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Abstract: Background: The increase in the global population of hemodialysis patients is linked to
aging demographics and the prevalence of conditions such as arterial hypertension and diabetes
mellitus. While previous research in hemodialysis has mainly focused on mortality predictions, there
is a gap in studies targeting short-term hospitalization predictions using detailed, monthly blood test
data. Methods: This study employs advanced data preprocessing and machine learning techniques
to predict hospitalizations within a 30-day period among hemodialysis patients. Initial steps include
employing K-Nearest Neighbor (KNN) imputation to address missing data and using the Synthesized
Minority Oversampling Technique (SMOTE) to ensure data balance. The study then applies a Support
Vector Machine (SVM) algorithm for the predictive analysis, with an additional enhancement through
ensemble learning techniques, in order to improve prediction accuracy. Results: The application of
SVM in predicting hospitalizations within a 30-day period among hemodialysis patients resulted in
an impressive accuracy rate of 93%. This accuracy rate further improved to 96% upon incorporating
ensemble learning methods, demonstrating the efficacy of the chosen machine learning approach in
this context. Conclusions: This study highlights the potential of utilizing machine learning to predict
hospital readmissions within a 30-day period among hemodialysis patients based on monthly blood
test data. It represents a significant leap towards precision medicine and personalized healthcare for
this patient group, suggesting a paradigm shift in patient care through the proactive identification of
hospitalization risks.

Keywords: hemodialysis; machine learning; ensemble learning; hospital readmissions prediction

1. Introduction

The population of hemodialysis patients has been growing worldwide, particularly in
low- and middle-income countries (LMICs), due to factors such as the increased availability
of dialysis, aging populations, and the rising prevalence of conditions like arterial hyperten-
sion (AH) and diabetes mellitus (DM). Despite the expansion of dialysis services, globally,
many individuals lack access to kidney replacement therapy (KRT), resulting in millions of
deaths from kidney failure annually. Among those with access to dialysis, mortality rates
remain high, underscoring the need for innovation to improve accessibility and patient
outcomes [1].

Mortality among hemodialysis patients is notably high, especially within the first
few months of initiating treatment. In high-income countries (HICs), about one-quarter
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of hemodialysis patients die within the first year of treatment, and the rates are even
higher in LMICs. Over the past two decades, there have been improvements in survival
rates for hemodialysis patients, with some data suggesting that younger patients have
seen relative gains in survival. Comparatively, while short-term mortality has historically
been lower for patients treated with peritoneal dialysis (PD) than those on hemodialysis,
long-term risks were higher [2]. One study focusing on first-year mortality in incident
dialysis patients highlighted a mortality rate of 23.9% within the first 3 months and 19.3%
within the first year.

A nationwide study in Sweden explored the causes of hospital admissions and read-
missions among patients undergoing hemodialysis and PD. It found a high hospitalization
burden, with cardiovascular (CV) events and infections being the most frequent causes
of admission. No significant differences in readmission risks between dialysis modalities
were observed, but a pattern of readmissions attributed to complications from infections
and their interplay with CV diseases was identified [3].

Hemodialysis patients may face hospitalization within a 30-day period due to a variety
of factors inherent to their condition and treatment regimen. Understanding these factors
is critical for healthcare providers looking to reduce risk and improve patient care. The
context and importance of research focused on predicting admissions among hemodialysis
patients within a 30-day period is rooted in the unique and complex needs of this patient
population. Hemodialysis is an important treatment for patients with end-stage renal
disease (ESRD), a condition in which the kidneys can no longer perform their necessary
functions [4].

Research undertaken by Flythe et al. [5] delved into the efficacy of predictive models
and the impact of modifiable risk factors on minimizing hospital readmissions. Their
findings reveal that models based on discharge profiles surpass those based on admission
information in predicting readmissions within a 30-day period. This underscores the critical
role of enhanced medication education and seamless transitions from hospital to home in
lowering readmission rates. By examining discharge data, that study pinpointed adjustable
risk factors, advocating for intensified medication education and improved transitions to
community care as key strategies for reducing readmissions.

Predicting the likelihood of hemodialysis patients being admitted within 30 days
offers a forward-looking strategy aimed at enhancing patient care, alleviating healthcare
facility pressures, and optimizing cost management. One research effort devised a predic-
tion model for unplanned readmissions within 30 days by transforming medical records
into a unified data format (OMOP-CDM) and integrating data on weather conditions to
evaluate environmental influences on readmission rates. Meanwhile, another investigation
concentrated on the long-term repercussions of readmissions among Medicare beneficiaries
within the initial year of undergoing hemodialysis. This study delved into patterns of
readmissions and their correlations with mortality, subsequent hospitalizations, and the
likelihood of receiving a kidney transplant. While these studies shed light on the elements
that influence readmission rates and the long-term consequences for hemodialysis patients,
they stop short of directly tackling the challenge of predicting admissions based on monthly
blood test results [6,7].

Research on hemodialysis patients predominantly targets risk and mortality prediction.
Each session carries potential complications such as hypotension and infections, impacting
patient health and healthcare resources. Decaro et al. [8] applied spectral analysis and ma-
chine learning, specifically Support Vector Machine (SVM) and Artificial Neural Network
(ANN), in order to predict hematocrit and oxygen saturation levels. This approach allows
for better assessment of oxygen deficiency and dialysis efficiency, aiming to minimize
session-related risks.

Survival rates for hemodialysis patients are lower, prompting studies on mortality risk
prediction. Research has examined factors such as age and body mass index (BMI), utilizing
machine learning for predictive models. Garcia-Montemayor et al. [9] found Random
Forest superior to Logistic Regression in predicting mortality. Radović et al. [10] reported a
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94% accuracy rate with SVM. Wong et al. [11] compared several models, identifying the
Generalized Additive Model (GAM) as the most effective for predicting mortality and
readmission risks. These findings highlight machine learning’s potential in improving
patient outcomes through predictive analytics.

Research on predicting hospital readmission for hemodialysis patients is less common.
Yeh et al. [12] used data mining for such predictions, and other studies have applied
machine learning for both readmission and mortality risks. Early prediction, especially
post-blood tests taken within a 30-days period, is vital for improving outcomes, allowing
timely clinical interventions.

