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Abstract: Global warming affects food security and ecological security, and it threatens economic sta-
bility and sustainable agricultural development. The transformation and development of agriculture
have significant implications for the achievement of the “dual-carbon” goals and the promotion of
sustainable agricultural development. Based on panel data on organic dry farming in China from
2005 to 2020, this study aimed to comprehensively assess the transformation performance of organic
dry farming (TRODF) in 15 provinces. It explored the impact of the transformation of organic dry
farming on carbon emissions by utilizing a spatial Markov chain and spatial measurement models.
Our findings are as follows: (1) The performance of the organic dryland agriculture transforma-
tion has gradually improved and is accompanied by a corresponding trend of fluctuating regional
disparities, which are on the rise. Moreover, the disparities between the five major regions mainly
stem from intra-regional differences. (2) TRODF agriculture presents the possibility of state transfer
during different periods, featuring four convergent zones: a lagging zone, a starting zone, a crossing
zone, and an advanced zone. The spatial Markov chain indicates that state transitions typically
occur between adjacent levels, with fewer instances of “jump”-type transitions. Moreover, there is
a clear trend of differentiation in the state transitions between non-adjacent areas. (3) The organic
dry farming transformation exhibits a significant carbon reduction effect, which is characterized by
heterogeneity across different stages of agricultural development, provinces, and time periods. This
study emphasizes that economic and industrial transformation, along with the transformation of
the ecological environment, represents a crucial direction for conserving resources and achieving a
further reduction in carbon emissions.

Keywords: organic dry farming; transformation performance; carbon emissions reduction

1. Introduction

The 20th annual report of the Party highlights the need for China’s agricultural
development to steadfastly adhere to the red line of 1.8 billion mu of arable land, ensuring
the secure control of the Chinese people’s food supply [1]. To comprehensively fortify the
foundation of food security and effectively implement measures to this end, it is essential
to chart a new course for modern agriculture and rural development [2]. This involves
bolstering the technical framework of organic dry farming, positioning it as a pivotal brand
within modern agriculture. As per the Main Data Bulletin of the Third National Land
Survey, China’s total arable land of 1.918 billion mu comprises 965 million mu, constituting
50.33% of the total amount. Notably, 64% of this arable land is concentrated in regions
north of the Kunlun Mountains, Qinling Mountains, and Huaihe River [3]. In the context of
green development, the transformation and enhancement of traditional rainfed agriculture
towards modern organic rainfed agricultural systems are imperative. The widespread
application of modern agricultural elements has continuously weakened or even led to the
disappearance of traditional rainfed agriculture. This transition not only aims to produce
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high-quality agricultural products that improve people’s lives but also contributes to a
reduction in carbon dioxide emissions. The organic transition is the period in which crops
and livestock are managed according to the requirements of the USDA National Organic
Program (NOP), prior to being granted organic certification. Agriculture represents the
second-largest contributor to greenhouse gas emissions, as a significant source of carbon
dioxide emissions. The transition to organic dryland farming must play a crucial role
in achieving the “dual carbon” goals and promoting the sustainable development of
agriculture. By elucidating the performance and carbon reduction mechanisms underlying
the transition to organic dryland farming, as well as exploring its spatiotemporal evolution
characteristics and spatial effects on reducing carbon emissions, we can further propel the
transformation of traditional dryland agriculture.

The scientific evaluation of the transition performance is a critical approach to assess-
ing the effectiveness of transition policies and constitutes a prerequisite for appraising
their impact on reducing carbon emissions. The performance characteristics of the trans-
formation refer to the precise summarization of its performance features based on the
connotations of transformation. It involves the application of performance evaluation
methods that are capable of reflecting the logical realities of an economic transformation.
These methods assess the performance of the research subjects across various dimensions of
economic transformation within a certain time frame. This assessment involves analyzing
whether economic transformation behaviors have yielded significant effects, evaluating the
quality of the economic, social, and ecological aspects of the transformation process, and
assessing the degree to which the ultimate goals of economic transformation have been
achieved. During this process, evaluation results consistent with the genuine mechanisms
of transformation are obtained. Domestic and international research methodologies re-
lated to transformation performance and carbon emission effects are characterized by two
main dimensions. The examination of transformation performance encompasses resource-
based transformation and digital-intelligent-service-oriented transformation. Research
on resource-based transformation delves into the characteristics and evaluation of the
transformation performance [4–6], carbon emission reduction effects [7], and dynamic
assessments [8] of resource-based cities. Meanwhile, digital-intelligent-service-oriented
transformation focuses on the influence of big data resources [9,10] and data empower-
ment [8,11] on transformation performance. There is an urgent need for further exploration
of TRODF agriculture.

