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Abstract: (1) Background: Although most cases of new-onset type 1 diabetes mellitus (T1DM) are man-
aged without serious events, life-threatening complications do arise in a subset of patients. Our objective
was to assess the correlation between elevated SIRI values and adverse events related to the onset of
T1DM. (2) Methods: This retrospective study, spanning ten years, included 187 patients with new-onset
T1DM divided into three groups based on SIRI tertiles. The primary outcome was the occurrence of acute
complications during hospital admission, while the secondary outcome was prolonged Intensive Care
Unit (ICU) admission. (3) Results: Patients with high SIRI values were more likely to experience higher
disease activity, leading to longer ICU admission times and more frequent complications. Multivariate
logistic regression analysis revealed that the SIRI was independently associated with acute complications
(p = 0.003) and prolonged ICU length of stay (p = 0.003). Furthermore, receiver operating characteristic
analysis demonstrated the SIRI’s superior predictive accuracy compared to venous pH (AUC = 0.837 and
AUC = 0.811, respectively) and to the individual component cell lineages of the SIRI. (4) Conclusions:
These findings emphasize the potential utility of the SIRI as a prognostic marker in identifying patients
at increased risk during T1DM hospital admissions.

Keywords: new-onset T1DM; systemic inflammatory response index (SIRI); acute complications;
prolonged ICU LOS

1. Introduction

Type 1 diabetes mellitus (T1DM), an immune-mediated condition, is one of the most
common chronic diseases in children [1]. It culminates in the complete or partial loss of
pancreatic β cells, leading to reduced production of endogenous insulin and necessitating
exogenous insulin administration to sustain proper energy production [2]. DKA, a frequent
form of presentation in new-onset T1DM [3], is the leading cause of morbidity and mortality
in children, mainly due to its potential association with acute complications [4]. Among
these complications, the development of cerebral edema stands out as the most concerning
outcome, with reported incidences of up to 1% among pediatric DKA patients [5]. Notably,
it carries high mortality rates of 20–40% [6], along with the potential for long-term neu-
rologic sequelae [6–8]. Other acute complications that may arise in the presence of DKA
include acute kidney injury [AKI], electrolyte imbalances that can lead to arrhythmias,
acute pancreatitis, and deep venous thrombosis [9–12].
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Inflammation plays a pivotal role in the initiation and progression of chronic dis-
eases [13–17]. Recent studies on T1DM have unveiled a broader role for innate immunity
than previously assumed. Particularly, inflammation localized within the pancreatic islets,
known as insulitis, contributes to a gradual decline in insulin-producing β cells [18–20].
However, the direct quantification of inflammatory cell infiltration linked with T1DM faces
limitations due to its invasive nature. Given that exploring the distribution of peripheral
white blood cells can offer valuable insights into the inflammatory process, assessing in-
dices derived from complete blood count (CBC) parameters as markers of inflammatory
conditions appears reasonable [21]. A growing body of research focuses on CBC-derived
indices in chronic diseases, including diabetes. Among these, the most evaluated index
in diabetic patients has been the neutrophil-to-lymphocyte ratio (NLR) [22–25]. How-
ever, while much of the research has centered on the role of neutrophils and lymphocytes,
monocytes also appear to exert a notable impact on the pathogenesis of T1DM [26–29] and
its complications, such as cerebral edema and AKI [30,31]. Consequently, investigating
an index that integrates monocytes seems useful. The Systemic Inflammatory Response
Index (SIRI), a composite index incorporating information from NLR components and
monocytes [32], could thus offer pertinent insights into the cellular response in T1DM.
Nevertheless, studies on the use of the SIRI in T1DM remain scarce.

In this context, our aim was to examine the association between the SIRI, as a potential
inflammatory marker, and adverse events occurring during the onset of T1DM in children.

