference compared to the
placebo, which was reached only when the recombinant IV was used [34].

A reduction in antibiotic prescriptions in individuals given influenza vaccine is clearly
evidenced in a recent systematic review and meta-analysis of 26 studies [35]. Unfortunately,
the quality of the 19 observational studies was generally poor and, despite being in favor
of the influenza vaccine, the results of these studies cannot be used to draw definitive
conclusions. However, the results of 17 well-conducted RCTs seem adequate to indicate
that influenza vaccine use is associated with both the reduction in the proportion of
people receiving antibiotics (RR 0.63, 95% confidence interval [CI] 0.51–0.79) and the
reduction in number of antimicrobial prescriptions or days of antibiotic use (RR 0.71,
95% CI 0.62–0.83). Moreover, there are data that seem to confirm that influenza vaccines
can reduce the risk of superimposed bacterial infections and, consequently, the number
of antibiotic prescriptions. A good example in this regard is given by the results of a
study in which the incidence of acute otitis media (AOM) in children with or without
influenza immunization was measured [36]. AOM is frequently preceded by a viral upper
respiratory infection and a superimposed bacterial infection is the cause of AOM in most
of the cases [37,38]. Consequently, evaluation of its incidence in patients with and without
influenza immunization can be considered a useful test to evaluate the role of influenza
vaccine in reducing superimposed bacterial infections. Marchisio et al. performed a
prospective randomized single-blinded placebo-controlled study, enrolling 180 children
aged 1 to 5 years previously unvaccinated against influenza and with a history of recurrent
AOM [39]. These patients were randomized to receive 3-IIV (n = 90) or no treatment (n = 90)
and AOM-related morbidity was monitored every 4 to 6 weeks for 6 months. Among the
vaccinees, the number of children experiencing at least one AOM episode during the study
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period was significantly smaller than in the control group (49; 54.4% vs. 74; 82.2%; p < 0.001).
Lower than among controls were also the mean number of AOM episodes (0.94 ± 1.12 vs.
2.08 ± 1.52; p = 0.03), the mean number of AOM episodes without perforation (0.39 ± 0.66
vs. 1.32 ± 1.49; p < 0.001), and the mean number of antibiotic courses (1.47± 1.26 vs.
2.59 ± 1.72; p < 0.001). Only in children with a history of recurrent tympanic perforation
was the influenza vaccine not effective, suggesting that this kind of AOM is a particular
form of AOM requiring a specific preventive and therapeutic approach [39].

Starting from these and other similar findings, the use of vaccines to prevent AMR has
been suggested by several experts. The WHO has included vaccines among the measures
useful for the prevention and control of AMR [38]. Moreover, the WHO has stressed the
need to expand and share knowledge and awareness about the potential role of vaccines in
AMR reduction and has highlighted the importance of the rapid development of effective
vaccines against those bacteria that already present high levels of AMR [40].

3. Mechanisms and Examples of Nonspecific Effects of Vaccines

Several epidemiological studies have shown strong statistical associations between the
administration of some vaccines and the development of nonspecific effects, i.e., effects that
go beyond the specific protective effects against the targeted diseases and involve unrelated
pathogens or immune-mediated diseases [41]. Table 1 summarizes the main examples of
nonspecific effects of vaccines different from those against influenza.

Table 1. Main examples of nonspecific effects of vaccines differ from those against influenza.

Type of Effect and Vaccine Nonspecific Effects

Positive

Bacillus Calmette-Guerin (BCG) vaccine

Reduced mortality within the neonatal period
or by age of 12 months; protection against
malignancies, allergy, and autoimmune
diseases, including type 1 diabetes

Measles vaccine Reduction in global pediatric mortality, with
girls showing the greatest benefit

Smallpox Reduction in global pediatric mortality

Live poliovirus vaccine (OPV)

Reduction in gastrointestinal infections in Latin
America, of respiratory infections in Russia,
and of global child mortality in several
underdeveloped countries

Negative

Diphtheria-tetanus-pertussis (DTP) vaccine
Increased deaths from other diseases than it
prevents from the target infections when is
given after live vaccines

Inactivated polio vaccine (IPV) Increase all-cause mortality by 10%
Malaria vaccine RTS,S/AS01 Increase in all-cause mortality in girls

Hepatitis B vaccine (HBV) Increase in mortality with the difference being
particularly strong for girls

