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Abstract: Helicobacter pylori infection, a significant global burden beyond the gastrointestinal tract, has
long been implicated in various systemic pathologies. Rising evidence suggests that the bacterium’s
intricate relationship with the immune system and its potential to induce chronic inflammation
impact diverse pathophysiological processes in pregnant women that may in turn affect the incidence
of several adverse pregnancy and neonate outcomes. Helicobacter pylori infection, which has been
linked to metabolic syndrome and other disorders by provoking pericyte dysfunction, hyperhomo-
cysteinemia, galectin-3, atrial fibrillation, gut dysbiosis, and mast cell activation pathologies, may
also contribute to adverse pregnancy and neonatal outcomes. Together with increasing our biological
understanding of the individual and collective involvement of Helicobacter pylori infection-related
metabolic syndrome and concurrent activation of mast cells in maternal, fetus, and neonatal health
outcomes, the present narrative review may foster related research endeavors to offer novel therapeu-
tic approaches and informed clinical practice interventions to mitigate relevant risks of this critical
topic among pregnant women and their offspring.

Keywords: Helicobacter pylori infection; metabolic syndrome; mast cell; pregnancy outcomes; neonate
outcomes

1. Introduction

Helicobacter pylori (H. pylori) infection represents a significant global health concern [1]
and has recently received increased consideration for its potential role in various systemic
pathologies [2–5]. While this microorganism is predominantly related to gastrointesti-
nal pathologies such as gastroduodenal ulcer disease, gastric cancer, or MALT (mucosa-
associated lymphoid tissue) lymphoma, increasing evidence indicates that H. pylori is also
linked to systemic disorders [5], including adverse pregnancy and neonatal outcomes.

Recent studies show that this bacterium is associated not only with gastrointestinal
disorders but also with pregnancy-related severe nausea and vomiting, hyperemesis gravi-
darum, metabolic disturbances, and adverse pregnancy and neonatal outcomes, including
preterm labor and delivery. Moreover, the combination of these conditions further amplifies
the risk in pregnant individuals [6,7]. Its presence in the maternal gut can lead to increased
levels of systemic inflammation, which is considered to impact the health and development
of the fetus [8]. H. pylori infection, beyond severe nausea and vomiting of pregnancy, is also
associated with a significantly high frequency of preeclampsia, fetal growth restriction, and
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gestational diabetes mellitus, emphasizing the importance of screening and treating females
for this bacterium prior to and throughout pregnancy to mitigate related complications [9].

Likewise, metabolic syndrome (MetS) poses a significant worldwide health issue that
is increasing at an alarming rate. It includes a variety of metabolic risk factors that lead
to a clinical syndrome. MetS typically includes abdominal obesity, insulin resistance (IR),
type 2 diabetes mellitus (T2DM), dyslipidemia, nonalcoholic fatty liver disease (NAFLD),
arterial hypertension (AH), and cardiovascular disease (CVD) [10]. Emerging evidence
highlights a strong connection between MetS and active H. pylori infections, with both
disorders appearing to mutually influence their pathophysiology [11]. This infection is
associated with MetS [12], and its eradication positively impacts MetS components [13].
Furthermore, H. pylori is a risk factor for CVD, and its eradication is considered safe from a
cardiac standpoint [14]. Recent meta-analysis underscores a correlation between H. pylori
infection and both MetS and IR [15]. Scientific findings demonstrate that H. pylori infection
independently contributes to MetS-related nonalcoholic fatty liver disease (NAFLD), now
known as metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic
dysfunction-associated steatotic liver disease (MASLD) [16], correlating with an increased
degree of steatosis [17]. H. pylori infection also independently correlates with the severity
of MetS-related non-alcoholic steatohepatitis (NASH), IR, dyslipidemia, and AH [18]. This
relationship also spreads to pregnancy conditions [19].