2. Materials and Methods
2.1. Study Design and Protocol

This retrospective single-center cross-sectional study was performed at a tertiary
referral center specializing in pediatric diabetes in Romania. We reviewed the medical
charts of 219 patients diagnosed with T1DM in the Pediatric Emergency Hospital ‘Louis
Turcanu’ from Timisoara, Romania, between 1 January 2014 and 31 December 2023. The
study protocol, conducted with Good Clinical Practice (Declaration of Helsinki from 1975,
revised in 2013), was approved by the hospital’s Institutional Review Board (protocol
no. 14571/17.11.2023). Informed consent was waived in compliance with ethical reg-
ulations due to the retrospective nature of this study. The inclusion criteria comprised
individuals who were (1) under 18 years of age and (2) diagnosed with new-onset T1DM
based on the 2021 criteria of the American Diabetes Association (ADA) [33]. Patients
with (1) preexisting medical conditions known to modify hematological parameters, such
as hematologic or autoimmune diseases, (2) those receiving chronic corticotherapy, and
(3) those with incomplete medical data were excluded from the study. DKA was considered
if patients exhibited plasma glucose levels > 11 mmol/L, urine ketone levels categorized as
moderate to high (+ to +++), and arterial pH values < 7.30 upon admission [34]. The severity
classification of DKA followed the guidelines outlined by the American Diabetes Associa-
tion: mild DKA was defined as 7.20 ≤ pH < 7.30, moderate DKA as 7.10 ≤ pH < 7.20, and
severe DKA as pH < 7.10 [34]. Overt cerebral edema was diagnosed on clinical basis in
patients presenting with a Glasgow Coma Scale (GCS) score < 14 and sudden alterations
in neurological status, including altered levels of consciousness (confusion, lethargy, or
coma) or signs of increased intracranial pressure (severe headache, recurrent vomiting,
hypertension, seizures, or papilledema), necessitating administration of hypertonic solution
or intubation [35]. Acute kidney injury was characterized based on the serum creatinine
criteria outlined by the Kidney Disease/Improving Global Outcomes guidelines. AKI
stages—no AKI, stage 1, stage 2, or stage 3—were determined based on serum creatinine
values < 1.5, 1.5 to <2, 2 to <3, and ≥3 times the basal serum creatinine, respectively [36].
Due to the absence of baseline creatinine data prior to admission, we derived the ex-
pected baseline creatinine (EBC) levels by utilizing an estimated glomerular filtration rate
(eGFR) [37,38] of 120 mL/min/1.73 m2 and patients’ body height (calculated using the
Schwartz formula) [39]. Severe electrolyte imbalances were diagnosed based on the follow-
ing cut-off values: plasma sodium < 120 mEq/L for severe hyponatremia, plasma sodium



J. Clin. Med. 2024, 13, 2582 3 of 14

> 150 mEq/L for severe hypernatremia, plasma potassium < 2.5 mEq/L for hypokalemia,
and plasma potassium > 6.5 mEq/L for hyperkalemia. Deep vein thrombosis (DVT) was
diagnosed through clinical assessment, imaging studies such as Doppler ultrasound, and
laboratory tests for D-dimer levels. Acute pancreatitis was diagnosed based on clinical
symptoms, a CT scan showing pancreatic inflammation, and elevated levels of serum amy-
lase and lipase. Prolonged Intensive Care Unit length of stay (ICU LOS) was considered
>48 h of ICU-level care [40]. Co-infection was defined as the presence of acute infections
detected upon hospital admission, including upper and lower respiratory tract infections,
digestive infections, and urinary tract infections. Sepsis was characterized by suspected or
confirmed infection meeting at least two of the systemic inflammatory response syndrome
(SIRS) criteria: (1) body temperature > 38.5 ◦C or <36 ◦C, (2) mean heart rate exceeding +2
standard deviations (SDs) above the normal range for age in the absence of external stimuli,
or unexplained persistent elevation [41].