These findings were initially interpreted as context-dependent, possibly due to dif-
ferences in vaccine strains [42] or to interactions with other vaccines [43]. However, im-
munological studies have shown that nonspecific effects were mainly due to a previously
unknown mechanism that is the development of innate immune memory, also named
trained immunity, although a role is supposed to be played by the heterologous T-cell
immunity also. Trained immunity is a condition for which innate immune system cells,
such as myeloid cells (i.e., monocytes, macrophages, and dendritic cells) or lymphoid cells
(i.e., natural killer cells and innate lymphoid cells), after the first response to an infectious
stimulus that is specifically effective against that pathogen, become able to mount a faster
and stronger response when they are again exposed to the same antigen or to unknown
new antigens [44]. The heterologous T-cell immunity is, on the contrary, a particular aspect
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of adaptive immunity for which exposure to a pathogen can result in the activation and
expansion of T cells capable of recognizing not only the specific antigen but also different
unrelated antigens [45].

Trained immunity can have significant beneficial effects or, on the contrary, enhance
vulnerability to diseases not related to the vaccine, particularly in females [46]. In general,
live vaccines limit the target infection and, at the same time, exert favorable nonspecific
effects providing broad cross-protection against any type of reinfection and protecting
the host from the development of some autoimmune diseases. On the contrary, non-live
vaccines, despite conferring high protection against the target disease, have unfavorable
effects, making people generally more susceptible to infections that are not the target and
driving or exacerbating inflammatory or autoimmune responses. Details of the biological
mechanisms that are the base for trained immunity development are reported in some
recent reviews [47–49]. To summarize the present knowledge, it can be concluded that
trained immunity involves epigenetic and metabolic reprogramming of the innate immune
cells. When this has occurred and the innate immune system is exposed to subsequent
time-delayed heterologous stimulations, the adjusted immune responses lead to extended
protection against a large number of infectious agents and reduce the risk of chronic inflam-
mation and autoimmune disease development and progression. Unfortunately, misguided
trained immunity responses can occur and cause opposite results, with the development of
either a chronic hyperinflammatory state or a persistent state of immunological tolerance, a
condition in which the activity of the immune system is decreased and the risk of infections
or autoimmune diseases is increased.

Live vaccines with documented positive nonspecific effects are the Bacillus Calmette-
Guerin (BCG) vaccine, the measles vaccine, the smallpox vaccine, and the live poliovirus
(OPV) vaccine. For all these vaccines, several RCTs have clearly indicated that, together
with a significant reduction in the target disease, they can reduce all-cause mortality and
hospitalizations [50]. A meta-analysis of three trials carried out in Guinea-Bissau enrolling
low-birth-weight neonates who had been given BCG at birth has shown that early BCG
administration was associated with 38% (RR 0.62, 95% CI 0.46–0.83) and 16% (RR 0.84,
95% CI 0.71–1.00) reduced mortality within the neonatal period or by age of 12 months,
respectively [51]. Moreover, BCG vaccine administration may induce protection against ma-
lignancies, allergies, and autoimmune diseases, including type 1 diabetes [52]. Regarding
the measles vaccine, it has been reported that the introduction of this vaccine in underde-
veloped nations had led to a reduction in global pediatric mortality significantly greater
than that expected on the basis of vaccine efficacy (30% compared to 10%) [53]. Moreover,
the mortality of measles-vaccinated children was lower than that of nonimmunized sub-
jects [54], with girls showing the greatest benefit [55]. Similar findings were reported in
the countries where the smallpox vaccine was administered to a large part of the pediatric
population. Finally, interesting results were collected when the impact of OPV was studied.
OPV administration was associated with a reduction in gastrointestinal infections in Latin
America [56], respiratory infections in Russia [57], and global child mortality in several
underdeveloped countries [58–60].