Specifically, MetS-related parameters, IR, dyslipidemia, and AH are contributors
to systemic pathologies [18], including negative pregnancy and neonatal outcomes like
heightened preeclampsia risk, altered fetal growth, and premature birth [20–22]. MAFLD,
as the hepatic component of MetS, is associated with a high risk of adverse outcomes for
both the mother and the fetus [23,24]. Moreover, MetS can lead to serious complications
during pregnancy, such as gestational diabetes, AH, and preeclampsia. The effects of MetS
on pregnancy are significant; it impacts maternal health and has enduring consequences
for the child, potentially leading to metabolic disorders later in life.

Active H. pylori infection is further implicated in additional MetS-related systemic
disorders, particularly cardio-cerebrovascular diseases (C-CVD) and neurodegenerative
disorders, which represent ultimate outcomes of MetS [3,25].

Mast cells (MCs), initially recognized for their role in allergic and anaphylactic re-
sponses, are essential effectors in the innate immune system and play pivotal roles in both
innate immune responses and the regulation of adaptive immunity [26]. Recent studies
have shown their participation in MetS-related disorders like MAFLD and its systemic
complications [26] and adverse outcomes for both mother and fetus [23].

MC activation holds a complex position during pregnancy. While necessary for normal
immune function, overactivation can lead to excessive inflammation, adversely affecting
both mother and fetus. This concern is amplified in the occurrence of H. pylori infection
and MetS, where an already elevated inflammatory state may be further intensified. In this
context, MC activation may contribute to the pathophysiology of preeclampsia [8] and may
have harmful effects throughout pregnancy and the post-partum period [27]. Additionally,
MCs are related to dyslipidemia, atherosclerosis, and AH [28], conditions that pose risks
for systemic pathologies [29], including adverse pregnancy and neonatal outcomes [30,31].

The interactions between H. pylori, MetS, and MC activation during pregnancy have
been studied, but their combined impact on pregnancy remains understudied. H. pylori
infection may exacerbate the inflammatory state caused by MetS and, together, they could
amplify MC activation. This cascade of events is hypothesized to contribute to adverse
pregnancy and neonatal outcomes, such as an augmented risk of miscarriage, preterm
birth, or low birth weight, among others. Despite these considerations, searches using
keywords like “H. pylori, metabolic syndrome, mast cell activation, pregnancy outcomes”
in the international database PubMed yield no relevant research results. Therefore, this
narrative review aims to examine the possible effect of combined H. pylori and MetS on
MC activation-related pregnancy and neonatal outcomes. This review underscores the
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urgent need for further investigation and presents opportunities for the introduction of
novel therapeutic strategies to address this crucial issue.

1.1. Potential Impact of H. pylori/MetS on Pregnancy and Neonatal Outcomes

The global prevalence of H. pylori infection ranges from 50 to 58%, partly due to migra-
tion from countries with a high prevalence of the infection, accounting for approximately
4.4 billion infected individuals [3,32]. Additionally, combined prevalence figures for MetS
stand at 24%, with its individual components such as overweight and obesity varying
between 35.6 and 44.1% [33,34].

Growing evidence supports the potential link of this infection with MetS-associated
systemic disorders [2], such as T2DM, dyslipidemia, AH, MAFLD, C-CVD, and neurological
pathologies [3,5,29].

Especially, H. pylori infection is implicated in IR, a vital element of MetS that is crucial
for the pathophysiology of atherosclerosis and damage to target organs caused by AH.
Beyond the aforementioned pathologies, current H. pylori infection-related MetS seems to
influence critical pregnancy and neonatal outcomes, and eradication could benefit pregnant
women and their newborns. Hence, additional research is warranted [35].

1.1.1. The Role of H. pylori/MetS-Related Pericyte Dysfunction Pathologies and Their
Potential Impact on Pregnancy and Neonatal Outcomes

Pericytes, which are implicated in H. pylori/MetS-related AH and T2DM pathophysi-
ology [36,37], are specialized cells closely associated with the vasculature system, playing
a key role in regulating endothelial cell characteristics and ensuring the constancy and
preservation of blood vessels essential for normal vascular functionality [38]. The col-
laboration between endothelium and pericytes is critical for appropriate microvascular
development, constancy, and maintenance [39,40]. For instance, cerebral pericytes are
crucial in the neurovascular unit, managing cerebral blood flow and sustaining the in-
tegrity of the blood–brain barrier (BBB). They encase endothelial cells at the capillary level,
strategically positioned to regulate and preserve the BBB [41,42]. A deficiency in cerebral
pericytes within the murine brain can lead to BBB disruption, harmful leakage of circu-
lated proteins, microvascular regression, and cerebral hypoxia [41,42]. These dynamics
may collaboratively impact the neuronal interface, causing neurodegeneration, as seen in
pericyte-deficient mice model [42,43].