This study outlines a methodology beginning with K-Nearest Neighbor (KNN) im-
putation to address missing data, followed by the Synthesized Minority Oversampling
Technique (SMOTE) for class balance. It then applies Decision Tree, Bayesian classifiers,
and SVM for classifying potential hospital readmissions within a 30-day period among
hemodialysis patients. An ensemble learning strategy will integrate the three models to
enhance predictive accuracy.

2. Preliminary
2.1. Hemodialysis Complications

The Clinical Guidelines for Hemodialysis in Taiwan highlight common complications
faced by patients, including anemia and CV diseases. One study [4] pinpointed outpa-
tient medication count and cancer comorbidities as predictors for readmissions within 30
days. Low serum albumin levels and hypotension during dialysis were also identified
as significant risk factors. Moreover, comorbid conditions, certain biochemical indicators,
and dialysis-related factors like central venous catheter use contribute to the likelihood of
readmission, underscoring the complexity of managing hemodialysis patient care effec-
tively [13].

In Taiwan, infections, particularly pneumonia and sepsis, are the leading causes of
hospital readmissions for end-stage renal disease (ESRD) patients, with CV diseases also
contributing significantly. The rising trend in infection-related readmissions from 2010 to
2018 highlights the vulnerability of ESRD patients to infections due to immune dysfunction
and dialysis-related complications [14]. Myocardial infarction is notably the primary CV
cause for readmissions. This study aims to delve deeper into the link between anemia,
CV issues, malnutrition, and readmission risks, emphasizing the need for monitoring and
managing these conditions in order to reduce hospital readmissions.

2.1.1. Anemia

Anemia is common among hemodialysis patients due to reduced erythropoietin from
kidney failure, reducing red blood cell count and lowering hemoglobin, causing symptoms
like fatigue. Monitoring red blood cell and hemoglobin levels, which are crucial for oxygen
transport, is essential for diagnosing anemia. Studies indicate that maintaining hemoglobin
above 10 g/dL can improve lifespan and reduce mortality, readmissions, and hospital stays,
underscoring the importance of managing anemia in these patients [15,16].

2.1.2. CV Disease

In Taiwan, CV diseases are the leading cause of death, especially in hemodialysis
patients, whose risk is significantly higher than the general population. Factors contributing
to this increased risk include fluid imbalances and conditions such as AH and diabetes.
Monitoring indicators like uric acid, cholesterol, blood glucose, and glycated hemoglobin
(HbA1c) is crucial for assessing CV risk. For diabetic hemodialysis patients, regular checks
of blood glucose and HbA1c levels are vital for managing their condition and minimizing
mortality risk [17].
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2.1.3. Renal Osteopathy

Renal osteodystrophy, marked by abnormal bone metabolism, leads to conditions such
as osteoporosis and fractures, often due to vitamin D issues or kidneys’ failure to activate
vitamin D. This disease results from high phosphorus levels in the blood, stimulating
excessive parathyroid activity and calcium loss from bones. Blood tests for phosphorus,
calcium, and intact parathyroid hormone (PTH) levels help assess the severity. Elevated
phosphorus and calcium are linked to higher mortality risks, while high phosphorus and
PTH levels correlate with increased readmissions for CV issues and fractures [18].

2.1.4. Nutrition Problem

Nutritional issues in hemodialysis patients, including protein–energy imbalances and
nutrient deficiencies, significantly impact health. Albumin levels, often used to assess
malnutrition, correlate with mortality risk, with each 1 g/dl decrease raising mortality by
47%. Despite this, albumin’s reliability as a nutritional marker is debated, partly due to the
effect of inflammation on albumin levels. In hemodialysis patients, blood urea nitrogen
(BUN) and creatinine, typically kidney function indicators, reflect dietary intake and are
linked to readmission rates and mortality, highlighting the complex relationship between
nutrition and patient outcomes [19–21].

2.1.5. Dialysis Infection

Hemodialysis-related infections, such as hepatitis and dialysis access site infections,
significantly increase the risk of hospital readmissions and mortality in patients. These
patients are more susceptible to infections due to immune system impairments, including
malfunctions in lymphocytes and granulocytes, and factors like malnutrition. The diagnosis
of viral infections often relies on specific enzyme level tests, and regular monitoring
is crucial for early detection. Managing these risks is essential for improving patient
outcomes [22].

To evaluate anemia, red blood cells and hemoglobin levels are measured. For CV
disease risk, measurements include uric acid, cholesterol, blood glucose, and HbA1c. Renal
bone disease assessment involves phosphate, calcium, and PTH levels. Nutritional status
is assessed via albumin, BUN, and creatinine levels. Dialysis-related infection detection
uses WBC count, glutamic oxaloacetic transaminase (GOT), glutamic pyruvic transaminase
(GPT), alkaline phosphatase, and ferritin levels. These criteria provide comprehensive
monitoring for hemodialysis complications, summarized in Table 1 for easy reference.

Table 1. Complications and values to be monitored.

Complication Monitoring Value

Anemia Erythrocyte, hemoglobin

CV disease Uric acid, cholesterol, blood sugar, glycated hemoglobin

Renal osteopathy Phosphorus ion, calcium ion, complete parathyroid hormone

Dialysis infection White blood cells, transaminase glutamine phenylacetic acid, transaminase
glutamine pyruvate, basic phosphoric acid, serum ferritin

Nutrition problem Blood protein, urea nitrogen, creatinine

2.2. Research on Hemodialysis Prediction

Yeh et al. [12] used data mining to predict hospital readmissions for hemodialysis
patients, employing Temporal Abstraction for laboratory data categorization and algo-
rithms like Decision Tree to identify key predictors such as blood albumin and hemoglobin
levels. This approach enabled the identification of specific rules associated with increased
readmission risks, demonstrating the potential of machine learning in improving patient
management and outcomes in hemodialysis care.
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Another study identified several predictors for hospital readmissions in hemodialysis
patients, emphasizing the significance of specific blood markers and conditions. Notably,
lower-than-average blood urea nitrogen, variations in hemoglobin and albumin levels, the
presence of DM combined with suboptimal calcium phosphate product, and albumin levels
within the lower normal range, were all highlighted as key factors. Blood albumin, in
particular, emerges as a crucial indicator for prognosis, demonstrating the value of targeted
monitoring in managing patient health and preventing readmissions [11].