The negative effect of trained immunity following non-live vaccine administration
seems clearly evidenced by the findings of the epidemiological studies evaluating the
impact of the diphtheria–tetanus–pertussis (DTP) vaccine. A global analysis of the data
collected with studies at low risk of bias seems to indicate that, in low-income countries,
the DTP vaccine can cause more deaths from other diseases than it prevents from the target
infections. Compared to unvaccinated children, those given DTP have a risk of death five
times higher. Risk is higher in females than in males; in children with multiple vaccinations,
it depends on the schedule used for immunization [61–63]. Deleterious effects occur when
DTP is given after live vaccines and in this case, the risk of mortality is doubled. On the
contrary, by giving BCG and DTP at the same time, all-cause mortality could be reduced by
about 48% [64].
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Further support of the hypothesis that non-live vaccines can cause detrimental non-
specific effects is given by the studies regarding inactivated polio vaccine (IPV), malaria
vaccine, and hepatitis B vaccine (HBV). IPV has been found to increase all-cause mortality
by 10% [65]. Consequently, considering the positive effects of OPV, doubts about the
proposed universal change from OPV to IPV to reduce the risk of paralytic paralysis have
been raised. It has been calculated that approximately 4000 deaths for each case of vaccine-
associated paralytic poliomyelitis may occur, causing a total of more than 300,000 additional
deaths each year worldwide [66]. Regarding the malaria vaccine, it has been reported that
administration of the RTS,S/AS01 vaccine, although modestly effective in children against
the target disease, was accompanied by a significant in all-cause mortality in girls (mortality
rate ratio [MRR] 1.91; 95% CI 1.30–2.79; p = 0.0006) although not in boys (MMR 0.84; 95%
CI 0.61–1.17; p = 0.3343) [67]. Data regarding HBV were collected by Garly et al. with a
study in which the mortality rate of children who had received measles and hepatitis B
vaccines was compared with those of children given only the measles vaccine [68]. Results
clearly indicated the negative impact of HBV as children given this vaccine had higher mor-
tality than those without immunization (MRR 1.81; 95% CI 1.19–2.75) with the difference
being particularly strong for girls (MRR 2.27; 95% CI 1.31–3.94). As far as 3IIVs and 4IVVs
are concerned, however, the potential association with negative nonspecific effects is not
defined. For these non-live vaccines, a great number of data are available but conclusions
cannot be drawn.

4. Influenza Immunization and Nonspecific Effects

Two different types of influenza vaccines are presently available, IIVs and LAIV. IIVs
are non-live vaccines, whereas LAIV is a live vaccine [69]. In agreement with what has
been demonstrated for other vaccines, IIVs would have been expected to induce negative
nonspecific effects and LAIV beneficial effects. Studies regarding LAIV are few but they
seem to indicate that the results of its administration correspond to expectations including
the induction of positive nonspecific effects. In a study in which 6,569 children were
immunized with LAIV, it was found that this vaccine could have significant indirect effects
reducing the total number of non-influenza medical-attended respiratory infections in
both children and adults [70]. Moreover, a recent experimental study has shown that the
administration of X-31ca, a donor virus for the preparation of an LAIV, could provide
nonspecific cross-protection against respiratory syncytial virus (RSV). Administration to
experimental animals of X-31ca before RSV infection was associated with a significant
reduction in RSV replication. This was, in turn, associated with an immediate release of
cytokines and infiltration of leukocytes into the respiratory tract suggesting a remodulation
of innate immune activity [71].

On the contrary, what is known about IIVs is very different. Contrary to expectations,
the available data regarding IIVs do not allow us to confirm or exclude the chance that these
vaccines can exert a nonspecific effect. The results of studies specifically planned to evaluate
the clinical impact of IIVs are highly conflicting. A great number of studies have reported
that IIV has no effect on the incidence of noninfluenza respiratory infections [72–77]. Other
studies have found negative effects [78–80]. Finally, some studies have found that IIVs can
exert substantial protective effects. [81–86].

Some examples can illustrate these findings. Negative nonspecific effects were re-
ported in some studies carried out in some African countries during the 2009 A/HIN1
2009 influenza pandemic. Children who were given the non-live A/H1N1 pandemic
vaccine had higher age-adjusted mortality rates after immunization than children who
did not receive the vaccine [87]. Adults immunized with 3IIV including the A/H1N1
2009 pandemic strain had higher rates of respiratory symptoms and absence from work
than those without vaccination [88]. In a study in which 115 children were randomized
to receive 3IIV or placebo, monitoring over the following 9 months revealed that the risk
of virologically confirmed respiratory non-influenza infections, mainly those due to rhi-
novirus and coxsackie/echovirus, was significantly greater among vaccinees than among
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controls (RR 4.40; 95% 1.31–14.8) [80]. No effect was evidenced by Skowronski et al. who
assessed influenza vaccine effectiveness against influenza and non-influenza respiratory
viruses using historic datasets of the community-based Canadian Sentinel Practitioner
Surveillance Network, spanning 2010–2011 to 2016–2017 [77]. A total of 4281 influenza,
2565 non-influenza respiratory infections, and 3841 pan-negative cases were enrolled. IVV
was found to be effective against influenza cases (45%) but it did not show any efficacy
against non-influenza respiratory viruses. Finally, a good example of a favorable nonspe-
cific effect of IIV is given by the data collected by Debisarun et al. [81]. These authors
compared the incidence of laboratory-confirmed COVID-19 cases among 4IIV vaccinated
and unvaccinated employees of a University Medical Center in the Netherlands during
the first two waves of the pandemic (March–June 2020 and November 2020–January 2021,
respectively). Results evidenced a significant protective effect of 4IIV against COVID-19
as people receiving this vaccine had 37% and 49% lower risk of SARS-CoV-2 infection
in the first and the second pandemic waves, respectively. During the first period, 107 of
the 3201 (3.34%) individuals who were not vaccinated against influenza had COVID-19,
compared to 77 of 3655 (2.11%) of those who were given the vaccine (RR 0.63, 95% CI
0.47–0.84, p = 0.0016). In the second wave, even greater evidence of the protective effect of
4IIV was shown. Among 6370 individuals without 4IIV, 250 COVID-19 cases (3.92%) were
diagnosed. On the contrary, among 4529 vaccinees, only 91 COVID-19 cases (2.00%) were
found (RR 0.51, 95% CI 0.40–0.65; p < 0.0001) [81]. Similar positive findings were reported
in children regarding the impact of RSV infections. Analysis of RSV infection incidence
during a 5-year period in Australia revealed that receipt of 3IIV was associated with a
relevant reduction in RSV hospitalizations, especially in those <2 years. Rate reduction
was 2.27 per 1000 (95% CI −3.26, −1.28) in these subjects and 0.53 per 1000 (95% CI −1.04,
−0.02) in those 2–7 years [89].