The research on the measurement and evaluation of transformation performance em-
ploys two distinct methodologies. (1) The index system method is utilized, wherein scholars
establish sustainable development policy systems to assess the impact of local industrial
transformations in resource-based cities [12]. Scholars have also devised a corresponding
evaluation index system for the ecological transformation of China’s Mekong River, which
is grounded in the innovative segmentation of the Mekong River ecosystem’s transfor-
mation stages: these include the transition recovery period, the transition adjustment
period, and the transition innovation period [13]. (2) The single-index method is applied to
evaluate key aspects of transformation performance in resource-based cities. This method
encompasses the assessment of sustainable development [14], industrial upgrading [15],
improvements in economic quality and efficiency, and the promotion of low-carbon devel-
opment [16]. (3) The input–output method, utilizing the DEA (Data Envelopment Analysis)
model, evaluates the efficiency of resource-based urban transformations from an efficiency
perspective [17,18].

The third area involves the proposal of and impetus for the development of low-carbon
agriculture based on the “dual-carbon” target, encouraging the academic community to
focus their attention on research related to carbon emission reduction pathways. Re-
search indicates that agricultural insurance restrains carbon emissions by influencing green-
agricultural-total-factor productivity and insurance transfer [19,20]. Additionally, green-
agricultural-production technology plays a pivotal role in carbon reduction efforts [21].
The pathways for the low-carbon transformation of Chinese cities encompass the digital
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economy, industrial transformation and upgrading, and the spatial transfer of carbon
emissions [22]. Furthermore, a comprehensive approach to straw utilization [12], invest-
ment in technological innovation [23], the enhancement of agricultural land-use types [24],
economic and technological cooperation [25] and conservation tillage [26] can also make
major contributions to reducing carbon emissions.

In the academic research on transformation performance, two main lines of inquiry
have emerged: impact evaluation and measurement. However, the existing research still
has some shortcomings and areas for improvement. First, the scope of the research on
transformation performance is limited, often focusing on the transition from resource-based
cities to smart services, with a lack of comprehensive studies of regional variations and spa-
tiotemporal evolution, particularly in organic dryland agriculture. The relevant dynamic
evolutionary characteristics require further exploration. Second, systematic measurement
methods used to assess the transformation performance of organic dryland agriculture are
lacking in the existing research. While the existing studies emphasize the pathways for
the enhancement of organic dryland agriculture, insufficient attention is paid to its carbon
emission reduction effects. Third, in the existing research, there is a lack of theoretical
interrogation regarding the impact of the development of the transformation of organic
dryland agriculture on carbon emissions reduction, with a dearth of empirical studies on
its spatial effects. Therefore, this paper constructs indicators to evaluate the transformation
performance of organic dryland agriculture, encompassing industrial upgrading, social
life transformation, and environmental improvement. We focus on elucidating the char-
acteristics of the transformation performance of organic dryland agriculture, identifying
its carbon emissions reduction effects, and making policy recommendations to further
promote its development.

2. Materials and Methods

Of the country’s dry cultivated land, 64% is concentrated in the regions north of the
Kunlun Mountains, Qinling Mountains, and Huaihe River. Consequently, this paper focuses
on these areas, covering the period from 2005 to 2020. The selected region encompasses
15 provinces, municipalities, and autonomous regions: Beijing, Tianjin, Hebei, Shanxi,
Inner Mongolia, Liaoning, Jilin, Heilongjiang, Shandong, Henan, Shaanxi, Gansu, Qinghai,
Ningxia, and Xinjiang. The details are shown in Table 1.

Table 1. Overview of the study area.