Garcia-Montemayor et al. [9] utilized Random Forest and Logistic Regression to predict
mortality in hemodialysis patients over various periods post-initiation, revealing that the
Random Forest model generally outperformed Logistic Regression. Key predictive factors
varied over time, including creatinine, hemoglobin, and BMI, highlighting the dynamic
nature of risk factors influencing patient outcomes. They are summarized in Table 2.

Table 2. Related research on hemodialysis prediction.

Subject Method Author

Hospital readmissions status Decision Tree, MSApriori Yeh et al. [12]

Hospital readmissions risk
GLM (Generalized Linear Model), GAM
(Generalized Additive Model),
Classification Tree, Random Forest

Wong et al. [11]

Hemodialysis patient mortality Random Forest, Logistic Regression Garcia-Montemayor et al. [9]

2.3. Machine Learning

Machine learning algorithms, ranging from Linear Regression to AdaBoost, are trained
to classify or predict data. Uddin et al. [23] reviewed multiple algorithms across published
studies, finding SVM, Bayesian classification, and Decision Tree to be the most frequently
used. This study will focus on these three algorithms for model training, reflecting their
common application in disease prediction research.

2.3.1. Decision Trees

Decision trees are supervised learning algorithms in machine learning, primarily used
for handling classification problems. Standard algorithms include ID3, C4.5, and CART.
The ID3 algorithm was proposed by Quinlan [24]. Typical ID3 uses entropy, a measure
of disorder in information theory, as the criterion for splitting. Entropy can be expressed
as pi log2 pi; the probability pi represents the frequency of occurrence. The preliminary
entropy value is calculated as follows:

Entropy = −
l

∑
i=1

pi log2 pi (1)

The calculation steps are as follows:

1. The initial value of entropy is calculated by Equation (1)
2. Select the feature result, or the information obtained with minimum entropy as the

root node of the decision tree
3. Use the minimum entropy value to build the next layer of the decision tree
4. Repeat steps 1–3 until all subtrees are of a single category and the entropy value is 0.

Later, in 1993, Quinlan proposed C4.5, which improved upon the information gain
method used in entropy-based classification. He introduced the Gini index as a criterion
for feature selection. Decision Tree is a widely used model-building method in many
classification problems, such as sensor classification, medical diagnosis, and speech and text
recognition [25]. Decision Tree has shown promising results in predicting the occurrence of
low blood pressure during hemodialysis [4].
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2.3.2. The Naive Bayes Classifier

The Naive Bayes classifier is a machine learning model based on probabilistic models.
It relies on Bayes’ theorem, which describes the probability of an event occurring given
some known conditions. The formula for Bayes’ theorem is:

P(A|B) = P(B|A)P(A)

P(B)
(2)

P(A) is the probability of event A happening; P(B) is the probability of event B happen-
ing; P(A|B) is the probability of event A assuming that event B occurs; and P(B|A) is the
probability of event B assuming that event A occurs. Event A and event B are both random
events, and the probability of event B is not 0.

As a method used to analyze probability through the Bayesian theorem, the Bayesian
classifier is a probability model classifier. Different data models will have different training
architectures. The typical Bayesian classification architecture is as follows:

1. Gaussian Naive Bayes Classifier: Primarily used when features are continuous vari-
ables and the data follow a normal distribution

2. Multinomial Naive Bayes Classifier: Mainly used when features are discrete variables
3. Bernoulli Naive Bayes Classifier: Similar to the multinomial model, but differs in that

Bernoulli features are binary.

In Bayesian classification models, it is assumed that all features are independent
and, through probabilistic statistics, unknown data categories are determined to achieve
classification. In the medical field, various classifiers generally perform similarly. One of the
critical factors in choosing which classifier to apply is its explanatory power. Experiments
have shown that physicians prefer explanations provided by Bayesian classifiers and
17 Decision Tree classifiers [26].

2.3.3. Support Vector Machine

SVM belongs to supervised learning algorithms in machine learning, mainly used for
classification and regression tasks. The concept involves defining the optimal separating hy-
perplane in order to classify two linearly separable sets of pattern vectors. The hyperplane
that maximizes the distance between the nearest data points belonging to different classes
is called the optimal hyperplane. SVM can be divided into linear and nonlinear types.

In linear SVM, the distance between the data and the hyperplane is called the hard
margin, when the data are entirely linearly separable, meaning they can be perfectly divided
into two classes. The formula for the hard margin is as follows:

→
w ∗⇀xi − b = 1 or

→
w ∗⇀xi − b = −1, (3)

where
→
w is the normal vector,

⇀
xi is the support vector, and b is the displacement term.

When the data cannot be separated into two categories, some can cross the interval
boundary or even the hyperplane. The interval between the data and the hyperplane is
called the soft interval. The soft interval formula is as follows:[

1
n

n

∑
i=1

max
(

0, 1 − yi

(→
w ∗⇀xi − b

))]
+ λ ∥ ⇀

w ∥2, (4)

where y is the classification result, and the parameter λ is used to weigh the relationship
between increasing the interval size and ensuring that

⇀
xi is on the correct side of the interval.

Boser et al. [27] proposed a method to establish a nonlinear classifier by applying kernel
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techniques to the maximum margin hyperplane. The central concept is to project the data
into a high-dimensional space to find the best hyperplane. The formula is as follows:

sgn

([
n

∑
i=1

ciyik
(
⇀
xi,

⇀
z
)]

+ b

)
, (5)

where k represents the kernel function,
⇀
z is the new point of classification, and ci is a

quadratic function subject to linear constraints. In one study predicting mortality rates
among hemodialysis patients, the accuracy rate of the predictive model using SVM reached
94.12% [3].

2.4. Ensemble Method

The concept of an ensemble method is to systematically combine several models
together in the hope of generating a stronger model. The most basic form is the Voting
Method, which determines the predicted class label by majority rule. It is further divided
into Majority Voting and Weighted Voting: the former involves simple majority voting,
while the latter assigns weights to the individual models’ predictions.

