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Abstract: The interventricular septum (IVS) is a core myocardial structure involved in biventricular
coupling and performance. Physiologically, during systole, it moves symmetrically toward the center
of the left ventricle (LV) and opposite during diastole. Several pathological conditions produce
a reversal or paradoxical septal motion, such as after uncomplicated cardiac surgery (CS). The
postoperative paradoxical septum (POPS) was observed in a high rate of cases, representing a unicum
in the panorama of paradoxical septa as it does not induce significant ventricular morpho-functional
alterations nor negative clinical impact. Although it was previously considered a postoperative event,
evidence suggests that it might also appear during surgery and gradually resolve over time. The
mechanism behind this phenomenon is still debated. In this article, we will provide a comprehensive
review of the various theories generated over the past fifty years to explain its pathological basis.
Finally, we will attempt to give a heuristic interpretation of the biventricular postoperative motion
pattern based on the switch of the ventricular anchor points.

Keywords: postoperative paradoxical septum; abnormal septal motion; cardiac imaging

1. Introduction

Following cardiac surgery (CS), patients often exhibit a new abnormal motion of the
interventricular septum (IVS) during echocardiographic follow-up. This issue has been
reported since the early 1970s [1–5]. Although other imaging techniques can detect it,
echocardiography remains the most common method [6–11]. This abnormal septal motion
is known by different names, such as reversed septal movement, pseudo-paradoxical
septum, or simply abnormal septal motion (ASM). In this review, we will use “ASM” to
indicate generic alteration of septal movement and “postoperative paradoxical septum”
(POPS) for specific postoperative septal kinetic alterations. The definition of POPS has
evolved with technology advancements and imaging techniques. It can be comprehensively
defined as a new-onset postoperative non-respirophasic flat or centrifugal systolic motion of
the IVS with normal septal wall thickening, preserved left ventricular geometry, unchanged
global systolic function, and normal septal perfusion and metabolism. POPS represents a
unicum in the panorama of paradoxical septa as it does not induce significant ventricular
morpho-functional alterations nor negative clinical impact. However, a dyskinetic IVS can
be observed in various pathological conditions, such as myocardial ischemia or necrosis,
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intraventricular conduction delays, pre-excitation, constriction physiology, pericardial
effusion, right heart overload, or congenital absence of the pericardium (CAP) [12–16].
Some of these conditions can complicate the postoperative period [10,17–19]. Furthermore,
changes in the lateral wall can also occur, complicating the overall assessment of the
postoperative systolic function of the left ventricle (LV) [20–23].

The pathophysiological basis of postoperative septal behavior is still debated, and
several theories have been proposed over the years, including intraoperative myocardial
damage and altered wall synchrony. However, current theories focus on extrinsic factors
related to increased heart mobility and new anatomical relationships with the thoracic
walls during the cardiac cycle [3,20,21,24]. Postoperative changes in the morphological and
systolic function patterns of the right ventricle (RV) are also believed to play a pathogenetic
role [25–28]. In this article, we provide a comprehensive review of the current state-of-the-
art knowledge about POPS, tracing its essential stages from the initial observations to the
most recent developments.

2. Epidemiology

A paradoxical septal bouncing is observed in a relatively large number of cases during
the postoperative period. The reported incidence ranges from 29% to 100% in the early
perioperative follow-up. Most studies have primarily focused on male adult or elderly
patients undergoing various types of CS. Notably, a significant number of studies have
specifically investigated coronary artery bypass graft surgery (CABG) [29], while there is
limited data available on other types of cardiac interventions (Table 1).

In the largest population examined, consisting of 3292 cases, an overall POPS incidence
of 39% was reported. Valvular heart surgery (VHS), particularly mitral valve surgery (MVS),
showed the highest rate of POPS (60% of cases). Multivariate analysis indicated that the
development of POPS was independently associated with the type of surgical approach,
patient’s age, and cross-clamp time (p < 0.001), while gender had no significant impact [9].
A cohort of 256 subjects undergoing VHS had a similar overall incidence, although aortic
valve surgery (AVS) had a significantly higher POPS incidence than MVS (64% vs. 36%,
p < 0.01) [30]. Other authors also reported no statistically significant differences in the
POPS incidence between CABG and VHS. They also reported a notable improvement in
septal dyskinesia after a 12-month follow-up [31]. In a prospective study of 165 patients,
the type of surgery and approach did not influence the development of POPS, with a
decrease in prevalence from 73% to 25% during the late follow-up [24]. Similarly, previous
studies based on small cohorts in the 70s and 80s consistently described a progressive POPS
resolution during follow-up [3,20,32].