Together with the impact of nonspecific infections, several lines of data seem to
suggest that influenza vaccine administration may be protective in the development and/or
progression of a variety of chronic diseases [90]. The most compelling data come from
studies carried out in patients with cardiovascular diseases such as coronary heart disease,
heart failure, and stroke. In most cases, results seem to indicate that patients receiving
the influenza vaccine are at lower risk of developing or worsening these cardiovascular
problems than patients without vaccination [91]. A recently published systematic review
and meta-analysis in which 5 RCTs with very low risk of bias strongly supports this
conclusion [92]. A total of 9059 adult patients with well-defined cardiovascular diseases
were enrolled. Of them, 4529 had received 3IIV and 4530 a placebo. In the 9 months
following immunization, a major cardiovascular event occurred in 517 vaccinees and in
621 controls, clearly suggesting a relevant protective effect of the influenza vaccine (RR
0.70, 95% CI 0.55–0.91). The stratified analysis confirmed this finding, showing a significant
impact of vaccination on the risk of myocardial infarction development (RR 0.74, 95% CI
0.56–0.97) and of cardiovascular death events (RR 0.67, 95% CI 0.45–0.98). No effect on the
risk of stroke was, however, found. Moreover, some studies have suggested a potential
protective effect of influenza vaccine in the development and progression of type 1 diabetes
(T1D) [92,93], cancer [94–98], and Alzheimer’s disease [99–101].

Partially discordant are, on the other hand, the studies aimed at evaluating the epige-
netic and transcriptional reprogramming as well as cytokine responses of immune cells
after IIV administration. Debisarun et al. reported that 4IIV was able to modify innate
immune cell activity with a reduction in systemic inflammation and modulation of the
transcriptional program and cytokine production upon stimulation with the SARS-CoV-2
virus [81]. A lower antiviral response was, on the contrary, reported by Wimmerset al. who,
despite confirming that vaccination stimulates persistent epigenomic remodeling of the
innate immune system, found a persistent impaired cytokine response to stimulation [101].

Table 2 summarizes the nonspecific effects of influenza immunization.
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Table 2. Main examples of nonspecific effects of influenza vaccines influenza.

Type of Vaccine Nonspecific Effects

Live attenuated influenza vaccine (LAIV)
Some data on the reduction in the total number of

non-influenza medical attended respiratory
infections in both children and adults

Nonspecific cross-protection against respiratory
syncytial virus, suggesting a remodulation of

innate immune activity

Inactivated influenza vaccine (IIV) Conflicting results on the incidence of
non-influenza respiratory infections

Significant protective effect of 4IIV against
COVID-19

Reduction in RSV hospitalizations in children,
especially in those <2 years, with 4IIVs

Reduced risk of developing or worsening coronary
heart disease and heart failure; no effect on stroke

Potential protective effect of influenza vaccine in
development and progression of type 1 diabetes