Beyond the elements of MetS-related pericyte deficits [44] and potential cerebral
pericyte dysfunction related to H. pylori infection [45], a deficiency in cerebral pericytes
linked to MetS may play a role in the pathophysiology of neurodegenerative disorders
associated with H. pylori and MetS [4,46], such as Alzheimer’s disease (AD) [47]. Pericyte
loss is implicated in the pathophysiology of diverse MetS-associated pathologies, including
T2DM, stroke, and AD. Cerebral complications of T2DM are marked by pericyte loss,
augmented BBB dysfunction, and neuronal damage [48]. Notably, pericyte loss is observed
in diverse areas of the brain of AD patients [49,50].

Recent evidence suggests a potential link between pregnancy and maternal cardiac
dysfunction, as well as alterations in placental pericytes [51]. In pregnancies affected by ges-
tational T2DM, there may be a loss of pericyte function, characterized by increased vascular
permeability and junctional disruption [51,52]. Since endothelial cells and pericytes play
crucial roles in regulating angiogenesis during later stages of pregnancy, dysfunctional sig-
naling between these cells could contribute to the development of placental vasculopathies,
such as those observed in preeclampsia. Moreover, dysregulation of endothelial/pericyte
signaling during the early stages of placental vasculogenesis might also be involved in
endothelial dysfunction associated with preeclampsia, as well as other complications like
fetal growth restriction or neonatal deficiencies (Figure 1). Further research is required to
thoroughly investigate these potential links.
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Figure 1. Contribution of H. pylori/MetS-connected effector mechanisms to mast cell activation
pathophysiology and its impact to adverse pregnancy and neonatal outcomes.

During pregnancy, hormonal changes may directly influence mast cell proliferation
and stimulation, promoting angiogenesis, remodeling, and spiral artery modifications
necessary for successful implantation and subsequent placentation into the endometrium,
albeit at the expense of increased myometrium contractility. However, mast cell overac-
tivation can lead to excessive inflammation, potentially harming the mother and fetus.
The concurrent presence of H. pylori infection/MetS-related pathologies may dysregulate
mast cell activation, shifting the immunological response towards a proinflammatory state
associated with various adverse pregnancy and neonatal outcomes.

H. pylori infection/MetS, by provoking pericyte dysfunction, hyperhomocysteinemia,
galectin-3, atrial fibrillation, gut dysbiosis, and mast cell activation pathologies, may
contribute to adverse pregnancy and neonatal outcomes. Excessive secretion of mast
cell mediators, including histamine, might undermine maternal vasculature adaptations,
leading to poor perfusion, thus raising the risk of preeclampsia, fetal growth restriction,
and, in some cases, stillbirth. Furthermore, histamine release—often triggered by LPS
stimulation and toxic microbial metabolites—along with further vasoactive inflammatory
mediators like TNFα and IL6, may drive a multisystemic inflammatory state.

In the context of Hp-infection/MetS, mast cell-derived immunomodulatory cytokines,
histamine, chymase, and metalloproteases are involved in leucocyte migration to inflam-
matory subendothelial areas, which are predisposed to atherogenesis, and display changed
permeability (e.g., increased low-density lipoprotein infiltration), macrophage apoptosis,
and vascular wall degradation. Similarly, disruptions in pericyte/endothelial signaling re-
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lated to MetS/Hp-I leading to the development of placental vasculopathies further impede
proper crosstalk at the maternal–fetal interface with subsequent pregnancy, delivery and
post-partum abnormalities.