Numerical Value Unit National Share

Area 579.09 104 km2 60.32%
GDP 354,784.37 108 CNY 35%

Cropland area 82,799.06 104 hm2 64.7%
Gross agricultural product 33,024.21 108 CNY 46.03%

Total grain output 39,646.71 104 t 59.22%
Population 57,224 104 40.53%

2.1. Theoretical Analysis

(1) The industrial upgrading effect of organic dryland agriculture. The transformation of
agricultural industries serves as a critical foundation for the development of organic
dryland agriculture and constitutes the fundamental basis for carbon emission reduc-
tion in organic dryland agriculture. This transformation primarily occurs through the
rationalization and upgrading of agricultural structures. Regarding the rationalization
of agricultural structures, enhanced coordination among various elements facilitates
the redistribution of agricultural factors across sectors, thereby promoting the re-
structuring of agricultural sectors. Concerning the upgrading of industrial structures,
agriculture transitions towards high technology and high value-added processes,
directing factors towards high value-added agricultural sectors and consequently
reducing agricultural carbon emissions.
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(2) The societal impact of organic dryland agriculture. The societal transformation in-
duced by organic dryland agriculture is primarily manifested in the enhancement
of economic development efficiency and livelihood security. Technological advance-
ments and educational initiatives accelerate the accumulation of agricultural pro-
duction factors. The application of advanced agricultural production technologies
improves agricultural resource-utilization efficiency and reduces agricultural carbon
emissions. The transformation to organic dryland agriculture compels agricultural
enterprises to reduce carbon emissions and pollution, fostering economic quality
enhancement and efficiency improvement. As living standards rise, awareness of
low-carbon practices increases, thereby promoting carbon emission reduction with
heightened public environmental consciousness.

(3) The environmental synergistic effects of organic dryland agriculture. The collabo-
rative improvement of the environment by organic dryland agriculture stems from
the management of agricultural resource consumption and environmental pollution
control. On one hand, reductions in pollutant emissions and resource consumption
during the development of agricultural environmental transformations contribute
to energy conservation and emission reduction, thereby positively impacting carbon
emission reduction. On the other hand, environmental pollution control during agri-
cultural environmental transformations plays a constructive role in carbon emission
reduction. For instance, ecosystem protection and restoration facilitate the formation
and development of ecological balance, significantly contributing to environmental
improvement and achieving carbon emission reduction effects (Figure 1).
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Figure 1. Mechanism of Organic Dry Farming Transformation.

2.2. Materials

The performance index system and control variable data related to the transformation
of organic dry farming used in this study primarily derive from the National Statistical
Yearbook spanning the years from 2005 to 2020. The data collected from the Statistical
Yearbook underwent preprocessing, wherein missing values for individual years are in-
terpolated to ensure completeness and accuracy. Based on the average transformation
performance of the 15 provinces engaged in organic dry farming from 2005 to 2020, this
study categorizes them into four grades: the lag zone (performance value below 60% of
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the mean), the starting area (performance value between 60% and 80% of the average), the
spanning area (performance value between 80% and 120% of the average), and the leading
zone (performance value exceeding 120% of the average). Employing spatial Markov chain
analysis, this research aims to investigate the evolutionary characteristics of the transfor-
mation performance of organic dry agricultural areas. This involves establishing a spatial
Markov probability transfer matrix with four distinct types and analyzing the probability
of transfer trends associated with the four transformation-performance categories across
different time periods.

2.3. Methods
2.3.1. Performance Evaluation Index System for the Transformation of Organic
Dry Farming

This study constructs a comprehensive performance evaluation index system for the
organic dryland agriculture transformation, drawing upon existing research achievements
related to transformational performance evaluation indicators [9]. The constructed system
encompasses three key dimensions: economic and industrial transformation, transforma-
tions in social life, and the transformation of the ecological environment. Regarding index
measurement, the initial index data undergo a standardization process. Subsequently,
the entropy method is employed to assign scores to each index, thereby determining
their respective weights. The culmination of these steps results in the formulation of the
performance index system for the transformation of organic dry farming.

