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Abstract: Background: MRI diagnostics are important for adenomyosis, especially in cases with
inconclusive ultrasound. This study assessed the potential of MRI-based radiomics as a novel tool for
differentiating between uteri with and without adenomyosis. Methods: This retrospective proof-of-
principle single-center study included nine patients with and six patients without adenomyosis. All
patients had preoperative T2w MR images and histological findings served as the reference standard.
The uterus of each patient was segmented in 3D using dedicated software, and 884 radiomics
features were extracted. After dimension reduction and feature selection, the diagnostic yield of
individual and combined features implemented in the machine learning models were assessed by
means of receiver operating characteristics analyses. Results: Eleven relevant radiomics features
were identified. The diagnostic performance of individual features in differentiating adenomyosis
from the control group was high, with areas under the curve (AUCs) ranging from 0.78 to 0.98. The
performance of ML models incorporating several features was excellent, with AUC scores of 1 and
an area under the precision-recall curve of 0.4. Conclusions: The set of radiomics features derived
from routine T2w MRI enabled accurate differentiation of uteri with adenomyosis. Radiomics could
enhance diagnosis and furthermore serve as an imaging biomarker to aid in personalizing therapies
and monitoring treatment responses.

Keywords: adenomyosis; radiomics; MRI texture analysis

1. Introduction

In adenomyosis, endometrial-type glandular tissue and stroma are located in the
myometrium [1–3]. The condition is associated with infertility, pelvic pain, menorrhagia,
dysmenorrhea, and obstetrical complications [4–6]. The quality of life of affected women
and the health care burden are relevant, as 37.6% use chronic pain medications and 82.0%
undergo hysterectomy [7]. Medical and surgical treatment options can reduce adenomyosis-
related symptoms, but there is currently no evidenced-based approach—especially for
infertile patients with adenomyosis [8,9]. Transvaginal ultrasound (TVUS) is the diagnostic
tool of choice and has a sensitivity of 74% and a specificity of 76% (two-dimensional TVUS).
In recent years, the MUSA working group has developed criteria to enable standardized
diagnostics [10,11].
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MRI plays a role in treatment planning for complex cases where ultrasound is incon-
clusive, especially in combination with deep endometriosis [12–14]. MRI is reported to have
a sensitivity of 78% and a specificity of 88% for diagnosing adenomyosis [15]. There are
various MRI signs for adenomyosis, such as the junctional zone (JZ) thickness, an irregular
appearance of the JZ, uterine morphology, and focal thickening [13,15]. To our knowledge,
there are no internationally recognized guidelines for MRI diagnostics in adenomyosis,
and with the mentioned criteria, the potential of this imaging modality does not seem fully
realized, especially when looking beyond its scope into other medical fields [12,16].

In the field of medical imaging, radiomics has gained traction as a means of en-
hancing the diagnostic yield and predictive power of medical images. With radiomics,
high-dimensional mineable data that cannot be detected by the human eye are extracted
from medical images and leveraged as biomarkers [17,18]. The first data on radiomics
in adenomyosis have been published, but to our knowledge, there has been no study
addressing its diagnostic utility [19]. We hypothesized that radiomic features derived
from T2w MRI could enable the accurate, noninvasive, and reliable MRI-based diagnosis
of adenomyosis.

2. Materials and Methods
2.1. Patient Selection

In this retrospective observational single-center proof-of-principle study, consecutive
female patients from the Endometriosis Registry of Hospital Schaffhausen, Switzerland,
were examined. The recruitment period spanned from 1 January 2013 to 31 December
2021. The test group included patients with histologically confirmed adenomyosis, who
were compared to a control group without histological evidence of adenomyosis. Only
premenopausal patients were included in both groups. Patients were included in the
adenomyosis group based on the following criteria: clinical suspicion of adenomyosis
derived from medical history and clinical examination, MRI-based preoperative imaging
findings, and availability of histology after hysterectomy as the reference standard. Exclu-
sion criteria encompassed the absence of adenomyosis in histopathology or faulty MRI
sequences unsuitable for evaluation. Patients were included in the control group if they had
MRI-based preoperative imaging findings and availability of histology after hysterectomy
as the reference standard. They were excluded if adenomyosis was present or if faulty MRI
sequences were identified.

The aim of this study was to investigate the diagnostic potential of MRI-based ra-
diomics as a novel, non-invasive diagnostic tool for adenomyosis. By utilizing radiomics
features in routine T2w MRI scans, which represent the gold standard for endometriosis
and adenomyosis, this study seeked to enable accurate differentiation between uteri with
and without adenomyosis [20].