Under stress conditions, such as those often encountered in pregnancy, mast cell-
released tryptase and histamine are released into the gut lumen, exacerbating gut penetra-
bility and prolonging the inflammation. Augmented mucosal penetrability and a thinner
mucous level facilitate interactions among mast cells, other immune cells, and the micro-
biota, sustaining a predominant Th1/Th17 shift paired with decreased tolerogenic Teg cell
populations, increasing the odds for unfavorable outcomes such as preeclampsia, preterm
labor, and fetal death.

1.1.2. The Role of H. pylori/MetS-Related Hyperhomocysteinemia Pathologies and Their
Potential Impact on Pregnancy and Neonatal Outcomes

The interactions between H. pylori and MetS-connected hyperhomocysteinemia are
believed to be involved in atherosclerosis related to H. pylori/MetS, which is connected with
systemic diseases like C-CVD and neurodegenerative conditions [2,53–55]. In particular,
MetS combined with H. pylori infection-related chronic gastritis can lead to the malabsorp-
tion of vitamin B12 and folate. This malabsorption results in an ineffective methylation
process by 5-methyl-tetrahydrofolic acid, subsequently causing an accumulation of ho-
mocysteine. As a proatherogenic factor, homocysteine independently elevates the risk of
developing H. pylori/MetS-related C-CVD and additional systemic pathologies [54,56].
Hyperhomocysteinemia, hyperfibrinogenemia, and elevated levels of lipoprotein-a (a low-
density lipoprotein-like particle that includes the plasminogen homologue apo (a) linked
disulfide bound to apo B), are identified as “non-traditional” risk factors for CVD that might
promote atherosclerosis and its related pathologies in the setting of H. pylori/MetS-related
conditions [57].

Regarding pregnancy and neonatal outcomes related to hyperhomocysteinemia, re-
cent evidence indicates that the prevalence of placenta-mediated pregnancy complications
(PMPCs) is significantly high in women with hyperhomocysteinemia. Maternal hyperho-
mocysteinemia can be introduced as both a predictor of the development of PMPCs and a
screening tool for low-risk antenatal patients in the early second trimester [57]. Hyperhomo-
cysteinemia is closely connected with the risk of developing PMPCs such as preeclampsia,
fetal growth restriction, intrauterine fetal death, preterm births, and placental abruption
(Figure 1).

Women with hyperhomocysteinemia exhibit approximately a twelve-fold risk of
preterm birth and a ten-fold risk of delivering a term neonate with low birth weight [58].
Moreover, fetal hyperhomocysteinemia during pregnancy is a possible risk factor that
may initiate an early breakdown of uterine quiescence owing to oxidative stress and
activation of inflammatory processes in the placenta leading to preterm birth [59]. Likewise,
hyperhomocysteinemia is linked with preeclampsia and eclampsia, although, in eclampsia,
the burden of hyperhomocysteinemia is more prominent than in preeclampsia [60].

A “cross-talk” of maternal–fetal homocysteine interrelationships describes the pla-
cental transport of homocysteine, its impact on pregnancy outcomes, and the effects of
homocysteine and methylation on the risk of neural tube defects. It suggests a putative
pathway of embryonic provision of folate and vitamin B12, which are nutrients that mod-
ulate homocysteine levels and ameliorate the risk of neural tube defects [61]. Higher
homocysteine levels and lower folate concentration during early pregnancy are linked with
adverse pregnancy and neonatal outcomes. Vitamin B12 deficiency is more frequent among
pregnant women compared with folate deficiency. Hyperhomocysteinemia is an indepen-
dent risk factor for pregnancy and neonatal complications, and vitamin B12 deficiency in
the first and second trimesters is linked with offsprings’ low body weight [62,63]. Finally,
experimental studies suggest a potential teratogenic effect of hyperhomocysteinemia and,
owing to the high incidence of hyperhomocysteinemia in both the reproductive and general
population, investigation into the underlying epigenetic mechanisms is needed [64].
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Collectively, efforts to prevent atherosclerosis-related diseases and other systemic
disorders, including those affecting pregnancy and newborn health, should focus on identi-
fying and treating primarily H. pylori infection/MetS and hyperhomocysteinemia (regularly
stemming from masked vitamin B12 deficit) [54,55]. Eradication of H. pylori in individuals
with vitamin B12 deficit has been shown to increase vitamin B12 concentrations while simul-
taneously reducing homocysteine levels in the blood [65]. Additional studies are necessary
to fully grasp the effects of H. pylori therapy in individuals with H. pylori infection and
long-standing hyperhomocysteinemia [66]. Managing the effects of H. pylori/MetS-related
hyperhomocysteinemia on systemic issues, including adverse pregnancy and neonatal
events, could yield substantial health benefits. Further investigation is essential to fully
elucidate this significant topic, which poses a significant worldwide challenge [5].