2.3.2. Spatiotemporal Characteristic Analysis Method for the TRODF

(1) Theil index

To elucidate the temporal disparities and spatial variations in the TRODF, the Theil
index for regional differences is employed. This calculation facilitates the decomposition
of these differences into regional variances and intra-regional distinctions, enabling a
comprehensive comparative analysis as follows:

T =
1
n

n

∑
i=1

(
TRAi

TRA
× ln

TRAi
TRA

) (1)

Tr =
1
n

nr

∑
i=1

(
TRAri
TRA

× ln
TRAir

TRAr
) (2)

T = Ta + Tb =
5

∑
r=1

(
nr

n
× TRAr

TRA
× Tr)+

5

∑
r=1

(
nr

n
× TRAr

TRA
× ln

TRAr

TRA
) (3)

In the presented framework, let T denote the Tyre index representing the TRODF, with
its values confined to the interval (0, 1), thereby reflecting the magnitude of the overall
regional differences. TRA signifies the transformation performance value of organic dry
farming, where Tr (r = 1, 2, 3, 4, 5) designates the Theil index of the transformation perfor-
mance in the northeast, north, east, northwest, and central-southern regions, respectively.
Here, i refers to the province, n denotes the total number of provinces under consideration
for organic dry farming studies, and Ta and Tb represent intra-regional and inter-regional
differences, respectively. The parameter nr signifies the number of provinces engaged in
organic dry agriculture (PCS) in the regions of northeast China, north China, east China,
northwest China, and central China. TRAi represents the transformation performance of
province i, while TRAri denotes the transformation performance of the organic dry farming
province i in the region. Additionally, the mean values of the transition performance
for both organic dry farming and the provinces engaging in organic dry farming within
region r are denoted as TRA and TRAr, respectively. The origins of the overall regional
differences can be dissected at two levels: the intra-regional variation Theil index (Ta) and
the inter-regional differences Theil index (Tb). Ta/T and Tb/T signify the contributions of
intra-regional and inter-regional differences to the overall disparities, respectively. Fur-
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thermore, (TRAr/TRA) × (Tr/T) represents the contribution of the five regions to the
intra-regional variation in organic dry farming provinces within the northeast, north China,
east China, the northwest, and the central-southern region. This includes TRAr and TRA,
which represent the sums of the transformation performance of organic and organic dry
farming in the five regions, respectively.

(2) Spatial Markov chain

To delve deeper into the spatial correlations of TRODF agriculture across neighboring
provinces over time, the selected provinces are classified into k types based on the initial-
year spatial lag values of each province’s transition performance. The performance type
of the neighboring provinces is denoted by the spatial lag value of province i in a given
year. Subsequently, k × k order probability transfer matrices are constructed by integrating
these spatial lag values into the conventional Markov chain framework. The calculation of
spatial lag values is carried out as follows:

Lag = ∑ xiWij (4)

where xi represents the transformation performance of province i, and Wij stands for the
adjacency spatial weight matrix.

2.3.3. Method for the Analysis of the Carbon Emission Reduction Effect of the
Transformation of Organic Dry Farming

(1) Panel fixed-effect model

To investigate the correlation between TRODF agriculture and carbon emissions, we
constructed an econometric model for testing as follows:

EMIit = α + βTRAit + δXit + µi + vi + εit (5)

where t represents time, EMIit denotes provincial carbon emissions measured in 100 million
tons, Xit serves as the control variable, µi represents the provincial fixed effect, νi corre-
sponds to the time-fixed effect, and εit represents the random interference term. Addition-
ally, α represents the constant term, while the estimated coefficients pertain to the core
explanatory and control variables.

In this paper, the following variables are selected as control variables: 1⃝ Government
intervention (GOV): the ratio of the general budget expenditure of local finance to GDP is
used to reflect the degree of government intervention; 2⃝ population size (POP), which is
characterized by the permanent urban resident population; 3⃝ environmental regulation
(ENR), using the proportion of employees in water conservation, environment, and public
facilities management in the total population; 4⃝ infrastructure (INF), which is characterized
by the ratio of the urban road area to the total population; and 5⃝ market size (SIZ), which
is characterized by the product of population per square kilometer and GDP per capita.