2.4.1. Majority Voting

Majority Voting, also known as Hard Voting, is defined such that, if one of the models
predicts a probability of a certain class greater than 50%, that class is chosen. If no class
receives more than 50% of the votes, a rejection option is given, and the models refrain
from making predictions [28].

If there are T models for a binary classification problem and at least T/2+1 models
choose the correct class, assuming the outputs of the models are independent and each
model has an accuracy of P, each model makes a correct classification with accuracy P. The
probability of obtaining at least T/2+1 correct models out of T, according to [29], is

Pmv =
T

∑
k=[ T

2 +1]

(
T
k

)
pk(1 − p) T−k (6)

Lam and Suen [30] have proposed:

If p > 0.5, then Pmv increases monotonically in T, then lim
T→∞

Pmv = 1

If p < 0.5, then Pmv decreases monotonically in T, then lim
T→∞

Pmv = 0

If p = 0.5, then Pmv = 0.5 for any T

This result is obtained based on the assumption that the models are statistically
independent. However, in practice, models are often highly correlated because they are
trained on the same problem. Therefore, it is unrealistic to expect the accuracy of majority
voting to converge to 1 as the number of individual models increases [28].

2.4.2. Weighted Voting

Weighted Voting, also known as Soft Voting, is where the model outputs are treated as
probabilities instead of simply integrating the results. These probabilities are weighted or
averaged, and the class with the highest probability is chosen as the final result. Specific
weights are assigned to each class for each model. The formula for the combined output Cj
for each class is as follows:

H j(x) =
T

∑
i=1

wj
i h

j
i(x) (7)

Here, wj
i serves as the weight of the model Hj classified in the category Cj.
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It should be noted that Weighted Voting is usually used for homogeneous and hetero-
geneous ensembles; the probabilities generated by different models can usually only be
directly compared with careful calibration [28].

Ensemble methods, integrating multiple models, have shown promise in medical
predictions; for instance, Majority Voting, combining Stochastic Gradient Descent (SGD),
KNN, Random Forest, and Logistic Regression, reached a 90% accuracy rate in heart disease
prediction. Similarly, Weighted Voting, using Random Forest, Logistic Regression, and
Naive Bayes, achieved accuracy rates of 78.08% and 97.02% for DM and breast cancer,
respectively [31,32]. This study will evaluate Majority and Weighted Voting to determine
the most effective prediction method.

3. Materials and Methods
3.1. Dataset

This study collected data from a Taiwan hospital’s hemodialysis unit between 2011 and
2022. It adhered to the National Kidney Foundation’s testing guidelines. Patients in
long-term respiratory care or those not undergoing regular long-term hemodialysis were
excluded, focusing on outpatient admissions. Those treated for less than 3 months were
also excluded due to incomplete data and emergency conditions. After exclusions, 251 of
the initial 790 patients were eligible for analysis, aiming to improve patient care through
predictive modeling. Figure 1 illustrates the sample selection steps for this study.
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Figure 1. Sample selection.

This study analyzed 9367 records from 251 hemodialysis patients, covering basic
information, laboratory tests, and hospital readmissions. Anonymized patient IDs (“CHT”)
were used for privacy. Monthly tests included routine blood work and specific tests for
electrolytes, nutrition, liver function, dialysis efficiency, and lipids. Additional tests like
Uric Acid and HbA1c were performed quarterly. Hospital readmission data, indicating
readmissions within 30 days post-test, were also analyzed, coded as “1” for no readmissions
and “2” for readmissions within this timeframe. Table 3 outlines the dataset, categorizing it
into basic patient information, detailed laboratory test results, and hospital readmission
data within 30 days post-test.

Table 3. Dataset description.

Variable Name Variable Description Attributes

Basic information CHT Anonymous ID of patient nonmetric

Inspection data WBC (white blood cell) White blood cell count metric
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Table 3. Cont.

Variable Name Variable Description Attributes

RBC (red blood cell) Red blood cell count metric

HbC Hemoglobin metric

ALBUMIN Albumin metric

GOT (glutamic oxaloacetic
transaminase)

Serum glutamate
phenylacetate transaminase

metric

GPT (glutamic pyruvic
transaminase)

Serum glutamate-pyruvate
transaminase

metric

ALKALINE-P Alkaline phosphoric acid metric

CHOLESTEROL Total cholesterol metric

GLUCOSE blood sugar metric

BUN_BEFORE Blood urea nitrogen before
dialysis

metric

BUN_AFTER Blood urea nitrogen after
dialysis

metric

CREATININE Creatinine metric

URIC_ACID Uric acid metric

FULL_CALCIUM Calcium ions metric

P Phosphorus ions metric

FERRITIN Ferritin metric

INTACT-PTH Parathyroxine
immunoassay

metric

HBA1C Glycated hemoglobin metric

KTV(Kt/V) Urea nitrogen dialysis
efficiency

metric

Hospital readmissions INP Hospitalized within 30 days non-metric

3.2. Research Process

This study employs the Python scikit-learn library across five steps: preprocessing
data, pre-testing models, training, validating, and creating an ensemble model as shown in
Figure 2. Data preprocessing addresses missing values and imbalance. Pre-testing ensures
the model meets a 60% accuracy threshold, leading to possible adjustments. Models such
as Decision Tree, SVM, and Naive Bayes are trained and evaluated for accuracy. The best
model is then chosen for further testing. Finally, an ensemble approach combines three
models, aiming for improved accuracy in predicting hospital readmissions.J. Clin. Med. 2024, 13, x FOR PEER REVIEW 10 of 24 
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3.3. Data Pre-Processing

Given the clinical origin of the dataset, missing test data are addressed alongside the
imbalance between hospital readmissions and non-readmissions, with the latter forming
90.87% of the 9367 records. This imbalance and missing data are critical to model con-
struction, necessitating specific methods for effective handling, which are detailed in the
following section.

3.3.1. Data Imbalance Processing

Data imbalance, where one class significantly outnumbers others, can skew model
accuracy toward the majority class [33]. Addressing this through oversampling or under-
sampling is crucial. Studies have proven oversampling, particularly SMOTE, to be more
effective than undersampling in balancing datasets [34,35]. This research opts for SMOTE
to mitigate data imbalance, enhancing model performance.