2.2. Clinical and Laboratory Data

Patient characteristics, encompassing age, gender, physical examination findings upon
admission, GCS score upon admission, co-infection status, and DKA status, were collected.
The length of stay in the Intensive Care Unit was determined, along with documentation of
critical care interventions, notably the use of mechanical ventilation. Laboratory parameters
collected upon admission comprised a CBC, analyzed using a Sysmex XN-550 automated
hematology analyzer (Sysmex Corporation, Kobe, Japan), and several biochemistry tests. The
latter included C-reactive protein (CRP), fasting glucose level, blood urea nitrogen (BUN),
and creatinine, which were assessed using an automatic analyzer (Hitachi 747, Hitachi,
Tokyo, Japan). Glycated hemoglobin (HbA1c) was measured via high-performance liquid
chromatography (Cobas E 411-Roche, Japan, Tokyo). Additionally, C-peptide was evaluated
using an automated chemiluminescent assay (Cobas E 411-Roche, Tokyo, Japan). The SIRI
score was calculated based on peripheral blood cell counts using the following formula:
(absolute neutrophil count × absolute monocyte count)/absolute lymphocyte count [42].

2.3. Key Outcome Measures

The primary outcome of interest was the occurrence of acute complications during
hospitalization for T1DM, specifically overt cerebral edema, acute kidney injury, severe
electrolyte imbalances, acute pancreatitis, and deep vein thrombosis. This study aimed
to assess the predictive role of the SIRI specifically in relation to these complications. The
secondary outcome measure was the need for ICU care exceeding 48 h.

2.4. Use of OpenAI ChatGPT-3.5

The ChatGPT-3.5 model, developed by OpenAI [43], was used for language and
grammar checks throughout the article. The authors conducted thorough reviews, edits,
and revisions of the ChatGPT-generated texts, assuming accountability for the content of
the publication.

2.5. Statistical Analysis

Statistical analysis was performed with the help of Statistical Package for Social Sci-
ences software (SPSS v28.0.1.1. Armonk, IBM Corp, Armonk, NY, USA). Patients were
divided into three study groups based on SIRI tertiles and characterized using descriptive
statistics, including percentages, medians, and interquartile ranges. The normality of data
distribution was verified using the Shapiro–Wilk test. Numerical variables, displaying
non-normal distribution, were computed as median and interquartile range (IQR), and the
Kruskal–Wallis test was used for intergroup comparison. Categorical variables were dis-
played as numerical and percentile values, with intergroup comparisons performed using
the Chi-squared test. Spearman’s rank correlation coefficient (ρ) was used to determine
relationships between clinical parameters and adverse events such as acute complications,
prolonged ICU LOS, and the need for mechanical ventilation. Additionally, multivariate lo-
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gistic regression analysis explored independent factors associated with acute complications
and prolonged ICU LOS. Finally, receiver operating characteristic (ROC) curve analysis was
employed to further elucidate the prognostic accuracy of the SIRI in identifying patients
with acute complications. Youden’s index (sensitivity + specificity − 1) determined appro-
priate cut-off values. A two-tailed p-value < 0.05 was considered statistically significant.

3. Results
3.1. Baseline Characteristics of the Study Population

Data from 186 children aged 1 to 18 years diagnosed with T1DM were included in
this study. Patients were categorized into three groups based on SIRI tertiles. Differences
in demographic, clinical, and laboratory characteristics of the subjects are illustrated in
Table 1. The study population had a median age of 9.4 years (IQR: 5.1–12.7 years). Gender
distribution did not reveal significant differences across study groups (p = 0.267). As shown
in Table 1, patients with high SIRI values were more likely to be female and to experience
higher disease activity. This corresponded to longer durations of ICU admission, increased
occurrence of complications, and an increased need for mechanical ventilation. Regarding
laboratory parameters, patients with high SIRI values exhibited a significant increase in
WBCs, neutrophils, monocytes, platelets, and CRP, along with a significant decrease in
lymphocytes and eosinophils. Furthermore, patients with high SIRI values were more likely
to have lower venous pH and C-peptide. HbA1c values were similar across all SIRI tertiles.