In contrast, Okada et al. reported the presence of POPS in all subjects during peri-
operative control and in the late follow-up using gated blood-pool scans with technetium-
99m-pyrophosphate (Tc-99m-PYP-GBPS) [33]. Moreover, using rest-gated single photon
emission computed tomography (SPECT), POPS was observed in over two-thirds of the
subjects during routine 2-year imaging follow-up after CABG [22]. Patients undergoing
AVS showed similar findings after 19 months of follow-up using radionuclide angiocar-
diography (RNA) [34]. Therefore, the choice of imaging tool may affect the assessment of
septal kinesis. However, there is a lack of comparative data between echocardiography and
other imaging techniques. For example, in a qualitative assessment using Nuclear Magnetic
Resonance (NMR), the presence of POPS was observed after 3 months from CABG, with
different results reported between the echocardiographic evaluation and NMR [26]. De
Nardo et al. found consistent results evaluating 34 patients after 10 days of uncomplicated
CABG, with both echocardiography and RNA showing POPS, although RNA detected a
higher prevalence. They also highlighted a high rate of postoperative increase in segmental
ejection fraction in the posterolateral wall using RNA, without significant differences in
the systolic thickening fraction of the posterior wall (PW) examined by echo-Motion-Mode
(M-mode) [35]. It seems that techniques other than ultrasound tend to overestimate wall
displacement when compared to echocardiography. This difference could be due to the
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varying definitions of POPS used. Ultrasound techniques often use quantitative assessment,
while other methods rely on a qualitative approach. However, recent echocardiographic
studies have reported a high prevalence of POPS using both qualitative and quantitative
approaches during late follow-up [36].

It is worth noting that the method of approach can impact the diagnosis of POPS, even
when using the same imaging tool. Lehman et al. discovered that the incidence of POPS
was 100% and 76% when using qualitative and quantitative approaches, respectively [21].
Additionally, the visibility of POPS can be affected by the choice of tomographic cut. Recent
echocardiography evaluations have identified POPS in approximately 43% and 50% of
patients using apical and parasternal windows, respectively [37]. However, ultrasound-
based studies in this area used different cut plans for wall motion assessment and definitions
of POPS, leading to variability in the results.

In summary, POPS can be predicted in about half of the patients, regardless of gender
and type of CS. The prevalence of POPS is significantly influenced by various factors,
including the timing of surgery and examination, the imaging technique used, and the
definition applied.

Table 1. Characteristics of patients in previous studies. AVR: Aortic Valve Replacement; IVS: Inter-
ventricular Septum; CABG: Coronary Artery Bypass Graft; CPB: Cardiopulmonary Bypass; GBPS:
Gated Blood Pool Scintigraphy; MVR/Rep: Mitral Valve Replacement/Repair; M-Mode: Motion-
mode imaging; NMR: Nuclear Magnetic Resonance; POPS: Post-operative Paradoxical Septum; PTV:
Parasternal Views; PW: Posterior Wall; RV: Right Ventricle; SPECT: Single Photon Emission Computed
Tomography; TEE: Transoesophageal Echocardiogram; VHS: Valve Heart Surgery; VVI: Velocity
Vector Imaging; 4CHV: Four-chamber Apical View.

Author/Year N. TOT Male (%) Mean Age
of Patient

Type of
Surgery

% POPS * Imaging other than TTE
M-Mode and 2d

Explanation Theories
<3 Months ** Follow-Up

Burggraf,
1975 [2] 50 50 38

19 AVR
17 MVR

14 Other VHS
51 § 15 - Related to CPB

Righetti, 1977
[3] 40 77 57 40 CABG 57 20 Radionuclide

angiography

Transient ischemic
injury and

exaggerated cardiac
mobility due to
pericardiotomy

Vignola, 1979
[4] 45 - 51

7 CABG
14 AVR
14 MVR

10 Others

53 - GBPS Related to CPB

Matsumoto,
1980 [5] 24 67 58

12 CABG
7 AVR
5 MVR

10 - Intraoperative TEE
Exaggerated cardiac

mobility due to
pericardiotomy

Waggoner,
1982 [38] 17 56 56 ± 13

12 CABG
3 AVR

2 Others
60 -

Intraoperative
direct-M-Mode
post-operative

2D TTE

Exaggerated cardiac
mobility due to
pericardiotomy

Rubenson,
1982 [23] 20 90 62 ± 15 20 CABG 58 - TTE 2D -

Kerber, 1982
[32] 25 - -

4 AVR
14 MVR
6 Others

56 28 TEE 2D

Exaggerated cardiac
mobility due to

limited RV free wall
mobility

Gourdier, 1982
[30] 256 / / 256 VHS 44 - - Exaggerated cardiac

mobility

Force, 1983
[39] 20 20 59

17 CABG
2 AVR + CABG

1 AVR
68 -

TTE 2D (floating axis)
radionuclide

ventriculography

Exaggerated cardiac
mobility

Akins, 1984
[40] 22 68 52 22 CABG 50 -

Resting
GBPS or ventricular

angiography

Related to CPB
and/or myocardial

preservation
techniques.
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Table 1. Cont.