3.3.2. Missing Value Handling

Missing values occur from errors in data collection and are addressed by deletion
or interpolation, with the latter preferred to avoid data loss. Jadhav et al. [36] evaluated
several interpolation methods, finding KNN interpolation most effective. This study adopts
KNN for handling missing values, aiming to determine the optimal K value for each model.

3.4. Cross-Validation

K-Fold Cross-Validation splits data into K subsets for model testing and validation,
using K-1 subsets for training and one for validation, rotating them until each subset has
served as the validation set. This method helps assess model generalization [37,38]. The
choice of K depends on data bias and measurement error concerns, with K = 10 offering a
balance in this study to ensure model accuracy.

3.5. Evaluation Metrics

Evaluation metrics classify outcomes into true positive (correctly predicted positive),
true negative (correctly predicted negative), false positive (incorrectly predicted positive),
and false negative (incorrectly predicted negative). Using these outcomes, metrics such as
accuracy, sensitivity, specificity, and AUC (area under the curve) are calculated to assess
model performance [39].

Accuracy measures the proportion of true results (both true positives and true nega-
tives) in the total dataset. However, due to potential class imbalance, this might not always
be the best performance metric. Precision calculates the accuracy of positive predictions,
while sensitivity (or recall) measures the proportion of actual positives correctly identi-
fied, which is crucial in medical fields for the minimization of missed positive cases. The
F1 score harmonizes precision and sensitivity, and a higher score indicates better model
performance. AUC assesses a classifier’s ability across various thresholds, with higher
values indicating superior predictive power [22,40]. The formulas for these calculations are
presented in Equations (8)–(11):

Accuracy =

(
(TP + TN)

Total

)
(8)

Precision =
TP

TP + FP
(9)

Sensitivity =
TP

TP + FN
(10)

F1 Socre =
2 ∗ (Precision ∗ Recall)
(Precision / Recall)

(11)
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4. Result and Discussion
4.1. Result

This study will use the Python scikit-learn package for model training, and the model-
ing process will be presented in the following sections.

4.1.1. Sample Analysis

This study utilized medical records from a hemodialysis unit in a Taiwanese hospital,
gathering data on 251 patients differentiated by gender, age, blood type, and medical
history, including diabetes, hepatitis, heart disease, high blood pressure, stroke, chronic
obstructive pulmonary disease (COPD), and cancer, as listed in Table 4. The data indicate
a predominance of elderly patients, aligning with the trend of declining kidney function
with age and heightened risk due to chronic conditions and lifestyle factors.

Table 4. Descriptive statistics of patients.

Character Data (n = 251)

Sex Male (121), female (130)

Age Over 70 years old (139), under 70 years old (112)

Blood type A (47), B (73), O (118), AB (13)

History of diabetes Y (121), N (130)

History of hepatitis B Y (18), N (233)

History of hepatitis C Y (65), N (186)

Cardiac history Y (72), N (179)

History of AH Y (175), N (76)

History of stroke Y (211), N (40)

History of COPD Y (20), N (231)

History of cancer Y (3), N (248)

Nearly half of the dialysis patients in Taiwan have diabetes, a major factor in renal
function decline. Effective blood glucose monitoring, including HbA1c tests, is critical for
managing patient outcomes. Furthermore, comorbidities such as heart disease, AH, and
COPD significantly impact these patients, with AH playing a key role in kidney function
deterioration. This highlights the importance of regular monitoring and management of
blood glucose and blood pressure to prevent complications and hospital readmissions.

While the number of patients with chronic obstructive pulmonary disease (COPD) is
relatively low, COPD often co-occurs with conditions such as AH and hyperglycemia. It is
noted in clinical observations that heart-related issues such as heart failure, arrhythmia, and
myocardial infarction are more prevalent among COPD patients, indicating a significant
risk of CV complications alongside COPD [41].

This study’s data, from a hospital in Taiwan, indicates a high occurrence of hepatitis B
and C, with specific measures for hemodialysis patients to prevent cross-infection. Cancer
history is rare among patients, primarily impacting the kidneys due to urinary system
cancers, surgical removal, or chemotherapy toxicity. The records generically note “cancer”,
necessitating more detailed data on cancer types.

From the 9367 records of 251 patients, Table 5 displays descriptive statistics such as
mean and standard deviation for each variable. Certain tests, as highlighted, have over 50%
missing data due to their periodic nature, impacting their availability in the dataset. Clini-
cians consider these variables significant for assessing the risk of hospital readmissions.
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Table 5. Summary of data.

MEAN STD MAX MIN

WBC (white blood cell) 6.84 2.43 34.5 0.75

RBC (red blood cell) 3.42 0.56 6.08 1.58

HbC 10.19 1.40 16 4.9

ALBUMIN 3.86 0.45 5.3 1.6

GOT (glutamic oxaloacetic
transaminase)

19.23 59.45 5121 2

GPT (glutamic pyruvic
transaminase)

16.02 30.78 1976 2

ALKALINE-P 93.70 52.83 918 24

CHOLESTEROL 157.69 39.96 437 63

GLUCOSE 197.87 109.7 1034 29

BUN_BEFORE 67.01 19.97 259 6

BUN_AFTER 16.40 6.91 72 2

CREATININE 9.07 2.56 22.82 1.13

URIC_ACID 6.68 1.60 16.9 0.9

TOTAL_CALCIUM 9.16 0.89 13.5 3.1

P 4.99 1.59 15 0.4

FERRITIN 397.44 446.38 9570.25 4.7

INTACT-PTH 442.41 441.21 4394.6 3.9

HBA1C (glycated hemoglobin) 7.03 2.03 16.6 3.1

KTV(Kt/V) 1.46 0.29 3.71 0.42

The heatmap in this study, as shown in Figure 3, illustrates variable correlations,
with dark red showing positive and blue indicating negative relationships. Key insights
include the following: links between anemia and both RBC and HBC, due to iron’s role
in hemoglobin; GOT and GPT signaling liver health, with higher levels indicating liver
inflammation; BUN_BEFORE and BUN_AFTER’s reflection of dialysis efficacy, with high
values suggesting suboptimal dialysis; the relationship between ALBUMIN, CREATININE,
and malnutrition, impacting patient survival; and the connection between phosphorus,
dialysis quality, and mortality risk. Additionally, HBA1C and GLUCOSE levels are crucial
for managing DM in dialysis patients, highlighting CV disease risks.