Table 1. Baseline clinical and laboratory parameters stratified by SIRI tertiles.

Variables
Tertiles of SIRI

p-Value1 (0.14–1.07)
n = 62

2 (1.19–5.04)
n = 62

3 (5.31–69.88)
n = 62

Demographic characteristics

• Age (years) 9.05 (4.07, 12.7) 8.10 (4.75, 12.2) 10.8 (7.05, 14) 0.086

• Females 46.8 (29) 54.8 (34) 61.3 (38) 0.267

• Height (cm) 134 (105–158) 127 (109–153) 143 (122–156) 0.192

• Weight (kg) 28.5 (16.6–44) 25 (15.7–44) 33.5 (19–47.7) 0.213

• BMI (kg/m2) 15.6 (14.3–18.06) 15.9 (13.8–18.1) 16.1 (13.9–19.9) 0.695

Co-infection 11.3 (7) 16.1 (10) 32.3 (20) 0.011

DKA status:

• no DKA 56.5 (35) 24.2 (15) 0 (0) <0.001

• mild DKA 22.6 (14) 11.3 (7) 0 (0) <0.001

• moderate DKA 12.9 (8) 24.2 (15) 6.5 (4) <0.001

• severe DKA 8.1 (5) 40.3 (25) 93.5 (58) <0.001

GCS 15 (15, 15) 15 (15, 15) 14 (12, 15) 0.001

LOS in ICU (days) 0 (0, 0) 0 (0, 39) 55.5 (38, 73) 0.001

Acute complications:

• Cerebral edema 0 (0) 0 (0) 12.9 (8) <0.001

• AKI 3.2 (2) 19.4 (12) 67.7 (42) 0.003

• Sepsis 1.6 (1) 0 (0, 0) 11.3 (7) <0.001

• Other (severe electrolyte imbalance, DVT,
acute pancreatitis) 3.2 (2) 4.8 (3) 12.9 (8) 0.003
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Table 1. Cont.

Variables
Tertiles of SIRI

p-Value1 (0.14–1.07)
n = 62

2 (1.19–5.04)
n = 62

3 (5.31–69.88)
n = 62

Mechanical ventilation 1.6 (1) 0 (0) 9.7 (6) 0.002

Death 0 (0) 0 (0) 0 (0) -

Laboratory parameters

• WBCs (×103/mm3) 7.8 (6.29, 10.08) 11.43 (8.66, 15.08) 18.91 (15.98, 25.76) 0.001

• Neutrophils (×103/mm3) 3.63 (2.86, 4.53) 7.27 (5.27, 9.46) 14.68 (11.87, 23.98) 0.001

• Lymphocytes (×103/mm3) 3.43 (2.43, 4.67) 2.89 (2.06, 4.01) 2.40 (1.70, 3.44) <0.001

• Monocytes (×103/mm3) 0.56 (0.41, 0.71) 0.90 (0.68, 1.25) 2.01 (1.38, 2.81) 0.001

• Eosinophils (×103/mm3) 0.10 (0.05, 0.19) 0.05 (0.02, 0.14) 0.01 (0, 0.02) <0.001

• Platelets (×103/mm3) 283 (188, 342) 319 (255, 400) 363 (298, 438) <0.001

• Venous pH 7.31 (7.23, 7.36) 7.14 (7.01, 7.28) 6.95 (6.88, 7.02) 0.001

• Glycemia (mg/dL) 347 (269, 463) 430 (344, 500) 471 (379, 560) <0.001

• HbA1c (%) 11.70 (9.95, 13.24) 11.30 (10.15, 12.72) 11.53 (10.20, 12.69) 0.871

• C-peptide (nmol/L) 0.572 (0.369, 0.726) 0.542 (0.232, 0.739) 0.310 (0.202, 0.479) <0.001

• C-reactive protein (mg/L) 0.61 (0.21–1.21) 1.10 (0.83–3.85) 3.66 (1.34–10.49) <0.001