The histopathological evaluation was conducted by the Institute of Pathology, Hospital
of Winterthur, Switzerland. The histopathological assessment followed these criteria:
Adenomyosis is defined as a lesion where endometrial stroma and glands are located within
the myometrium. Since the lower boundary of the endometrium toward the myometrium
is typically irregular, adenomyosis is diagnosed only if the lesions were clearly below this
line, typically at a distance of at least 2 mm.

In cases of suspected clinical diagnosis, either macroscopically evident areas are
embedded in addition to the routine block of the endomyometrium, or in the absence
of macroscopic abnormalities, 2–3 additional arbitrary paraffin blocks are taken from the
corpus. However, there are no universally accepted guidelines in this regard.

2.2. MRI

Prior to hysterectomy, all patients underwent a routine and comprehensive pelvic MRI
examination on the same standard clinical 3T scanner (Achieva; Philips Healthcare, Best,
The Netherlands). For further analyses, only sagittal T2w images were considered with
the following parameters: 3D T2w Turbo Spin Echo (TSE) sequence, Cartesian acquisition,
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repetition time (TR) of 4279 ms, echo time (TE) of 70 ms, flip angle of 90◦, field of view
(FOV) of 370 × 349.4 × 180 mm3, acquired voxel size of 0.47 mm, reconstructed voxel size
of 0.36 mm, 60 slices, 2.0 signal averages (NSAs), and a total scan duration of 07 min and
42 s. Figure 1 shows a normal uterus, Figure 2 shows a uterus with predominantly focal
adenomyosis, and Figure 3 shows a uterus with diffuse adenomyosis.
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Figure 3. Diffuse adenomyosis: T2w sagittal image. The uterus is diffusely and homogeneously hy-
pointense without differentiation of the inner and outer myometrium (red arrows). A T2 hyperintense
myometrium (red star) is visible.

2.3. Image Segmentation and Radiomic Feature Extraction

Image segmentation was performed using the opensource software platform 3D Slicer
(version 4.8, www.slicer.org) URL (accessed on 1 December 2021). After loading the Digital
Imaging and Communications in Medicine (DICOM) files into the program (sagittal T2w
images), segmentation was performed manually by outlining the uterus in all slices. Before
feature extraction, all segmented images underwent standardized preprocessing as follows:
spatial resampling to 1 × 1 × 1 mm3 using a fifth-degree LaGrangian polynomial, intensity
discretization to a bin width of 25, and relative intensity rescaling using a scale of 500 [21].
Then, a total of 884 features were extracted per patient using the pyRadiomics package,
which was implemented as a plugin in the 3D Slicer platform.

Radiomics features corresponded to 7 different matrices/feature classes: a first-
order statistics/histogram matrix, shape-based features, a gray-level co-occurrence matrix
(GLCM), a gray-level run length matrix (GLRLM), a gray-level size zone matrix (GLSZM),
a neighboring gray tone difference matrix (NGTDM), and a gray-level dependence matrix
(GLDM). Additionally, images underwent a wavelet transformation. From these images,
wavelet-based features were extracted, which contained all first-order statistics features
and textural features, but were extracted from images with this wavelet decomposition [22].
A detailed description of all features can be found in the pyRadiomics documentation and
elsewhere [23].

2.4. Dimension Reduction and Feature Selection

All features were first subjected to a normalization procedure using Z-score standard-
ization [24]. Then, features were used as input data for the Boruta dimension-reduction
and feature-elimination algorithm. The Boruta algorithm compares the importance of the
real predictor features with those of random features (called shadow features) by means of
statistical testing and several runs of the random forest (RF) method. Randomness is added
to a prescribed dataset by building all the features of a mixed copy (shadow features).

Next, training is carried out with an extended dataset of RF classifications, and a
feature importance measure is implemented (the default setting is the average reduction
accuracy). A higher importance score indicates the greater importance of the feature. In
each iteration, the algorithm checks whether a real feature is more important than the best

www.slicer.org
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shadow feature (specifically, whether the feature receives higher scores than the largest
shadow feature). If the real feature does not score as high as the shadow feature, it is
no longer considered a very important feature. The process is finally terminated when
all features are detected or when the algorithm achieves a given limitation for the RF
operation [25].