Interestingly, cardiac hypertrophy associated with hyperhomocysteinemia in rats
is connected to oxidative stress and increased density of cardiac MC. Medications like
sodium cromoglycate and ketotifen could potentially alleviate this pathology by decreasing
oxidative stress and MC activation [67].

1.1.3. The Role of H. pylori/MetS-Linked Galectin-3 Pathologies and Their Potential Impact
on Pregnancy and Neonatal Outcomes

Galectin-3, linked with H. pylori and prevalent in conditions such as MetS and
MAFLD [68,69], is further associated with a higher risk of all-cause mortality, particu-
larly heart failure and C-CVD death [70]. H. pylori-associated galectin-3 overexpression
and MetS appear to be implicated in the persistent and progressive dysfunction of various
organs, including liver, CVD, kidney, and brain [71]. For example, galectin-3 plays a critical
role in regulating the cerebral innate immune reactions, acting as an endogenic regulator
of neuroinflammatory and neurodegenerative processes [71]. High circulating galectin-3
concentrations are significantly associated with the progression of both AD and Parkinson’s
disease (PD) [72]. Additionally, higher galectin-3 levels are independently connected with
depression in type 1 DM [73]. Type 1 DM is also associated with MetS [74,75] and H.
pylori infection [76]. It is noteworthy that galectin-3, apart from its presence in other cell
types, is also found in MCs, though the potential role of galectin-3-related MC activation
in conditions such as C-CVD remains to be elucidated [71]. Specific inhibitors of galectin-
3 inhibit microglial activation [77], representing a promising therapeutic target to curb
neurodegenerative diseases and possibly other systemic disorders.

Regarding pregnancy and neonatal outcomes related to galectin-3, it is evident in all
placental trophoblast cell lines, including villous cytotrophoblast cells and extravillous
trophoblasts. Its abundance is inversely correlated with trophoblast invasiveness during
the course of gestation, and the deregulation of placental galectin-3 is linked with obstetric
complications, including spontaneous or repeated abortion [78,79]. Its abnormal expression
is associated with obstetric complications such as preterm birth, preeclampsia, and fetal
growth restriction [80] (Figure 1). Moreover, in preeclampsia, galectin-3 may contribute
to the damaging effects of IR and dyslipidemia [81], which are also associated with MetS
and H. pylori infection-related complications [18,29]. Maternal circulating galectin-3 con-
centrations are also considerably higher in pregnancies complicated with preterm prelabor
rupture of membranes (PPROM). Galectin-3, with its regulatory effects in main biological
processes, could be an initiating factor in the pathophysiology of PPROM, a predictive
biomarker, and a target of preventing strategies of PPROM [82]. Additionally, umbilical
cord plasma galectin-3 binding protein levels are increased in prematurity, possibly reflect-
ing inflammatory processes in mother and infant [83]. Galectin-3 is also intensely expressed
at molecular levels (mRNA and protein expression) in gestational diabetes mellitus ma-
ternal blood and placental tissue, suggesting a potential galectin-3 damaging effect. It
is recognized that gestational diabetes mellitus raises the risk of adverse pregnancy and
neonatal outcomes and long-term complications in both mothers and newborns [83]. Lastly,
in intrahepatic cholestasis of pregnancy, a specific liver disorder typically emerging in
the third trimester, elevated maternal serum and placental levels of galectin-3 suggest its
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involvement in the pathophysiology of this condition, pointing to galectin-3 as a potential
initiator, diagnostic marker, and target for prevention strategies related to intrahepatic
cholestasis of pregnancy [78].