• BUN (mmol/L) 3.49 (2.93, 4.29) 3.57 (2.66, 4.31) 4.35 (2.69, 6.50) 0.048

• Creatinine (umol/L) 43 (34, 50) 46 (37, 60) 61 (47, 78.2) <0.001

• ALT (U/L) 12 (9–15) 12 (10–15) 13 (10–18) 0.575

• AST (U/L) 16.5 (13–20) 14.5 (12–20) 14 (10–23) 0.283

Data are expressed as median (IQR) or percentage (n, %). SIRI, Systemic Inflammatory Response Index; DKA,
diabetic ketoacidosis; GCS, Glasgow Coma Scale; LOS, length of stay; ICU, Intensive Care Unit; AKI, acute kidney
injury; DVT, deep vein thrombosis; WBCs, white blood cells; HbA1c, glycated hemoglobin A1c; CRP, C-reactive
protein; BUN, blood urea nitrogen; ALT, alanine aminotransferase; AST, aspartate aminotransferase. Statistically
significant differences, indicating a probability value of p < 0.05, are highlighted in bold.

3.2. Comparison of SIRI According to Infection Status in Severe DKA Patients

When stratifying patients according to co-infection status, we observed no statistically
significant differences between the median SIRI values of patients with co-infection (7, IQR:
3.36–11.73) upon admission and those without co-infection (9.96, IQR: 5.18–20.51), as seen
in Figure 1.
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Figure 1. Boxplot diagram of Systemic Inflammatory Response Index (SIRI) according to co-infection
status. 0, no co-infection; 1, co-infection; ns, not significant (p = 0.185). Transparent triangles represent
individual values. Created with Biorender.com accessed on 12 March 2024.

3.3. Correlation Analysis of SIRI with Adverse Events

The relationship between median SIRI values and adverse events occurring during
hospital admission for T1DM onset (Figure 2) was evaluated using Spearman correlation
analysis. The most notable correlations between the SIRI and adverse events during hospital
stay were observed with prolonged ICU LOS (ρ = 0.606) and AKI (ρ = 0.602). Additionally,
mean SIRI values significantly correlated with overt cerebral edema (ρ = 0.296) and sepsis
(ρ = 0.272). Similar correlations were observed for venous pH. When considering glucose
metabolism markers, only C-peptide significantly correlated with unfavorable events
during the hospital stay, although to a lesser extent than the SIRI and venous pH (Figure 2).
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A1c; AKI, acute kidney injury; ICU, Intensive Care Unit; LOS, length of stay. The range of colors in
the figure reflects the strength of significance, with deeper shades indicating stronger associations and
lighter tones suggesting comparatively lower statistical significance. Positive correlation coefficients
indicate positive associations, while negative correlation coefficients signify negative associations.
Significance levels are as follows: *** p < 0.001, ** p < 0.01, * p < 0.05.

3.4. Association Analysis between SIRI and Adverse Events

Furthermore, we employed multivariate logistic regression to explore the relationship
between the SIRI and adverse events, including acute complications and ICU LOS exceeding
48 h, both in the entire study population as well as only in severe DKA patients (Table 2).
We employed a stepwise selection approach to mitigate the risk of overfitting resulting
from the inclusion of numerous assessed variables. This method automatically identified
a subset of predictors considered the most influential in the model. When analyzing
the entire study population, the SIRI and venous pH were retained in the final model,
demonstrating statistical significance. After adjusting for multiple confounding factors,
the SIRI retained statistical significance as an independent factor associated with acute
complications (p = 0.003). Additionally, in logistic regression modeling for the outcome of
prolonged ICU LOS, the SIRI remained significant as an independent predictor (p < 0.001).

Table 2. Association between SIRI and adverse events.