On the other hand, BUN_AFTER and KT/V are significantly inversely correlated
because KT/V’s calculation subtracts to obtain BUN_AFTER, indicating dialysis adequacy.
The National Kidney Foundation suggests that increasing KT/V to 1.2 reduces mortality
by 7% per 0.1 increase; therefore, a KT/V of 1.2 is recommended for optimal patient health,
with lower values indicating poor dialysis effectiveness.
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4.1.2. Data Preprocessing

The study utilized KNNImputer for missing values, selecting the best K via Grid-
SearchCV, testing odd numbers between 1 and 15. Optimal K values varied by model:
11 for Decision Tree, 1 for SVM, and 9 for Bayesian. SMOTE addressed data imbalance,
balancing hospital readmission instances. This process prepared the data for modeling,
resolving the issues of missing values and imbalance.

4.1.3. Decision Tree Result

The Decision Tree model’s pre-test showed a 100% rate accuracy on the training set,
indicating its strong predictive capability for hospital readmissions; however, the test set
accuracy rate fell to 90%. To align the accuracies of both sets, the model was optimized by
adjusting the tree’s max_depth and min_samples_leaf using GridSearchCV for parameter
tuning. The optimal settings were found to be max_depth 14 and min_samples_leaf 13.
Final training incorporated evaluation metrics such as accuracy and AUC, with 10% cross-
validation ensuring reliable indicator values.

The Decision Tree model’s optimization led to a balance between training and test
set performance, with metrics such as accuracy, precision, and AUC closely aligned at
0.92 and 0.91, respectively. This balance indicates enhanced generalization capability and
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consistency in model performance. The outcomes for both sets are depicted in detail in
Table 6.

Table 6. Decision Tree results.

ACC PRE SEN F1-Score Volumn

Training
0 0.93 0.92 0.92 6810

1 0.92 0.93 0.92 6809

Result 0.92 0.92 0.92 0.92

Testing
0 0.91 0.90 0.90 1702

1 0.90 0.91 0.91 1703

Result 0.91 0.91 0.91 0.91
PRE stands for precision and SEN stands for sensitivity.

The model demonstrated strong performance across key metrics in 10-fold cross-
validation, with average values of accuracy, sensitivity, F1-score, and AUC indicating its
robustness. This underscores the model’s capability to accurately classify instances and
maintain a high recall rate with minimal errors, as detailed in Figure 4, where PRE stands
for precision and SEN stands for sensitivity; AUC stands for area under curve.

The analysis identified ALBUMIN as the most influential factor in prediction, aligning
with earlier discussions of its significance. This underlines the crucial role of ALBUMIN
levels in assessing patient outcomes, as detailed in the rankings of influential variables
shown in Figure 5.
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4.1.4. Support Vector Machine Results

The preliminary test outcomes for both the training and test sets exhibited an accuracy
of 0.82 and 0.80, respectively, surpassing the 60% accuracy threshold. Despite achieving
over 0.8 accuracy, these results did not outperform the Decision Tree model, prompting
further optimization in order to enhance accuracy.

The model’s optimization involved using GridSearchCV to adjust the penalty coeffi-
cient C and gamma parameter. Testing C values of 1, 10, 100, and 1000, and gamma values
of 1, 0.1, 0.01, 0.001, and 0.0001, the optimal parameters were found to be C at 10 and
gamma at 1.

The optimized SVM model demonstrated perfect scores in the training set and strong
performance in the test set, with overall metrics indicating a more balanced outcome.
Specifically, the differentiation in model accuracy and sensitivity across binary classifica-
tions highlights its nuanced predictive capability. The F1-score, as a combined measure of
precision and sensitivity, underscores the model’s balanced performance, showcasing its
ability to accurately predict outcomes. Further details are presented in Table 7.

Table 7. Results of SVM.

ACC PRE SEN F1-Score Volumn

Training
0 1.0 1.0 1.0 6810

1 1.0 1.0 1.0 6809

Result 1.0 1.0 1.0 1.0

Testing
0 0.90 0.98 0.94 1702

1 0.98 0.89 0.93 1703

Result 0.93 0.94 0.93 0.93
PRE stands for precision and SEN stands for sensitivity.

The cross-validation results (Figure 6) showed an average accuracy of 0.93, an average
precision of 0.98, an average sensitivity of 0.88, an average F1-score of 0.93, and an average
AUC of 0.99. Cross-validation revealed that the model has a high overall performance with
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mean scores indicating strong predictive capabilities for hospital readmissions. Notably,
high average accuracy and AUC reflect the model’s effectiveness in differentiating cases,
while the sensitivity score underscores its precision in prediction. This demonstratesVM
SVM’s potential in accurately forecasting patient readmissions.
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This study identified the most impactful variables for hospital readmission predictions,
with ALBUMIN, CREATININE, and HBC leading. In alignment with Decision Tree findings,
ALBUMIN was proven to be crucial. The close scoring among the top 10 variables suggests
that each significantly affects model performance, as detailed in Figure 7.
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4.1.5. Bayesian Classifier Results

The Bayesian classifier’s unique structure limits parameter adjustments, affecting its
performance. Results show that it has a lower prediction efficiency compared to Decision
Tree and SVM models. It is weaker in negative case predictions but its strengths lie in
sensitivity and F1-score for positive classifications. This leads to an less effective prediction
outcome overall, as detailed in Table 8.
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Table 8. Results of Bayesian classifier.

ACC PRE SEN F1-Score Volumn

Training
0 0.56 0.92 0.70 6809

1 0.78 0.27 0.40 6810

Result 0.60 0.67 0.60 0.55

Testing
0 0.57 0.92 0.70 1703

1 0.79 0.29 0.43 1702

Result 0.61 0.68 0.61 0.56
PRE stands for precision and SEN stands for sensitivity.