2.5. Data Analysis

All statistical analyses were performed in R (version 4.02; R Foundation for Statistical
Computing) using the packages “Boruta” and “healthcare.ai”. Features selected for further
analyses were first subjected individually to receiver operating curve (ROC) analyses.
To this end, the area under the curve (AUC) and its 95% confidence interval (CI) were
computed. Two models were fitted to quantify the overall diagnostic performance of the
combined metrics in differentiating adenomyosis cases from the control group.

In the first model, all remaining features were implemented as predictor variables. In
the second model, only a subset of the remaining features were implemented as predictor
variables. Specifically, only non- to less correlated features were implemented in the second
model. The Boruta algorithm does not account for collinearity in the data. Thus, from
clusters of highly correlated features detected in a correlation matrix, only select features
from each cluster should be used.

For each model, three algorithms were individually fitted and optimized iteratively:
random forest, extreme gradient boosting, and regularized regression. The models were
tuned via 5-fold cross validation with 10 combinations of hyperparameter values. The
optimal algorithm with the optimal hyperparameter values for a given model was then
selected based on the AUC-ROC performance metric. Due to the very limited sample size,
we did not reserve a subset of the data as a validation set. Thus, the results are based solely
on model training. Figure 4 illustrates the process of segmentation, feature extraction, and
analysis and provides an idea of the future of radiomics.
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Figure 4. Schematic representation of segmentation, feature extraction, analysis, and future potential
of radiomics. This figure illustrates the process of how the radiomics features were derived from T2w
MRI and especially illustrates how the image segmentation and feature extraction were performed.
Additionally, the future potential of using radiomics in combination with clinical data is highlighted.

3. Results
3.1. Patients

After excluding two patients due to faulty MRI sequences, the study included 15
patients for definitive analysis. Nine patients (40.8 ± 4.7 years old (mean ± SD)) had re-
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ceived a diagnosis of adenomyosis based on histopathological analysis, while in six patients
(40.3 ± 3.9 years old), histopathological examination revealed no signs of adenomyosis.
A third (66.6%; n = 6) of patients in the adenomyosis group (average duration of therapy
7.7 months) and 50% (n = 3) of the control group (average duration 3 months) underwent
endocrine therapy directly before the MRI. The MRI of one person in the adenomyosis
group and of one person in the control group showed multiple myomas. Intraoperatively,
endometriosis was found in all patients (Table 1).

Table 1. Patient details. In this table, the patient details of the two groups are presented (AG:
Adenomyosis Group, histologically confirmed adenomyosis; CG: Control Group, no histological
evidence of adenomyosis). The patients are numbered within each group. Age at MRI is provided
(in years). G/P (Gravida/Para). The endocrine therapy as follows in the table (0: none, 1: COC
(combined oral contraceptive), 2: Gestagen (Dienogest), 3: Levonorgestrel-IUD, 4: GnRH-Analogue).
In the context of endocrine therapy and duration, therapies taken prior to the MRI are referred to.
Additionally, preoperative TVUS based on MUSA criteria, conventional MRI, and intraoperative
endometriosis findings based on #Enzian (s) are shown.

Patients Age G/P Endocrine
Therapy

Endocrine
Therapy

Duration before
MRI (Months)

Adenomyosis
in TVUS

Adenomyosis
in Conven-
tional MRI

Duration
MRI—

Surgery
(Months)

Endometriosis
(Intraoperative

#Enzian)

AG

1 33 0/0 2 1 No Yes 4 P2, T3/3, A2, B2/1,
C1, FA

2 42 0/0 1 36 Yes Yes 5 P1, FA

3 44 II/I 0 0 Yes Yes 3 P1, O1/1, T1/1, A3,
B2/1, FA, FB

4 35 I/I 2 2 Yes No 1 P2, O1/1, T1,1, A2,
FA, FB

5 47 II/II 3 3 Yes Yes 1 P2, O2/2, T3/3, A2,
B1/1, C1, FA, FB

6 42 0/0 4 2 Yes Yes 5 P2, O1/0, T3/1,
B1/0, FA

7 41 I/I 0 0 Yes Yes 2 P2, O1/1, T1/1, A3,
B1/1, C3, FA, FB

8 39 0/0 0 0 Yes Yes 1 P3, T2/0, A3, B2/1,
C1, FA, FU

9 44 III/II 2 2 Yes Yes 1
P3, O3/3, T3/3, A3,
B3/3, C2, FA, FU, FI

(Sigma)