1.1.4. The Role of H. pylori/MetS-Related Atrial Fibrillation Pathologies and Their Potential
Impact on Pregnancy and Neonatal Outcomes

Atrial fibrillation (AF) significantly contributes to the morbidity and mortality asso-
ciated with H. pylori/MetS-related C-CVD [25], especially due to strokes caused by AF,
which are similarly related to H. pylori infection/MetS [84]. AF is among the leading causes
of stroke related to H. pylori infection and MetS [85]. There is also evidence suggesting
a genetically predicted effect of AF on neurodegeneration due to ischemic stroke, thus
identifying AF as a manageable risk factor for cognitive impairment and dementia follow-
ing a stroke [86]. The link between H. pylori/MetS and the AF-related severity of CVD
may involve various mediators, such as proinflammatory cytokines like TNFα and IL6,
contributing to the development of atherosclerosis and AF-related complications. IR is
also associated with AF and doubles the risk of C-CVD outcomes, including stroke [87].
Moreover, H. pylori infection/MetS may also contribute to the pathogenesis of MAFLD and
its related AF adverse outcomes. Thus, H. pylori eradication may offer potential benefit for
these pathological conditions, necessitating additional investigation [87,88].

Regarding H. pylori/Mets-related AF involvement in cerebral disorders, AF has been
implicated in the progression from mild cognitive impairment (MCI) to dementia [89].
There is evidence connecting AF with an increased risk and mortality rate across all
categories of dementias, such as vascular dementia and AD [90–93]. Catheter ablation in
AF patients, beyond H. pylori eradication, appears to decrease the risk of dementia and
AD [94]; AD is reduced in patients who have undergone AF catheter ablation [95].

Interestingly, there is evidence indicating that immune cells, such as MCs, could also
contribute to AF pathophysiology [95,96]. Therefore, further studies are needed.

Regarding pregnancy-related AF, it is the most frequent arrhythmia in pregnancy,
partly explained by increasing maternal age, cardiovascular risk factors, and congenital
cardiac disease in pregnancy. AF is associated with adverse maternal and fetal/neonatal
outcomes, including death [97]. Augmented maternal mortality and low fetal birth weight
are observed in patients with AF during pregnancy (Figure 1), with an AF peak at the end
of the second trimester [98]. AF causes significant morbidity in women and is typically
attributed to cardiac remodeling from various causes, especially AH [99], which is similarly
associated with diverse pathologies related to H. pylori infection/MetS [3,25,29]. Obstetric
complications are often observed in individuals with AF. While the exact mechanism
linking obstetric complications to AF remains unclear, it is plausible that conditions like
preeclampsia could lead to increased adrenergic activity, heightened inflammatory response,
and activation of the renin–angiotensin–aldosterone system. These factors may potentially
induce electrophysiological changes in the atrium, increasing susceptibility to arrhythmias
such as AF [100–102].

The connection between pregnancy-related problems and occurrences of AF may
involve various mechanisms. Frequent risk issues, including MetS, may be involved
in the pathophysiology of AF [103]. Additionally, pregnancy-related complications,
which often involve cardiac remodeling and fibrosis, may result in long-term cardiac
dysfunction [104–106], increasing the likelihood of AF onset. It is also possible that these
complications heighten the risk of developing AF-related risk factors like AH, unfavor-
able lipid profiles, and T2DM [107–109]. Genetic factors may further influence these
associations; for instance, single nucleotide polymorphisms (SNP) near the PITX2 gene
are involved in both preeclampsia and AF [110]. Pregnancy creates a prothrombotic
state, increasing the risk of stroke due to AF [111]; this heightened coagulability may
elevate the risk of thromboembolic complications in pregnant women with AF [112].
Managing AF during pregnancy is crucial for maternal and fetal well-being. How-
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ever, many medications commonly used to treat AF have been linked to adverse fetal
outcomes [113], necessitating further research in this area.