Author/Year N. TOT Male (%) Mean Age
of Patient

Type of
Surgery

% POPS * Imaging other than TTE
M-Mode and 2d

Explanation Theories
<3 Months ** Follow-Up

Schroeder,
1985 [31] 324 / / 110 CABG

214 HVS 69 14 -
Exaggerated cardiac

mobility due to
pericardiotomy

Schnittger,
1985 [41] 21 - -

14 CABG
6 HSV

1 Other
76 - Intraoperative direct

M-Mode

Exaggerated cardiac
mobility due to
pericardiotomy

Feneley, 1987
[20] 16 87 52 15 CABG

1 Other 56 0
Intraoperative direct

M-Mode
post-operative TEE

Exaggerated cardiac
mobility

De Nardo,
1989 [35] 34 88 55.2± 7.0 34 CABG

41
(Radionuclide
angiocardiog-

raphy)
29 (echocardio-

graphy)

- Radionuclide
angiocardiography

Exaggerated cardiac
mobility due to
pericardiotomy

van der Wall,
1990 [34] 12 75 41 12 AVR - 92 Radionuclide

angiography

Rigid ring of
prosthesis limiting

septal excursion

Lehmann, 1990
[21] 21 76 59.6 ± 9.6

18 CABG
2 HVS

1 Other

100
qualitatively

76
quantitatively

- Intraoperative TEE Related to CPB

Okada, 1992
[33] 16 100 59 16 CABG 100 100

Thallium-201
Scintigraphy

Gated blood pool scan
Tc 99m

Excluded ischemic
injury

Wranne, 1993
[25] 19 52 54

4 CABG
4 CABG + HVS

6 MVR/Rep
3 AVR

2 Others

29 (before
chest closure)
84 (after chest

closure)

- Intraoperative TEE
Recruitments of IVS

to maintain RV global
performance

Gigli, 1995 [42] 10 80 60 ± 9 10 CABG 50 -
TEE

cyclic gray-level
variation study

Excluded ischemic
injury

Giubbini, 2004
[22] 82 86 67.8 ± 9.6 82 CABG - 93 SPECT Tc 99 Excluded ischemic

injury

Hedman, 2004
[43] 99 86 65 ± 9 99 CABG - 96 -

Recruitments of IVS
to maintain RV global

performance
Toyoda, 2004

[44] 12 83 62 ± 11 12 CABG 75 (not specified the interval
time from the intervention) TDI Exaggerated cardiac

mobility

Reynolds, 2007
[9] 2979 - -

1808 CABG
687 AVR

759 MVR/Rep
45 Others

40 (not specified the interval
time from the intervention) None

Related to the type of
surgery and surgical

approach

Joshi, 2008 [26] 23 73 64 23 CABG - 100 NMR
Recruitments of IVS

to maintain RV global
performance

Roshanali,
2008 [36] 240 79 58.3 ± 11.3 240 CABG - 97 TDI

Recruitments of IVS
to maintain RV global

performance

Choi, 2010 [45] 18 56 58 ± 12 18 CABG - 56 NMR rest/stress
Exaggerated cardiac

mobility due to
pericardiotomy

Codreanu,
2011 [46] 18 100 67 ± 7 18 CABG - 100

NMR
high temporal resolution

tissue phase mapping

Adhesion limiting the
rotational motion of

LV pushing IVS
anteriorly during

systole

Michaux, 2011
[47] 50

65 ±8 cohort
A

61 ± 9
cohort B

50 CABG 32 - TDI No correlation
with CPB

Kang, 2014
[24] 165 56 60 ± 13

59 CABG
99 VHS
7 Other

73 25 TOE-VVI
Related to subtle

conduction
disturbance

Moya Mur,
2018 [37] 30 60 69.9 ± 13.3

7 CABG
11 AVR
2 MVR

10 Other

50 in PTV
43 in 4CHV - TTE-STI

Exaggerated cardiac
mobility due to
limited RV free
wall mobility

* The percentage refers to the actual cases studied that do not always correspond to the starting number of subjects,
mainly during the follow-up. ** The early evaluation varies a lot among studies. Some studies performed early
and late follow-ups within three months after the intervention. In this case, we reported the higher incidence
observed in the period. § They performed the early follow-up within two months and the late beyond.
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3. Normal and Paradoxical Interventricular Septum