CG

1 38 II/I 0 0 No No 2 P1, O1/1, T0/1,
B1/1, FB

2 48 I/I 2 1 No Yes 1 P2, O2/0, B1/1

3 37 IV/III 2 3 No Yes 1 P1, O2/1, T1/1, A1

4 40 II/II 3 5 No No 2 P1, O1/2, T1/1, A2,
B1/0, C1

5 39 II/II 0 0 Yes Yes 4 FB

6 40 0/0 0 0 No Yes 2 FO (umbilicus)
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3.2. Radiomics

After dimension reduction and feature selection, 11 features remained (Table 2). A
detailed description of these features can be found in the literature [22,23]. Figure 5 provides
a visual representation of the diagnostic capabilities of these features. In brief, the AUC
of these features ranged from 0.78 to 0.98, indicating the high diagnostic performance of
the individual features in differentiating patients with adenomyosis from patients in the
control group. As for the performance of the combined metrics, Model 1 (encompassing all
11 features) achieved an excellent AUC-ROC score of 1 and an area under the precision-
recall (AUPR) curve score of 0.4. Model 2 (encompassing only five non- to less correlated
features, Figure 6) also achieved an excellent AUC-ROC score of 1 and an AUPR score of
0.4 (Figure 6).
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Figure 5. Boxplots of radiomics features stratified by patient group. Boxplots showing the distribution
of values for the 11 features, stratified by patient group. The lines in the boxes show the median,
the lower and upper hinges correspond to the first and third quartiles, the upper/lower whiskers
extend from the hinges to the largest/smallest values no further than 1.5 * interquartile range from
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Table 2. Radiomics features.

Feature AUC (95% Confidence Interval)

Original_glszm_ZonePercentage 0.78 (0.49–1)

Wavelet_LHL_glcm_Idmn 0.98 (0.93–1)

Wavelet_LHL_glcm_Idn 0.93 (0.79–1)

Wavelet_LHL_firstorder_Skewness 0.83 (0.51–1)

Wavelet_LHL_firstorder_Maximum 0.89 (0.67–1)

Wavelet_LHL_firstorder_Range 0.89 (0.67–1)

Wavelet_LHL_ngtdm_Complexity 0.83 (0.6–1)

Wavelet_LHL_ngtdm_Strength 0.91 (0.76–1)

Wavelet_HHH_glszm_SmallAreaEmphasis 0.83 (0.6–1)

Wavelet_HHH_glszm_ZoneEntropy 0.83 (0.6–1)

Wavelet_LLL_glcm_InverseVariance 0.78 (0.49–1)
This table describes the 11 features remaining after dimension reduction and feature selection.
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4. Discussion

This proof-of-principle study provides what appears to be the first assessment of the
utility of MRI-based radiomics for the diagnosis of adenomyosis. Our results indicate that
the diagnostic yield of certain radiomics features is high and could potentially allow for
a more accurate and noninvasive diagnosis of adenomyosis. With the development of
in-depth image analysis tools and machine learning (ML) methods, the field of radiomics
has emerged as a promising approach to expand the diagnostic yield of medical images.
Radiomics is an established technique that is already being used in various medical fields,
including gynecology [26–30].

We identified 11 radiomics features from T2w MRI that have high diagnostic perfor-
mance in detecting adenomyosis. The AUC scores of individual features ranged from 0.78
to 0.98, indicating a high to very high diagnostic performance. Diagnostic performance was
further improved when implementing several ML-backed models incorporating various
features to quantify the overall performance of the radiomics features. Importantly, 10 of
the 11 features were wavelet-based.

MRI is generally considered a reliable tool for diagnosing adenomyosis, and the stan-
dard diagnostic sequence is the non-contrast-enhanced T2w spin-echo sequence, as used
for endometriosis [20]. Currently, the most important (conventional) imaging features that
are used to diagnose adenomyosis are the characteristics of the JZ. For example, thickening
of the JZ exceeding 12 mm is widely recognized as a marker of adenomyosis, but recent
studies suggest that its diagnostic value is limited. Other features commonly used in every-
day assessment include uterine morphology, irregular JZ, signal intensity in myometrial
foci, and the presence of myometrial cysts [13,15,31]. However, the conventional MRI has
its limitations. The lack of standardized definitions and clear boundaries for the junctional
zone complicates diagnosis. While MRI signals show strong contrasts, histopathological
changes are subtle. Direct indicators such as subendometrial lines on TVUS or bright
foci in MRI are more dependable markers of adenomyosis compared to solely relying on
thickened junctional zones [32]. The radiological assessment of adenomyosis is not well
standardized, and internationally recognized guidelines are lacking [16].