The model’s 10-fold cross-validation showed an average accuracy and relatively
high sensitivity, indicating a decent overall prediction ability but exposing limitations in
accurately identifying negative cases. The lower F1-score and AUC values suggest a need
for improvement in model performance, especially in specificity and precision, as detailed
in Figure 8.
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In the Bayesian classification model, ALBUMIN emerged as the most pivotal variable
for prediction, mirroring findings from Decision Tree and SVM. CREATININE and WBC
also significantly influenced outcomes, although their importance varied across models.
Unlike Decision Tree, the distinction in feature impact was less pronounced, indicating a
more uniform influence on the Bayesian model, with ALBUMIN notably dominating. The
ranking of top variables is displayed in Figure 9 for clarity.
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4.1.6. Result of Ensemble Learning

This study opted for the voting algorithm for ensemble learning model training. The
Majority Voting results demonstrated a training set performance of 0.96 across accuracy,
precision, sensitivity, F1-score, and AUC metrics. The test set showed slightly lower results
at 0.92 for these metrics.

The study determined the optimal weights for the Weighted Voting method as 1:2:1,
achieving an average accuracy rate of 96%, as depicted in a specific figure. With these
weights, both training and testing phases reached a 0.96 score across all metrics, including
accuracy, precision, sensitivity, and F1-score for Weighted Voting, as detailed in Table 9.

Table 9. Ensemble learning results.

Training Testing

ACC PRE SEN F1 Score ACC PRE SEN F1 Score

Hard
Voting

0 0.94 0.98 0.96 0.88 0.97 0.92

1 0.98 0.94 0.96 0.96 0.86 0.91

Result 0.96 0.96 0.96 0.96 0.92 0.92 0.92 0.92

Soft
Voting

0 1.0 1.0 1.0 0.93 0.99 0.96

1 1.0 1.0 1.0 0.99 0.93 0.96

Result 1.0 * 1.0 * 1.0 * 1.0 * 0.96 * 0.96 * 0.96 * 0.96 *

* PRE stands for precision and SEN stands for sensitivity.

Weighted Voting yielded better outcomes than Majority Voting. While Majority and
Weighted Voting showed different results in training, Weighted Voting’s comprehensive
evaluation through the F1-score revealed a more balanced performance, effectively predict-
ing both positive and negative cases, detailed in Table 9 and Figure 10.
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4.2. Discussion
4.2.1. Machine Learning and Ensemble Learning

This study evaluated three machine learning models for predicting hemodialysis
patient readmissions, summarized in Table 10. SVM emerged as the most effective model,
closely followed by Decision Tree, which also demonstrated high performance. This
indicates the strong capability of these models in classifying data within the feature space.

The Bayes classifier’s performance was found to be lacking, particularly in distinguish-
ing between negative and positive cases, as highlighted by its sensitivity and F1-scores.
This challenge arises partly because Bayes classifiers treat features as independent, which is
a problematic assumption when dealing with complex, interrelated features. The presence
of variable correlations further complicates classification. This underscores the neces-
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sity of exploring multiple classifiers and potential of combining their strengths for more
accurate predictions.

Table 10. Comparison results of the models.

Testing

ACC PRE SEN F1 Score AUC

DT 0.91 0.91 0.91 0.91 0.91

SVM 0.93 0.94 0.93 0.93 0.93

Bayesian 0.61 0.68 0.61 0.56 0.61

Ensemble 0.96 * 0.96 * 0.96 * 0.96 * -
* PRE stands for precision and SEN stands for sensitivity.

This study employed ensemble methods alongside individual models to enhance
prediction accuracy, utilizing both Majority and Weighted voting techniques. Majority
Voting aggregates predictions by majority rule, but only its accuracy paralleled that of the
SVM model. Conversely, Weighted Voting, by adjusting SVM’s weight, yielded superior
results, highlighting ensemble learning’s potential for improving accuracy.

Ensemble learning works better than a single specific machine learning model in many
cases because, while a single model tends to overfit the training data, ensemble learning
can reduce this risk by integrating the predictions of multiple models. Ensemble learning
often generalizes better to unseen data because it combines the predictions of multiple
models, resulting in more robust and generalized predictive capabilities. A single model
may be affected by noise and outliers; however, by integrating multiple models, ensemble
learning can reduce this effect because outliers are likely to affect only one or a few of the
models. Since ensemble learning uses multiple models, it is more robust and, even if one
of the models performs poorly, the performance of the overall ensemble model can still
be maintained.

Ensemble learning is highly valuable for clinical use, offering insights for medical deci-
sions and more accurate patient risk assessments. By merging multiple models’ predictions,
it addresses single model limitations and enhances accuracy for clinical relevance. This
study indicates that Weighed Voting methods yield optimal predictions for hemodialysis
patient readmissions, serving as a significant tool for clinical decisions and showcasing the
benefits of model combination in tackling clinical challenges.

4.2.2. Important Features of 30-Day Hospital Admissions for Hemodialysis Patients

The pivotal features from the three models, as detailed in Section 4.1, are collectively
presented in Table 11, offering a comprehensive overview of key predictors for hospital
readmissions among hemodialysis patients. The characteristics of these important variables
are explained in the following sections.

Table 11. Important blood features of the three models.

Decision Tree SVM Bayesian

Important
features

ALBUMIN

ALBUMIN ALBUMIN

CREATININE CREATININE

HBC WBC

ALBUMIN: Albumin is crucial for predicting hospital readmissions within a 30-day
period among maintenance hemodialysis patients due to its role as a biomarker for nu-
tritional status and inflammation. Low levels of albumin indicate malnutrition and/or
chronic inflammation, which are associated with increased risks of complications that lead
to hospital readmission. Therefore, albumin levels offer valuable insight into patients’
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health and the effectiveness of their dialysis treatment, guiding clinical decisions towards
potentially reducing readmission rates.

CREATININE: Creatinine is a key feature for predicting hospital readmissions within
a 30-day period among maintenance hemodialysis patients because it reflects kidney
function and dialysis efficacy. Elevated creatinine levels may indicate inadequate dialysis or
worsening kidney function, which can lead to complications requiring hospital readmission.
Monitoring creatinine helps assess the adequacy of dialysis treatment and patients’ overall
health status, making it a vital marker for predicting hospital readmission risk.