Non-Adjusted a Model 1 b Model 2 c

OR (95%CIs) p-Value OR (95%CIs) p-Value OR (95%CIs) p-Value

Entire study population

• Acute complications 1.180 (1.106–1.259) <0.001 1.193 (1.116–1.276) <0.001 1.103 (1.035–1.176) 0.003

• Prolonged ICU LOS 1.218 (1.135–1.307) <0.001 1.250 (1.157–1.350) <0.001 1.154 (1.064–1.252) <0.001

Severe DKA

• Acute complications 1.091 (1.027–1.158) 0.004 1.103 (1.034–1.177) 0.003 1.095 (1.031–1.164) 0.003

• Prolonged ICU LOS 1.047 (1.010–1.086) 0.012 1.058 (1.015–1.103) 0.008 1.053 (1.012–1.095) 0.010

a Non-adjusted model adjusted for nothing; b model 1 adjusted for age, gender; c model 2 adjusted for age, gender,
co-infection, venous pH, HbA1c. OR, odds ratio; CI, confidence interval; ICU, Inensive Care Unit; LOS, length of
stay. Statistically significant differences, indicating a probability value of p < 0.05, are highlighted in bold.

In addition, we conducted an analysis focusing on a subset of patients, specifically
those with severe DKA, to determine whether the SIRI maintains statistical significance
as an independent factor associated with adverse events. Multivariate logistic regression,
employing a stepwise selection approach, demonstrated that the SIRI remained significantly
associated with acute complications and prolonged ICU LOS, even when specifically
examining patients with severe DKA.

ROC Analysis Regarding the Predictive Accuracy of SIRI for Adverse Events

We evaluated the predictive accuracy of the SIRI regarding both acute complications
and prolonged ICU LOS and compared it with venous pH and glucose metabolism markers.
The area under the curve was computed, identifying optimal cut-off values. As depicted in
Tables 3 and 4 and Figures 3 and 4, the SIRI demonstrated excellent accuracy for both acute
complications (AUC = 0.837, with 82.0% sensitivity and 72.0% specificity) and prolonged
ICU LOS (AUC = 0.900, with 89.6% sensitivity and 73.9% specificity). We also assessed
the predictive accuracy of each cell lineage within the hematological index, with the SIRI
demonstrating superior performance compared to its components.
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Table 3. Comparison of inflammatory and metabolic markers in discriminating acute complications.

AUC SE 95%CI Sensitivity Specificity Cut-Off p-Value

SIRI 0.837 0.032 0.774–0.900 0.820 0.720 2.66 0.001
pH 0.811 0.032 0.748–0.874 0.800 0.607 7.01 0.001

BUN 0.586 0.050 0.488–0.685 0.576 0.549 3.75 0.064
C-peptide 0.682 0.045 0.595–0.769 0.673 0.568 0.374 0.001

HbA1c 0.463 0.045 0.374–0.551 0.463 0.508 11.4 0.431
Neutrophils 0.793 0.036 0.722–0.864 0.787 0.720 8.21 0.001

Lymphocytes 0.584 0.044 0.498–0.670 0.576 0.525 2.68 0.063
Monocytes 0.812 0.032 0.749–0.874 0.803 0.664 0.935 0.001

Abbreviation: SIRI, Systemic Inflammatory Response Index; HbA1c, glycated hemoglobin A1c; BUN, blood urea
nitrogen. Statistically significant differences, indicating a probability value of p < 0.05, are highlighted in bold.

Table 4. Comparison of inflammatory and metabolic markers in discriminating prolonged ICU LOS.

AUC SE 95%CI Sensitivity Specificity Cut-Off p-Value

SIRI 0.900 0.023 0.855–0.945 0.896 0.739 3.24 <0.001
pH 0.894 0.023 0.849–0.940 0.877 0.625 6.97 0.001

BUN 0.543 0.059 0.427–0.658 0.522 0.627 4.09 0.393
C-peptide 0.709 0.047 0.617–0.802 0.708 0.647 0.367 0.001

HbA1c 0.471 0.051 0.371–0.571 0.455 0.523 11.5 0.559
Neutrophils 0.865 0.028 0.810–0.919 0.854 0.703 8.32 0.001