Radiomics could be helpful, even more with the simultaneous presence of benign
uterine diseases such as fibroids, which negatively impact the accuracy of TVUS and
MRI [5,11]. Improving the diagnosis and, consequently, the treatment of adenomyosis is
thus of paramount importance, as improved diagnostic capabilities could help minimize
over- and underdiagnosis of the condition [33]. Radiomics could contribute to making the
diagnosis safer than that using conventional MRI and TVUS, thus helping to minimize over
and underdiagnosis.

With radiomics, high-dimensional mineable data that cannot be detected by the human
eye can be extracted from medical images. These radiomics features can be leveraged as
clinically relevant biomarkers and can thus enhance the predictive and diagnostic capabili-
ties of medical images. Exemplarily, radiomics may be used to detect whether a disease is
present or not, as in the current study [19,34]. Through the more differentiated diagnosis
and localization of adenomyosis in the myometrium, more individualized therapy could
be facilitated.

Radiomics could also be employed as a follow-up modality to track endocrine ther-
apies and their treatment responses, which has already been explored in part with con-
ventional MRI [35]. Furthermore, it could also be used to monitor the outcomes of in-
terventional therapies. Surgical procedures and treatments like high-intensity focused
ultrasound could be more precisely planned, and radiomics could enable monitoring of
disease progression and response to therapies [19,30].

With regards to adenomyosis, radiomics could open up a new research field and
contribute to better understanding of the disease itself by providing in-depth insights into
imaging data. This could provide insights into the pathomechanisms of adenomyosis.
It might also prove beneficial in the context of endometriosis. Radiomics could help
improve the understanding of different disease manifestations as an imaging biomarker.
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Additionally, insights into the pathomechanisms of diseases could be gained by analyzing
synchronous occurrences of deep endometriosis and adenomyosis.

Initial studies have explored the potential of artificial intelligence methods such as ma-
chine and deep learning in gynecological imaging overall, as well as in endometriosis and
adenomyosis, and the findings appear promising [36–40]. For instance, in a sonographic
preliminary study, a deep learning model showed a lower accuracy but a higher specificity
in diagnosing adenomyosis on ultrasonographic images compared to intermediate-skilled
trainees [36]. These techniques are already advanced and have been further investigated in
other medical fields, often by radiologists. The lag in the field of gynecology, particularly
in endometriosis and adenomyosis, may be attributed to imaging being predominantly
handled by gynecologists in this area, who may be less familiar with these techniques. How-
ever, these techniques are rapidly emerging, not only in medicine but also in other fields,
underscoring the importance of gynecological specialties embracing these advancements
early on [41].

The age of the premenopausal patients in this study was comparable between both
groups, but averaged at around 40 years, which is relatively high (Table 1). This is primarily
due to the fact that the patients in this study were intended to undergo hysterectomy.
However, obtaining further insights into a younger patient population would certainly
be crucial. Diagnosis in adolescent patients poses a challenge, often with long latency
periods before diagnosis and treatment initiation [42,43]. Radiomics could have potential
in supporting early diagnosis in this context.

Some of the patients underwent endocrine therapy prior to the MRI scan. This could
potentially influence the Radiomics analysis, as could the interval between the MRI and
surgery (Table 1). However, the latter is relatively short, typically only a few months, so
a significant impact is not expected in this study. Future studies with larger populations
should focus on assessing disease activity and progression using radiomics, as well as
examining the influence of endocrine therapy.

Special consideration should also be given towards the costs associated with the use
of radiomics. The integration of radiomics into clinical practice may lead to additional
expenses associated with the implementation of specialized software, computational re-
sources, and training for personnel involved in image analysis. However, it is important
to recognize that these initial costs may be offset by potential long-term benefits such as
improved diagnostic accuracy, personalized treatment planning, and enhanced patient
outcomes. Additionally, the utilization of radiomics has the potential to streamline work-
flows, reduce the need for invasive procedures, and minimize unnecessary imaging studies,
thereby contributing to overall cost-effectiveness in healthcare delivery.