HBC: Hemoglobin concentration is a crucial feature for predicting hospital readmis-
sions within a 30-day period among maintenance hemodialysis patients because it directly
relates to patients’ anemia status. Anemia is a common condition in hemodialysis patients,
impacting their overall health and increasing hospital readmission risks. Low HBC levels
indicate poor anemia management, which can lead to complications requiring hospital care.
Therefore, monitoring HBC can provide valuable insights into patients’ health status and
predict readmission risks.

The contribution of blood test data to hospital readmissions is mainly reflected in
the following aspects: Blood tests can be used to monitor the control of chronic diseases
such as diabetes, high blood pressure, heart disease, and more. By regularly checking
blood markers, healthcare workers can detect and manage illnesses promptly, reducing
prehospitalization risk. Blood tests can provide important information about an individual’s
health status, such as blood sugar levels, cholesterol levels, white blood cell counts, and
more. These measures can assess an individual’s overall health and may be related to
readmission risk. Blood test data can provide vital information for assessing and managing
readmission risk, helping to improve the quality of patient care, reduce medical costs, and
improve overall medical outcomes.

Taiwan’s medical insurance system is worthy of note within the global context. The
hemodialysis room performs blood tests for hemodialysis patients every month. In addi-
tion to allowing kidney patients to understand their physiological status, regular blood
work can also prevent the occurrence of dialysis complications early. However, studies
have not yet been undertaken that specifically focus on analyzing monthly blood tests to
predict hospitalizations within a 30-day period among maintenance hemodialysis patients.
Typically, studies have either focused on different aspects of hemodialysis patient care such
as long-term outcomes and readmission patterns, rather than directly analyzing monthly
blood test data to predict admissions.

The contribution of this study in analyzing monthly blood tests to predict hospital-
izations within a 30-day period among maintenance hemodialysis patients is significant
and multifaceted, especially in the context of the Taiwanese healthcare system. These
contributions include the following:

1. This study addresses a specific research gap by using monthly blood test data to
predict short-term hospitalizations in hemodialysis patients. This area has previously
been neglected in favor of long-term outcomes and general readmission trends.

2. By analyzing routine blood tests to predict the likelihood of hospitalization within
30 days, healthcare providers can identify high-risk patients earlier. This enables
the implementation of preventive measures to avoid hospitalization and potential
complications associated with hemodialysis.

3. Predictive analytics can help healthcare organizations better allocate resources by iden-
tifying patients at higher risk of hospitalization, ensuring interventions are directed
where they are needed most.

4. Early detection and prevention of potential complications can significantly improve
the quality of life of hemodialysis patients and reduce the number of hospitalizations,
allowing them to maintain a more stable and comfortable daily life.

5. Insights from this study can inform healthcare policies and strategies, especially in
improving the efficiency and effectiveness of Taiwan’s renowned health insurance sys-
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tem. It can serve as a model for integrating predictive analytics into daily patient care
and has the potential to be adopted in similar healthcare settings around the world.

6. This study contributes to the wider field of nephrology by providing a new approach
to managing hemodialysis patients through the strategic use of routine clinical data,
setting a precedent for future research and practice.

Overall, this study represents a major advance in the proactive management of
hemodialysis patients, leveraging routine medical data to improve patient outcomes and
healthcare efficiency.

5. Conclusions

Historically, hemodialysis studies predominantly aimed at predicting mortality, with
less emphasis on forecasting hospital readmissions due to worsening health conditions in
patients. Nonetheless, accurately predicting hospital readmission risks could significantly
enhance patient survival rates. This study is the first to use monthly blood test data from
hemodialysis patients to predict hospital admissions within a 30-day period. The initial step
involved using the K-Nearest Neighbor method for imputation of missing data, followed
by employing the Synthetic Minority Oversampling Technique (SMOTE) to tackle the
challenge of data imbalance. Subsequent analyses utilized machine learning algorithms to
predict the risk of hospital readmissions within a 30-day period for hemodialysis patients.
Among the tested machine learning models, Support Vector Machine (SVM) showed the
highest initial accuracy, achieving a 93% rate. The incorporation of ensemble learning
methods further enhanced model performance, boosting accuracy rates to 96%. These
findings underscore the potential of ensemble learning models to leverage monthly blood
test data effectively for predicting short-term hospital readmission risks among hemodial-
ysis patients. These advancements hold significant implications for the field of precision
medicine. This study can also serve as a foundational step towards more personalized and
effective healthcare solutions for hemodialysis patients.

In addition, this study emphasizes the liver index ALBUMIN as a key predictor across
models, particularly highlighting its clinical significance beyond malnutrition, which is
often linked to inflammation. The kidney function indicator CREATININE reflects muscle
mass and dialysis efficacy, marking its importance alongside ALBUMIN in readmission
risk. Additionally, HBC and WBC are identified as critical for assessing anemia and
infection risk, respectively. These insights offer clinicians valuable indicators for evaluating
hemodialysis patients’ readmission risk, underscoring the importance of these variables in
clinical assessments.

5.1. Limitations

This study offers initial insights into predicting hemodialysis patient readmissions,
acknowledging limitations such as regional data scope and a focus on blood tests without
considering demographics or medical history. Future research could broaden variables,
apply different ensemble methods or deep learning, and expand sample sizes to enhance
prediction accuracy and reliability. Extending the prediction timeline and exploring practi-
cal applications in clinical settings could also provide valuable improvements, aiming for
broader applicability as well as refinement based on clinical feedback.

5.2. Implications

Predicting hospital readmissions within a 30-day period among maintenance hemodial-
ysis patients, using monthly blood test data, can significantly impact patient care and
healthcare resource management. This approach allows for early identification of at-risk
patients, enabling proactive intervention that can reduce readmissions, enhance patient
outcomes, and optimize healthcare expenditures. By analyzing blood test data, healthcare
providers can detect underlying health issues sooner, tailor treatments more effectively,
and improve the overall quality of care for hemodialysis patients.
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In addition, using machine learning to predict hospital readmissions within a 30-
day period among maintenance hemodialysis patients has profound implications. It
enables early identification of individuals at risk, improving patient management and
potentially reducing readmission rates. This approach can lead to more personalized care
plans, optimizing treatment efficacy and patient outcomes. Additionally, it may offer
significant cost savings for healthcare systems by minimizing unnecessary hospitalizations,
thus allocating resources more efficiently and enhancing the overall quality of care for
hemodialysis patients.
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