Lymphocytes 0.557 0.053 0.454–0.660 0.551 0.583 2.83 0.239
Monocytes 0.882 0026 0.831–0.933 0.875 0.717 1.14 0.001

Abbreviation: SIRI, Systemic Inflammatory Response Index; HbA1c, glycated hemoglobin A1c; BUN, blood urea
nitrogen. Statistically significant differences, indicating a probability value of p < 0.05, are highlighted in bold.
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4. Discussion

In a retrospective data analysis spanning ten years of patients with new-onset T1DM,
we observed a significant association between higher SIRI values and adverse events
during hospital admission. This association can be attributed to the severity of DKA,
which often leads to various complications and results in alterations in the CBC profile of
patients [44]. Some of these alterations are reflected in the SIRI calculation. Although the
exact processes driving the progression of DKA remain unclear, multiple studies indicate
that inflammation may play a significant role in its advancement [45–48]. Unlike earlier
literature, which emphasized the dysregulation of adaptive immunity, recent studies have
highlighted the importance of innate immunity in the immunopathology of T1DM [49]. In
particular, there is an emphasis on the involvement of innate immunity, both in the initial
immune attack on pancreatic β cells and in subsequent stages, when it contributes to the
stabilization and perpetuation of insulitis [17,50–54]. In addition to cytokines, inflammation
also triggers cellular responses, leading to changes across multiple cell lineages within the
hematopoietic system [55]. During the last decade, several CBC-derived indices have been
investigated as potential inflammatory biomarkers, with the neutrophil-to-lymphocyte
ratio [56] being the prototype among them. In their study, Cheng et al. found that the
NLR could indicate the underlying severity of acute systemic inflammation in adult DKA
patients, particularly those without infection [22]. Subsequently, this association was also
demonstrated in pediatric patients experiencing new-onset DKA [57]. However, in addition
to the alteration in absolute neutrophil and lymphocyte count in T1DM, studies have
also described an increase in circulating monocytes [28]. During inflammatory conditions,
human peripheral monocytes serve as antigen-presenting cells to activate T cells [58,59] and
produce cytokines that influence T-cell differentiation [60]. Following antigen stimulation,
intermediate monocytes assume the primary role in generating inflammatory factors,
such as interleukin (IL)-1α, IL-6, and TNF-α [61]. These TNF-α levels correlate with the
severity of T1DM [62–64]. Ren et al. observed a correlation between a higher population
of intermediate monocytes and increased memory T cells in children with recent-onset
T1DM. These memory T cells secreted high levels of IL-2 and IFN-γ [65]. Given the role
of monocytes in diabetes, a CBC-derived index incorporating both NLR and monocyte
information, the SIRI, has been investigated in several adult studies concerning diabetes
complications, particularly in type 2 diabetes. Wang et al. suggested the SIRI as an
independent risk factor for diabetic retinopathy [66]. Lin et al. associated it with the
risk of cardiovascular disease [67], while Zhang et al. linked it to cardio-cerebrovascular
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disease mortality among adults with type 2 DM [68]. However, studies addressing its use
in children with T1DM are notably limited.

To the best of our knowledge, the present study is the first to investigate the potential
utility of using the SIRI in children with new-onset T1DM. Our study population had a
median age of 9.4 years, similar to findings from previous studies [69,70], although slightly
older than the average age reported by Boboc et al. [71]. Female patients had a marginal
prevalence (54.3%), especially among patients from the high tertile, although this difference
did not reach statistical significance. Among patients presenting with DKA, most (64.7%)
had severe DKA. The incidence of severe DKA is higher than that reported in some previous
studies [3,72]. This might be attributed to the fact that, as a tertiary reference center with a
pediatric ICU facility, our hospital primarily handles severe cases, drawing patients from
most of the West of the country. Conversely, patients who can be initiated on subcutaneous
insulin are typically managed at other healthcare facilities within their respective areas.
The occurrence of adverse events during hospitalization included 56 cases of AKI, 8 cases
of overt cerebral edema, 13 patients with severe electrolyte imbalance, 1 instance of deep
vein thrombosis, and 1 case of acute pancreatitis. No deaths occurred within the entire
study population, and none of the patients with AKI required dialysis. Most of the cases
with overt cerebral edema presented with sepsis at the moment of admission. This is
consistent with a previous study that disclosed the co-occurrence of infections in children
with cerebral edema [73]. Furthermore, concerning the length of stay in the ICU, the median
duration for the entire study population was 8 h. Among patients with DKA, the median
ICU LOS was 38 h, rising to 48 h for those with severe DKA. Previous studies have reported
a slightly higher LOS of 48–60 h regarding children with DKA [74,75].