Furthermore, the impact of radiomics on the length of time for executing exams is
a significant consideration. While the extraction and analysis of radiomic features may
introduce additional postprocessing time, advancements in computational techniques and
automation have the potential to mitigate this concern. Automated feature extraction
algorithms and machine learning approaches can expedite the analysis process, thereby
minimizing delays in the interpretation of medical images. Moreover, the integration of
radiomics into existing imaging protocols may facilitate more efficient data acquisition
and interpretation workflows, ultimately reducing the overall time required to perform
imaging exams. With ongoing technological advancements and the increasing accessibility
of imaging resources, the integration of radiomics into clinical practice has the potential
to be applicable in a wide range of contexts, including community hospitals, outpatient
clinics, and remote healthcare facilities.

Our study has several limitations: Despite the potential of these 11 radiomics features,
it should be acknowledged that the sample size was limited. Thus, it is possible that other
feature classes may be identified as relevant and clinically significant in future studies. The
identification of relevant features depends on the patient population and other factors,
such as different MRI acquisition parameters. Radiomics features should be considered as
image-based biomarkers that are subject to various confounding factors [44]. Therefore, the
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value of this work is not fundamentally in the unambiguous identification of the relevant
features, but rather in the proof that adenomyosis leaves a unique and strong MRI-based
biosignature that can be leveraged for the noninvasive detection of adenomyosis.

The sample size is limited for several reasons: it is a single-center study and a proof-
of-principle investigation. To our knowledge, this specific topic has never been explored
and published in this manner before; hence, our initial aim was to start with a smaller
population. Additionally, all patients were required to undergo an MRI, which is not
standard practice, as well as a hysterectomy for histological reference.

Despite the limited sample size, we applied ML to our dataset to quantify the overall
diagnostic performance of the combined radiomics features. However, overfitting is a
concern. We tried to counteract this by implementing cross validation. Additionally, our
study was performed using a single MRI scanner, which limits the generalizability of our
findings. The influence of different acquisition parameters, sequences, field strengths, and
MRI scanners concerning the reliability of radiomics features remains to be investigated [45].
Lastly, our results depend on the quality of the segmentation. To counteract this, all uteri
were segmented twice to decrease reader-dependent bias.

This is a proof-of-principle study and not a conclusive work. Our objective was to
provide an impetus for future studies and demonstrate that radiomics in adenomyosis is
a promising and practically overlooked field, despite numerous studies in other medical
domains. Larger, multicenter studies are necessary based on our proof-of-principle study.
Future research projects should investigate the results presented here in a broader popula-
tion and compare the diagnostic value of radiomics for different forms of adenomyosis with
conventional MRI and TVUS. Additionally, exploring Radiomics as an imaging biomarker
is warranted. It would be interesting to address questions regarding the pathomechanism of
adenomyosis, different disease phenotypes, their differentiation, and similarities with deep
endometriosis when occurring simultaneously. Furthermore, tracking symptomatology
and disease progression using radiomics would be compelling. Do endocrine therapies
influence the analysis? Could radiomics lead to more personalized therapies by providing
better insights into treatment responses, disease activity, and progression, especially for
women with a desire to conceive? How beneficial would radiomics be as a follow-up
modality after various therapies?

In conclusion, with this proof-of-principle study, we have demonstrated for the first
time, to the best of our knowledge, that radiomics features can enable a precise non-invasive
MRI-based diagnosis of adenomyosis. Radiomics represents a promising diagnostic modal-
ity and could open up a new, interesting field of research for adenomyosis. Improving
the non-invasive diagnosis of adenomyosis is crucial for gaining a better understanding
of the disease. As seen in other medical areas, radiomics not only shows the potential
to determine the presence of a condition but could also serve as a diagnostic biomarker
to better understand pathomechanisms, support therapy individualization, and act as a
follow-up modality for various treatments.
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MRI Magnetic Resonance Imaging
T2w T2-weighted
SD Standard Deviation
TVUS Transvaginal Ultrasound
TSE Turbo Spin Echo
TR Repetition Time
TE Echo Time
FOV Field of View
NSA Number of Signal Averages
ML Machine Learning
ROC Receiver Operating Curves
AUC Area under Curve
AUPR Area under the Precision- Recall curve
DICOM Digital Imaging and Communications in Medicine
GLCM Gray-level Co-occurrence Matrix
GLRLM Gray-level Run Length Matrix
GLSZM Gray-level Size Zone Matrix
NGTDM Neighboring Gray Tone Difference Matrix
GLDM Gray-level Dependence Matrix
RF Random Forest
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