The IVS represents the keystone for interventricular coupling and the biventricular
performance [27,48]. Unlike the other ventricular walls, IVS is directly exposed to both
intraventricular pressures and influenced by the systolic and diastolic trans-ventricular
gradients. Under normal conditions, it thickens during systole, increases its curvature,
moves towards the LV center, and returns to its original position during diastole [49].
Breathing patterns can influence IVS motion during diastole, with inspiration displacing
it posteriorly and expiration moving it in the opposite direction. This breathing-related
effect on IVS motion is minimal under normal circumstances but can be more significant
in pathological conditions [8,19]. When the IVS moves in the opposite direction to the
physiological motion, it is called a “paradoxical” septum (Figure 1). A differential diagnosis
is important for interpreting other paradoxical septa (Table 2) [50], but a comprehensive
discussion of them is beyond the scope of this review.
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Table 2. Characteristics and types of abnormal septal motion. IV: Intraventricular; IVS: Interventricu-
lar Septum; LBBB: Left Bundle Branch Block; LV: Left Ventricle; POPS: post-operative paradoxical
septum; RV: Right Ventricle; (*) could also be diastolic (**) could be systolic and/or diastolic.

Characteristics of
Abnormal Septal

Motion

Common Causes of Abnormal Septal Motion

POPS
LBBB/RV

Pacing
Rhythm

Ischemia
Rv Pressure/

Volume
Overload

Constrictive
Pericarditis

Pericardial
Tamponade

Obstructive
Pulmonary

Diseases/Mechanical
Ventilation

Systolic + + + (*) + (**) − − −
Normal Iv Conduction + − + + + + +
Preserved Ivs Perfusion + + − + + + +
Normal Ivs Metabolism + + − + + + +
Normal Lv Geometry + − − − − − −

Normal Lv Global
Systolic Function + + +/− +/− +/− +/− +/−

Respirophasic Motion − − − − + + +
Stress Related − +/− +/− − − − −

4. The Septal Injury Theory

During the perioperative period, patients may experience complications such as type
5 acute myocardial infarction (MI) and procedure-related myocardial injury, particularly
during cardiopulmonary bypass (CPB) [51–53]. Burggraf and Craige, in 1975, were the
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first to suggest that CPB-related myocardial injury may contribute to the development
of POPS [2]. Studies conducted in the 70s and 80s confirmed a higher incidence of POPS
when CPB was performed, with different possible explanations being speculated, such as
transient CPB-related damage and graft-related coronary steal phenomenon [3,4,30,54]. It
is important to note that in these studies, evidence of ischemia was primarily based on a
reduction in wall thickening as observed in M-Mode. In many cases, there was no other
evidence of myocardial injury.

However, recent literature has criticized the ischemic hypothesis, as there is no electro-
cardiographic or laboratory evidence supporting the myocardial damage required to cause
such acute and localized kinetic alterations [21,25,30,32]. Moreover, the presence of POPS
in patients undergoing uncomplicated CS with patent coronary arteries in the pre-surgical
angiographic control makes the ischemic hypothesis unlikely [32,34]. Additionally, studies
using 2D imaging found no significant reduction in septal systolic wall thickening (SSWT)
in the POPS subgroup [24,35,37,41,45]. However, a stunning localized effect with minimal
release of myocardial enzymes, such as in Takotsubo syndrome, should be considered [51].
Anyway, no differences in ventricular deformation pattern, perfusion, and late gadolinium
enhancement (LGE) in the POPS group were reported [24,26,45,46].

There is also conflicting evidence on the role of CPB in causing damage during CS.
A prospective study on 22 patients found that POPS incidence was significantly higher
after uncomplicated on-pump CABG compared to off-pump CABG (p < 0.0005) [40]. Other
studies also reported a higher incidence of POPS in on-pump CABG and found that
POPS was independently associated with the CPB time and preoperative septal perfusion
on multivariate analysis [9,55,56]. However, some studies have found no differences in
postoperative septal motion patterns between the two cohorts [24]. In a recent study,
Michaux et al. randomized 50 patients for on-pump vs. off-pump CABG and found no
differences in POPS incidence after 3 months [47].

To summarize, myocardial ischemia is considered an unlikely cause of septal dysk-
inesia after uncomplicated CS and POPS seem to involve a dissociation between wall
thickening and displacement.

5. The Timing

The temporal aspect of POPS is significant, as it occurs after CS. Typically, it is observed
on transthoracic echocardiography (TTE) performed within a week after the procedure.