(T1D), cancer, and Alzheimer’s disease

Conflicting results on epigenetic and
transcriptional reprogramming as well as cytokine

responses of immune cells after administration

Such different results make it impossible to draw any conclusions and leave the
problem of the development of nonspecific effects of IIVs totally unsolved. Despite other
factors, such as characteristics of the study population, vaccine formulations, or outcome
measurements, which may explain the different results, it seems highly likely that the
most important causes of this finding are the methodological limitations of most studies.
The greatest part of the available data has been collected with observational studies that
frequently have several methodological limitations that can lead to debatable and contrast-
ing results. Information on confounding factors and effect modifiers can be missing and
correction for confounders is sometimes not possible, causing over- or underestimation of
outcomes. Moreover, the selection of subjects to enroll can be a limit per se as individuals
willing to be vaccinated against influenza may also be those more likely to respect the
personal protection rules against all the other respiratory infections, causing a potential
overestimation of the positive effect of IIVs. Finally, it cannot be excluded that a role
may be played by the characteristics of the IIVs themselves. The inclusion of adjuvants
may be critical for the induction of different immune responses and the development of
nonspecific effects. Further studies, mainly RCTs, are needed to solve the problem and
establish whether and which nonspecific effects can have IIVs. Attempts in this regard
have already been made although no results have been published until now. Regarding the
impact on T1D, a trial (NCT05585983) testing the hypothesis that influenza vaccination can
be more effective than placebo in sustaining β cell function in early T1D has been initiated.
Regarding cancer, two studies have been planned. The first intends to evaluate the safety
and efficacy of treating patients with early colorectal cancer with intratumoral influenza
vaccine as a downstaging and immune response enhancing treatment prior to intended
curative surgery (NCT04591379). The second study intends to evaluate the efficacy of in-
fluenza vaccination together with perioperative Tadalafil for decreasing the chances of the
spread of disease post-surgery in patients suffering from a primary abdominal malignancy
(NCT02998736). It is essential to substantiate the potential ability of IIVs to induce positive
nonspecific effects; however, clinical studies are accompanied by a careful evaluation of
the ability of IIVs to induce trained immunity. The example of the study by Debisarun
et al. is paradigmatic in this regard [81]. These authors were able to demonstrate the
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clinical efficacy of 4IIV in reducing the risk of COVID-19, which was accompanied by
improved responsiveness of innate immune cells to heterologous viral stimuli, suggesting
the activation of a sustained trained immunity [81]. When several studies report a strict
association between the development of positive nonspecific effects and the induction of
trained immunity, the evidence for the potential use of IIVs to reduce infections and limit
autoimmunity or choric inflammatory disease will be definitively ascertained.

5. Conclusions

The specific effects of influenza immunization are great enough per se to recommend
systematic annual immunization of younger children, old people, and all individuals
with severe chronic underlying diseases. Moreover, the evidence that influenza vaccine
administration to healthy adolescents and adults reduces influenza virus circulation with
relevant benefits from a medical, social, and economic point of view is a further factor for
very large use of this preventive measure.

However, the benefits of influenza immunization are not limited to the reduction in
the total burden of influenza infection. Several RCTs have clearly evidenced that influenza
immunization can significantly contribute to limiting the emergence of AMR, a problem that
already causes a significant increase in the risk of death from bacterial infectious diseases
and which is expected to quickly become the most important cause of mortality. This
further supports the largest use of influenza vaccines and explains why several national
health authorities as well as the WHO have stressed the importance of this particular aspect
of influenza vaccine activity and strongly sponsored the development of vaccines effective
against the pathogens for which AMR is clinically relevant.

On the contrary, the problem of the possible nonspecific effects of influenza vaccines
remains completely unsolved. The data relating to LAIV, although apparently favorable,
are too limited to draw definitive conclusions and to suggest the preferential use of these
vaccines instead of IIVs. Regarding the latter, despite the great number of studies, available
data do not allow us to definitively decide whether these vaccines have nonspecific effects.
Some clinical and in vitro evaluations seem to suggest that these vaccines may be an excep-
tion to what has been demonstrated for many other non-live vaccines. Unlike these, IIVs
may allow the development of a substantial trade immunity leading to nonspecific cross-
protection against infections, a reduction in chronic inflammation, and the development of
autoimmunity. However, many studies have opposite results and most of those showing
favorable data have relevant methodological limitations that make results debatable. A
large series of RCTs associated with well-conducted immunological studies are needed to
definitively solve the nonspecific effects of both LAIV and IIVs. The definition of their role
as inducers of trained immunity seems essential not only to evaluate how much they play
a role in the prevention of infectious diseases but also to evaluate whether they can be used
to prevent and treat clinical conditions in which chronic inflammation and autoimmunity
play a fundamental pathogenetic role, significantly extending their original role. Further
studies are needed to address the possible molecular or immunological mechanisms that
lead to positive and negative effects of influenza vaccination on different populations.
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