1.1.5. The Role of H. pylori/MetS-Related Gut Dysbiosis Pathologies and Their Potential
Impact on Pregnancy and Neonatal Outcomes

Inflammatory processes, particularly those involving the nuclear factor κappa B (NF-
κB) signaling pathway, are intimately linked with lipopolysaccharide (LPS) [114]. These
inflammatory issues can lead to IR [115]. H. pylori-associated LPS has inflammatory activity,
fostering the development of atherosclerosis and C-CVD. Gastrointestinal bacteria like
H. pylori can trigger inflammation associated with MetS parameters through LPS activation,
showing a potential link among LPS strong activity and the occurrence of MetS activity. This
bacterium has also been connected to gut dysbiosis [116], and dysbiosis in the microbiota
associated with H. pylori/MetS may be involved in the pathophysiology of MAFLD [18] and
its negative outcomes, including stroke and neurodegeneration. Conversely, transplanted
fecal material has shown potential in inhibiting MAFLD and ameliorating cerebral injury-
induced dysbiosis, thus improving outcomes in disorders like stroke [18]. Additionally,
probiotics, symbiotics, and postbiotics have been used to manage neurodegenerative
diseases such as AD by modulating intestinal dysbiosis [117].

Gut dysbiosis emerges as a significant factor linked to H. pylori/MetS, contribut-
ing to the pathophysiology of age-related atherosclerosis, T2DM, and neurodegenerative
pathologies [118,119]. Dysbiosis, by increasing intestinal permeability, can facilitate the
translocation of bacterial products like LPS into circulation, which can access the brain and
contribute to neurodegeneration [114,120]. This condition, primarily triggered by dysbiosis,
is closely associated with the development and progression of various H. pylori/MetS-
related pathologies, such as MAFLD, C-CVD, AD, MCI, PD, multiple sclerosis (MS), and
glaucoma (termed as “ocular AD”) [4,121,122].

Considering pregnancy related-gut dysbiosis (Figure 1), it has been associated with
pregnancy complications and negative fetal/neonatal outcomes [123]. Gut dysbiosis serves
as a potential modulator of antenatal disorders related to the placenta, including fetal
growth restriction, preeclampsia, maternal obesity, gestational diabetes mellitus, and
preterm deliveries [123,124]. In this regard, a potential relationship between gestational
diabetes mellitus and gut dysbiosis occurs in mothers and newborns, and there are influ-
encing factors derived from gestational diabetes mellitus mothers on the gut dysbiosis of
their newborns, including the vertical transmission of microbiota from mothers [125]. Fur-
thermore, elevated levels of plasma LPS have been observed in patients with preeclampsia,
and the gut dysbiosis linked with the LPS synthesis along with augmented placental LPS
concentrations are also described [126]. This suggests that gut dysbiosis may manifest
from the early stages of preeclampsia development, implicating potential etiological and
therapeutic implications [127]. Additional research conducted in antibiotic-treated mice
colonized with fecal microbiota from fetal growth restriction has corroborated previous
findings of gut dysbiosis in fetal growth restriction and demonstrated that maternal gut
dysbiosis contributes to placental impairment [128]. The movement of microorganisms or
their products from the intestine to the placenta could lead to alterations in the placental
tissue and function under pathological states, proposing the gut–placenta axis as a key fac-
tor in the etiology of preeclampsia [129]. Importantly, maternal dysbiosis could contribute
to the growth of disorders in adulthood, including metabolic CVD, neurodevelopment,
and/or immune system alterations [123].

Finally, many data indicate that probiotics, prebiotics, and synbiotics confer health
benefits in preventing adverse pregnancy and neonatal outcomes; the use of probiotics and
prebiotics during pregnancy appears to mitigate adverse outcomes [130].