Intraoperative imaging studies helped to define the timing and shed light on the
underlying pathophysiological mechanism. Early studies using intraoperative M-Mode
echocardiography from an anterior approach yielded intriguing results. In a 1982 study,
17 patients undergoing CS were examined before and after pericardiotomy and just before
chest closure. Surprisingly, no patients exhibited ASM at the end of the operation, including
those with preoperative paradoxical IVS on TTE. However, after a week, approximately
60% of patients showed POPS, with no significant changes in LV dimensions or func-
tion [38]. Similar findings were observed in a subsequent study involving a comparable
population [41]. Feneley et al. reported normal IVS motion during all intraoperative
stages in 16 patients undergoing uncomplicated CS. However, about 50% of a subgroup
of patients exhibited POPS when assessed by transoesophageal echocardiography (TEE)
within two hours after surgery [20]. These findings indicated that POPS developed early
after chest closure, but the precise moment remained to be determined.

In a shift of perspective, Lehmann et al. employed intraoperative TEE in a cohort
of 21 patients undergoing their first CS. They quantitatively assessed LV motion during
various intraoperative steps, comparing them with the baseline. Interestingly, they ob-
served a sudden onset of ASM and compensatory lateral hyperkinesis immediately after
discontinuation of CPB in 76% of subjects. No significant changes were noted in regional
or global ventricular kinetics during previous steps. This discovery demonstrated the
intraoperative detectability of POPS, reinforcing the association with CPB while dismissing
myocardial injury as a probable cause [21]. Similar partially overlapping observations were
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made by Wranne et al. using a similar intraoperative approach, where ASM appeared
either after CPB discontinuation or soon after chest closure [25]. Other authors confirmed
the intraoperative development of ASM [42].

In summary, the timing of POPS is crucial, occurring after CS and typically detectable
on TTE within a week post-surgery. Intraoperative imaging studies have provided valuable
insights, revealing the early development of POPS after chest closure or CPB discontinuation.

6. The Reference System

The choice of observation system significantly affects the assessment of postoperative
septal motion. Contact-based imaging methods remove the relative motion between the
heart and the probe, which could affect the detection of POPS. In line with this observation,
a study by Waggoner et al. revealed that intraoperative evaluation did not show any
alterations in patients with preoperative ASM, which was due to previous CS. In contrast,
patients who had right-side overload showed paradoxical IVS until the atrial defect was
corrected [38]. Reoperated patients with POPS have been less studied, but the presence of a
true paradoxical IVS should be evident regardless of the imaging technique used or external
factors [25]. In 1973, Miller et al. first described POPS in patients after uncomplicated MVR.
Moreover, they found unexpectedly that patients with significant residual mitral or aortic
regurgitation had normal septal motion. After correcting the LV volume overload, those
patients paradoxically developed an ASM [1]. It seemed that after CS, the normal IVS
motion could be reversed. Consequently, some authors have suggested excluding the IVS
from postoperative LV kinetic evaluations.

The “floating system method” overcomes the limitations of M-mode imaging by
superimposing traced endocardial end-diastolic and end-systolic 2D images using a defined
intraventricular point of reference known as the “centroid”.

Various approaches have been employed (Figure 2). In their study, Waggoner et al.
used the centroid (Figure 2a) to show a significant anteriorization of the LV after CS
compared to unoperated healthy subjects. However, their method, which was similar to
M-Mode imaging, did not provide information on the LV geometry [38]. To address this
limitation, a more advanced approach was introduced, which defined both a center and an
axis of reference (Figure 2b). Patients with POPS exhibited a notable anterior shift in the
centroid, coupled with decreased septal kinesis and augmented kinesis of the lateral wall
using an external reference. On the contrary, there were no noticeable differences in the
kinetics of the LV walls when utilizing the floating system method [39].
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Figure 2. Schematic representation of left ventricular centroids used in the literature for post-operative
septal motion assessment: (a) intermediate point between the IVS and the PW endocardium from
short-axis view. (b) intermediate point between the apex and the mitral valve plane midpoint from
the apical four-chamber view. (c) center of two perpendicular lines bisecting the cross-sectional
area from a parasternal short-axis view. (d) the intermediate point between the IVS and the PW
epicardium from a short-axis view. (e) intermediate point between the IVS and the PW endocardium
from a short-axis view. ATW: Anterior Thoracic Wall; C: Centroid.
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Subsequent studies using TEE and NMR further supported the use of mobile ref-
erence systems. Intraoperative studies described the simultaneous appearance of wall
kinetics anomalies and the significant increase in anteromedial translation of the centroid
(Figure 2c) [21]. This finding was also corroborated by NMR in a subsequent study using a
similar Waggoner’s approach after uncomplicated CABG (Figure 2d). They measured a
significant increase in the postoperative systolic anterior displacement of the IVS, LV lateral
wall, and LV centroid after intervention (p = 0.001) [26]. Other studies corroborated this
evidence, showing decreased postoperative septal displacement in the ASM group, while
SSWT remained unchanged (Figure 2e) [45].