In order to analyze the relationship between the SIRI and adverse events during hos-
pitalization, we divided the study population into low-, moderate-, and high-SIRI tertiles.
Significant discrepancies were observed in the clinical and laboratory profiles of the three
groups of patients, as well as in their hospital course. These observations suggest a relation-
ship between the increase in SIRI values and the progression of disease severity, leading
to acute complications. To further characterize this relationship, we applied additional
analytical tests. Our results indicated a positive correlation between the SIRI and individual
acute complications, as well as with prolonged ICU LOS, similar to the pattern observed
with venous pH. Furthermore, the results of multivariate logistic regression showed that
higher median SIRI values were independently associated with both acute complications
and prolonged ICU LOS, even after adjusting for various potential confounders such as
co-infection and venous pH. Additionally, the SIRI demonstrated excellent predictive ca-
pability in ROC analysis in identifying patients with acute complications. At a cut-off
value of 2.39, it demonstrated a sensitivity of 83.3% and a specificity of 70.8%, slightly
surpassing those of venous pH. Finally, we also noted that the predictive accuracy of the
SIRI surpassed that of its component cell lineages. These results imply that the collective
data offered by the SIRI may provide a more thorough evaluation of the inflammatory
status and disease severity compared to its components in children with T1DM.

The results of the present study must be interpreted in light of several limitations.
First, this study’s retrospective single-center design presents concerns regarding potential
selection bias, mainly due to its location in a diabetes referral center, which could have led to
an overrepresentation of severe cases. Furthermore, incomplete documentation for patients
referred from territorial hospitals necessitated their exclusion from the analysis, further
aggravating the potential for bias. Second, the SIRI was assessed only at one time point.
Serial measurements of the SIRI and its changes in children with new-onset T1DM could
offer a more comprehensive picture of the dynamic correlation between them. Concerning
the study population, the relatively modest patient sample size could have influenced
this study’s statistical power. Additionally, since it consisted of real-life patients, several
of them had acute infections, which are known to influence CBC parameters. However,
we included patients with co-infections, as they represented one in five children and
offered a more realistic and complete picture of pediatric T1DM patients. There were no
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significant statistical differences in SIRI values when comparing children with and without
infections. As such, our results can be viewed as exploratory. In the future, improving
the experimental design could involve adopting a prospective approach with longitudinal
studies across multiple centers, ensuring comprehensive documentation of patient data.
These improvements might be beneficial for validating our findings.

5. Conclusions

In summary, this study revealed that individuals with high SIRI values faced an
increased risk of adverse events during hospital admission for new-onset T1DM. This offers
a fresh perspective on risk assessment, potentially leading to early intervention strategies by
introducing the SIRI as a predictive marker. Furthermore, this practical tool allows clinicians
in minimally equipped healthcare facilities to identify high-risk pediatric patients requiring
admission to ICU-equipped medical facilities. Patients initially presenting in ambulatory
settings with minimal routine investigations, displaying clinical signs of diabetes and
elevated glucose and SIRI levels, would benefit from expedited referral to an ICU-equipped
hospital. While our findings do not substitute traditional diagnostic criteria, this study
provides complementary laboratory data regarding this subset of patients. However, due to
the single-center design of this study and its conduct in a tertiary reference center, caution
should be exercised in extrapolating the results to the general population.
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