1.1.6. The Role of MetS and H. pylori-Related MC Activation Pathologies and Their
Potential Impact on Pregnancy and Neonatal Outcomes

MCs, initially identified for their impact on allergic and anaphylactic conditions, are
now considered important contributors to the complex mechanisms underlying MetS [131].
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Located within adipose tissue, MCs are central to the chronic inflammatory processes
associated with obesity, a fundamental aspect of MetS [132].

Activation of MCs provokes the enrolment of immune cells, including lipid-
accumulating foamy macrophages, thereby intensifying inflammatory reaction and
promoting angiogenesis [133]. This immune cell infiltration significantly contributes to
the perpetuation of the MetS phenotype [134].

MetS is closely linked with MC activation [135]. The mediators released by MCs
contribute to IR, thereby promoting the development of atherosclerosis [135], a condition
strongly associated with MetS [136]. The correlation among atherosclerosis and MetS is
multifactorial, involving MetS-related parameters like IR as substantial contributors to its
onset and progression [137].

Specifically, MCs could play a pivotal role in the pathophysiology of H. pylori/MetS-
related conditions, including hyperglycemia, obesity, dyslipidemia, IR, T2DM, cardio-metabolic
conditions, AD, referred to as “type-3 diabetes”, and their complications [135,138–140]. For
example, dyslipidemia is strongly linked with H. pylori/MetS, and MC activation, through
the release of tryptase and chymase, contributes to dyslipidemia [141], while eradication of
H. pylori improves lipid profiles such as fibrinogen, an independent risk factor for MetS-related
C-CVD and dementia [25,142].

H. pylori, by activating MCs, disrupts the balance of gut microbiota and may be
involved in MetS-related local and systemic disorders [142].

Locally, H. pylori-related IL33 appears to orchestrate MC responses and promote bacterial
expansion, thus implicating the induction of gastritis [142]. Patients with H. pylori display
high numbers of MCs in the gastric mucosa and apoptotic cells [143]. In addition to IL33, MC
chymase may be another significant contributor to H. pylori-induced gastritis [144].

Systemically, H. pylori’s virulence factor neutrophil-activating protein [145] activates
MCs, among others, leading to the secretion of proinflammatory mediators [146]. More-
over, H. pylori and MC-related atherosclerosis may contribute to MetS-related conditions
like T2DM [147]. Remarkably, the presence of H. pylori DNA in atherosclerotic lesions
and the association of this infection with the onset of carotid plaque in adults without
previous C-CVD imply that H. pylori infection may be involved in the pathophysiology of
atherosclerotic systemic diseases [148].

Regarding MC activation and its impact on adverse pregnancy outcomes such as
preeclampsia, these cells, as mentioned before [8], exhibit adverse effects throughout
pregnancy and the post-partum period (Figure 1) [27,149]. MCs may contribute to fetal
growth restriction and stillbirth [150]. As an additional example, while human MCs
can increase the biological behaviors of trophoblasts to establish pregnancy, human MC
corticosteroid therapy constrains this process, thereby leading to infertility [151].

2. Conclusions

Taken altogether, parameters related to H. pylori/MetS, including pericyte dysfunction,
hyperhomocysteinemia, galectin-3, AF, and/or gut dysbiosis, may play roles in negative
pregnancy and neonatal outcomes. Equally, H. pylori/MetS-related MC activation may also
be involved in adverse pregnancy and neonatal outcomes. Therefore, further studies are
mandatory to elucidate this critical topic in depths thereby offering related therapeutic
strategies to mitigate adverse outcomes for mother, fetuses, and neonates, representing a
top global health issue.
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Gestational Trophoblastic Disease. Placenta 2004, 25, 797–802. [CrossRef] [PubMed]

80. Blois, S.M.; Dveksler, G.; Vasta, G.R.; Freitag, N.; Blanchard, V.; Barrientos, G. Pregnancy Galectinology: Insights Into a Complex
Network of Glycan Binding Proteins. Front. Immunol. 2019, 10, 1166. [CrossRef]

81. Sattar Taha, A.; Zahraei, Z.; Al-Hakeim, H.K. Serum Apelin and Galectin-3 in Preeclampsia in Iraq. Hypertens. Pregnancy 2020, 39,
379–386. [CrossRef]
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