In cases of uncomplicated CS, these findings suggest that LV experiences an increased
postoperative anteromedial translational motion. The translation motion and wall thicken-
ing in the same range of values support the development of an appreciable optical effect
explained by the composition of motions (Figure 3).
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Figure 3. Schematic representation of the systolic left ventricular anterior translation movement
(above) and corresponding mono-dimensional echocardiography pattern (below). In the orange box:
schematic representation of the anterior-medial translation of the left ventricle from a parasternal-
short axis view. The combined ventricular movement of anteromedial translation and radial contrac-
tion produces a hypokinetic septum and hyperkinetic posterior wall in the Motion-Mode scan. ATW:
Anterior Thoracic Wall; C: Centroid; IVS: interventricular septum; L: Lateral side; M: Medial side;
M-Mode: Motion-mode Imaging; PW: posterior wall; T: centroid translational vector.

7. Curvature and Deformation

In addition to the floating system method, 2D imaging offers another way to evaluate
kinetic independent of any translational motions. The LV has an approximately conical
shape and physiologically maintains a concave shape throughout the cardiac cycle. When
dealing with paradoxical IVS, such as in pulmonary hypertension, the curvature radius of
the IVS increases [57]. However, studies have shown that the curvature of the LV and the
LV’s eccentricity index remain unchanged after uncomplicated CS [20,21,32,58].

To obtain objective results and address the challenges posed by translation and traction
motions when evaluating the postoperative LV regional kinetics, the study of LV curvature
and a floating system have been used.

Additionally, tissue characterization and deformation evaluation techniques have
emerged as valuable tools to differentiate between IVS function and mere displacem-
ent [15,22,59–62]. In this regard, Giubbini et al. retrospectively compared subjects with
previous anterior MI (all with pre-operative hypokinetic IVS) and others with stable
angina (with pre-operative normokinetic LV) after CABG. After the intervention, both
cohorts expressed a similarly high incidence of ASM. However, only patients with pre-
vious MI showed a significant reduction in normalized septal thickening and perfusion
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(p < 0.0001) [22]. Similarly, one study found that patients with previous anterior MI had a
reduction in strain parameters compared to those with stable angina after CABG, despite
both groups having a similar rate of ASM. The CABG group also demonstrated significant
anteromedial displacement of the LV, resulting in reduced tissue Doppler septal velocity
when sampled from an apical approach or inverted when sampled from a parasternal
approach [44]. Moreover, others have shown intact septal thickening and similar defor-
mation parameters between cohorts with and without POPS, supporting the idea of a
preserved septal function in both cases [37,46]. In a prospective study of 165 patients, LV
global and regional peak circumferential strain and strain rate remained similar pre- and
post-operatively. However, the POPS cohort showed significantly reduced radial systolic
velocities of IVS. The authors ruled out the possibility of IVS injury based on intact septal
thickening and similar deformation parameters between the groups [24]. While some
authors suggested that the differences in segmental rotation velocities were due to friction
to the anterior thoracic wall [46], others proposed that minor postoperative conduction
disorders could be the reason for POPS [63]. However, the absence of intraventricular
conduction delays on postoperative electrocardiograms casts doubt on this explanation [24].
Moreover, no correlation between LV dyssynchrony and previous CABG was observed in a
large, heterogeneous cohort using SPECT or positron emission tomography (PET) [64].

The lack of alterations in LV geometry and function reported in various studies has
shifted attention toward extrinsic factors as potential contributors to POPS. The exaggerated
anterior motion of the LV during systole has been suggested as a possible mechanism,
although the underlying cause of this translation motion is still subject to debate after many
years of research.

8. The Role of the Pericardium

The pericardium plays a crucial role in stabilizing the heart and facilitating its phys-
iological movements without friction. After CS, it was often left open, leading some
researchers to suggest that the lack of pericardial integrity may contribute to postoperative
exaggerated heart mobility [5,25,31,35,41,45]. In agreement with this assumption, patients
who have had CS or those with CAP exhibit similar echocardiographic features, including
ASM, excessive heart mobility, and increased PW displacement [17,65]. Consistently, the
development of post-pericardiectomy ASM was described in [66]. However, the absence
of intraoperative changes in septal kinetics after pericardiotomy has led to reevaluating
the pericardium’s role [21,25,58]. Additionally, closure of the pericardium after CS does
not appear to affect the development of ASM, as evidenced by a study by Lindqvist et al.,
which found no significant differences in bi-ventricular function and morphology during
follow-up after pericardial repair at the end of AVS [67].

Other factors, such as the removal of the anterior mediastinal tissue, have been pro-
posed as potential contributors to the development of exaggerated heart motion [39].

Over time, researchers have moved from thinking that excessive cardiac mobility was
due to the pericardiotomy to believing that friction between the heart and surrounding
tissues can lead to POPS.

9. The Right Ventricle: The Other Side of The Coin

It has been observed that RV longitudinal function (RVLF) tends to decrease after
surgical procedures. There is an intriguing relationship between postoperative RV function
adaptation, excessive heart motion, and POPS.

Kerber et al. first speculated on the role of RV in the POPS genesis. In their hy-
pothesis, the RV attached to the anterior thoracic wall drags the entire heart anteriorly,
contracting [32]. Friction between the heart and anterior mediastinum may explain the
reduction of rotational and radial septal velocities described after uncomplicated CS [24,46].
Consistently, post-interventional systolic anteriorization of the heart has been observed
using NMR [26]. Moreover, STI studies have demonstrated a postoperative shift of the
ventricular longitudinal static reference point from the LV apex to the RV-free wall [37].
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This resulted in a postoperative reduction of RV basal longitudinal velocity, strain, and
displacement while bi-ventricular global systolic function remained stable [37].

The return to normal values of tricuspid annular plane systolic excursion (TAPSE)
after adhesiolysis in patients who underwent a second cardiac intervention supports these
findings [25].

However, the traction of the heart due to adhesions and containment of the anterior
thoracic wall fails to explain the intraoperative ASM development [21].

In 1993, Wranne et al. demonstrated that RVLF impairment and POPS occurred during
the same intraoperative phases [25]. Several subsequent studies reported similar findings,
leading to the hypothesis that postoperative reduced RVLF may lead to compensatory
movement of the IVS to maintain stable ventricular function [25,28,58]. This is supported
by studies that show a significant correlation between septal systolic anterior motion and
reduced TAPSE (r = 0.60; p < 0.001) [67], as well as between septal systolic anterior motion
and RV ejection fraction (r = 0.47; p = 0.023) [26]. Moreover, patients with normokinetic
IVS showed preserved RVLF [36]. Some experimental models with a dysfunctional RV-free
wall showed that IVS compensates for RV-impaired systolic function [68].

The RV contraction comprises three mechanisms: the base-apical displacement (the
most important in the normal setting, contributing to up to two-thirds of the output), the ra-
dial contraction, and the traction of the free wall by the twisting-LV [48,69]. Postoperatively,
the RV shows a peculiar functional adaptation consisting of reduced longitudinal displace-
ment with increased radial wall displacement and unaltered global function [28,37,45,58,70].
Some authors have also reported a relative RV distension [4,71]. Postoperative changes in
RV morphology and function occur rapidly but may persist for a prolonged period [36,43].

While there are commonalities between excessive heart motion, POPS, and RVLF
impairment, they are not always interconnected, and the degree of RV dysfunction required
for POPS development remains unclear. The hypothesis of adaptive IVS compensation
for RV function aligns with the intraoperative development of POPS and excessive heart
motion and the maintenance of RV global function [72].

10. A New Heuristic Hypothesis for POPS

The postoperative kinetic pattern of the LV characterized by anteroseptal hypo- and
posterolateral hyperkinesis can be interpreted in different ways. One possibility is that it
represents septal dysfunction compensated by PW hyperkinesis, resulting in an unchanged
LVEF. However, this pattern is not consistent with the nature of injury-related postoperative
complications, as there is a lack of significant markers of injury and normal ventricular
perfusion and wall thickening [22,24,35,37,46]. Another interpretation is that the combined
systolic displacement of the entire heart and LV walls produces the observed motion pattern
when viewed from a fixed observational system like TTE. This scheme may account for the
apparent discrepancy between LV function and motion. The anterior displacement of the
centroid and PW associated with an unchanged SSWT supported this view [20,21,38,39].
The septal kinetics abnormalities observed in patients with POPS may be reversible during
a second CS and tend to resolve over time [25]. Moreover, the return to a normal centroid
displacement range during follow-up also reinforces this idea [38,39]. However, despite
knowing when it manifests during surgery, when and how it resolves remains debated. In
an uncomplicated setting, POPS does not seem to have significant clinical consequences,
and changes in pharmacological management are not currently recommended since data
on the negative clinical impact of POPS are lacking [36,43,73].

Impaired RVLF after CS has been proposed as a possible cause of POPS. Both POPS
and RVLF impairment develop intraoperatively and can normalize over time [25,26,28,36].
Postoperatively, the RV motion’s pattern and geometry change, while LV morphology does
not, leading to speculation that the RV plays a central role in the biventricular motion
pattern changes. The POPS may represent a compensative mechanism for the impaired
RVLF [25,26,58,67]. The exact trigger for RVLF impairment and its transmission to the LV is
not fully understood, but it appears to be linked to the surgery itself, independent of other
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variables [74]. Biventricular motion patterns change rapidly after CS without significant
ventricular dysfunction. The possibility of an acute postoperative myopathic state of the
endocardial fibers has been considered. However, several studies have demonstrated the
preservation of ventricular contractility using strain parameters [28,37,46,67]. Moreover,
most reports indicate that global ventricular function and clinical status remain unchanged
or improve after CS despite the impaired RVLF [26,28,36,43,58,67]. These findings chal-
lenge the idea of compensatory mechanisms due to abrupt functional asymmetry between
the ventricles.

A heuristic geometric explanation for the biventricular kinetic pattern changes is
proposed. The contraction of the LV involves twisting, shortening, and thickening mo-
tion, with myocardial fibers arranged in a specific pattern moving from one to another
coplanar point on the cardiac fibrous skeleton [27,48,49]. During contraction, they move
centripetally towards the base and the central axis. Yet, there is a prevailing movement
of the base towards the apex due to the relative fixation of the phrenic cardiac surface
and the apex cordis. We wonder how the kinetics of a normal heart hanging on its hilum
vary. It could be different than a heart in situ, despite maintaining normal function. In the
described condition, the medial ventricular segments remain longitudinally static, and the
contraction of the RV-free wall drags the LV anteriorly, eliminating the need for any friction
mechanism (Figure 4). The postoperative increase in anteromedial LV rotation supports
our conjecture [20,39]. This mechanism may explain the intraoperative development and
its correlation with the CPB of both the POPS and the RVLF impairment. Additionally, it
does not indicate any functional asymmetry between the ventricles.
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Figure 4. The connection between postoperative paradoxical septum (POPS) and right ventricu-
lar longitudinal function (RVLF). (A) Schematic representation of normal bi-ventricular motion.
(B) Post-operative bi-ventricular motion according to our hypothesis. After surgery, the reduced
relative apical fixation produces an anterior heart displacement (green arrow) accounting for POPS
and a reduced basal-apical tricuspid annular displacement. An accentuated rotation (red arrow)
could contribute to the post-operative reduction of TAPSE and septal MAPSE. The blue and yellow
arrows indicate the prevailing longitudinal direction displacement of the left ventricle during systole.
IVS: interventricular septum; M-Mode: Motion-mode Imaging; LV: Left Ventricle; MAPSE: mitral
annular plane systolic excursion; PW: posterior wall; RV: Right Ventricle; TAPSE: tricuspid annular
plane systolic excursion.

Removal of anterior mediastinal tissue and the CBP-related impairment of the right
atrium may also contribute to this mechanism [38,39,67].

After chest closure, friction and adhesions between the heart and thoracic tissues could
further enhance this pattern by fixing the mid-basal sternal cardiac surface [32,37,46].
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11. Conclusions

In conclusion, after uncomplicated CS, there are changes in the bi-ventricular kinetic
pattern without negative clinical impact, maintaining preserved systolic function. Various
theories intended to explain this phenomenon. Selective IVS damage and significant con-
duction disturbances are considered unlikely causes of POPS. Currently, the most widely
accepted hypothesis is that a combination of left ventricular contraction and anterior transla-
tion is responsible for increased cardiac motility. Although it was initially believed that the
absence of pericardial constrictions was the primary cause, recent evidence suggests that it
may increase friction with the surrounding mediastinum. Early studies focused primarily
on the LV and interpreted its motion as that of the entire heart. However, the RV appears
more static postoperatively with impaired longitudinal performance. Some researchers
have suggested that POPS compensates for impaired RVLF, but the idea of significant
functional asymmetry between the ventricles is criticized. We conjecture that postoperative
bi-ventricular kinetic changes could be related to a shift in anchor ventricular points from
the apex toward the anteromedial basal portion. Intraoperatively, anterior mediastinal
tissue removal and CPB may contribute, while adhesions with the anterior thorax appear to
be the main determinant after chest closure. According to this perspective, the paradoxical
motion pattern may express normal biventricular kinetics in the postoperative period.
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