(2) Spatial econometric model

TRODF agriculture was incorporated into the STIRPAT model to analyze the impact
pathway of organic dry agriculture on carbon emissions, along with the demonstrated
spatial effects. The spatial Durbin model (SDM) can be simplified into both the Spatial
Error Model (SEM) and the Spatial Lag Model (SLM):

EMIit = αTRAit + βXit + ρ
n

∑
i=1

WijEMIit + γ
n

∑
i=1

WijTRAit + φ
n

∑
i=1

WijXit + µi + vi + εit (6)

where ρ, γ, and ϕ represent the spatial lag coefficients of the variables. Additionally, to
enhance data stability and alleviate heteroscedasticity, the respective variables undergo
logarithmic transformations to standardize the variable scale.
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3. Results
3.1. Spatiotemporal Evolution Characteristics of the Transformation Performance of Organic
Dry Farming
3.1.1. Regional Differences and Structural Decomposition

In Figure 2, the overall volatility (as depicted by the Theil index) of TRODF in agri-
cultural provinces from 2005 to 2020 exhibited an increase from 0.0486 in 2005 to 0.1436
in 2006, followed by a decrease to 0.0590 in 2020. This pattern indicates an initial rise and
subsequent fall in the overall difference in TRODF across China. The minimum difference
was observed in 2008, at 0.0143, while the maximum difference occurred in 2006, with a
Theil index value of 0.1436.
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Figure 2. Theil index of the organic dry farming transformation performance from 2005 to 2020
((a): Theil index; (b): Contribution rate).

Regarding regional decomposition, the contribution rate of regional differences from
2005 to 2020 exceeded 70%. In 2007 and 2013, the contribution rate reached its peak at 95%,
while, in the other years, the contribution rate of regional differences was less than 35%, ex-
cept for the maximum value of 32%, which was reached in 2006. This suggests that regional
differences predominantly account for the overall disparity in organic dry farming, with
2007 and 2013 standing out as the years with the most significant regional contributions.

Upon decomposing the regional difference index, we discerned that the average
transformation performance indices for northeast China, north China, east China, northwest
China, and central China from 2005 to 2018 were 0.0083, 0.0055, 0.0173, 0.0073, and 0.0247,
respectively (Figure 3).

Furthermore, the northeastern, northern, eastern, northwestern, and central-southern
regions exhibit average contributions to the overall variation of 1.88%, 2.95%, 9.15%, 3.06%,
and 9.67%, respectively. Notably, the northeastern, northern, and northwestern regions
display discernible fluctuation trends. The contribution rates of the eastern and central-
southern regions, averaging above 9%, position them as the primary contributors to the
overall variation. The northern and northwestern regions follow, while the northeastern
region makes the smallest contribution to the overall variation.
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3.1.2. Dynamic Transfer Characteristics

The overall transformation performance of the organic dry farming area can be catego-
rized into the lag area, starting area, crossing area, and pilot area (Figure 4). Generally, with
the exception of the pilot zone, the probability values along the diagonal of each regional
level are higher than those off the diagonal, indicating that the transformation performance
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of each province is relatively stable, with strong internal dynamics. However, there is a
notable probability of the initial state being maintained.
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In the state transition probability matrix, the state transfer of the TRODF mainly leans
towards the crossing zone, followed by the starting zone, while the probability of state
transfer to the lag zone and the pilot zone is minimal. State transfer of the transformation
performance usually occurs between adjacent grades, and the occurrence of the “jump”
transfer phenomenon is infrequent. Numbers off the diagonal are distributed on both sides
and are concentrated above it, indicating that the transition performance has the potential
to shift to higher-ranking types.

Between 2005 and 2012, there is a notable trend in state transfer from the crossing area
to lower types, which is higher than the transfer to higher-grade types. The transformation
of organic dry farming exhibits a certain “path dependence”, displaying long-term and
persistent characteristics, making it difficult to achieve leapfrog development.

The process of state transfer in the transformational performance of organic dry
farming displays a strong spatial proximity. Provinces that are adjacent with different
transformation performance types exhibit varying transfer probabilities. Generally, the
higher the transformation performance of neighboring provinces, the greater the probability
of upward transfer for a given province. Conversely, if a neighboring province has lower
transformation performance, the probability of downward transfer for that province is
higher. This suggests that the transformational development of a province in organic
dry-crop agriculture is distinctly correlated with the transformation performance type of
the neighboring provinces.

3.2. Impact of the Regional Transformation of Organic Dry Farming on Carbon Emissions
3.2.1. Spatial Correlation Test

Prior to conducting the spatial measurement analysis of regional transformation and
carbon emissions, this paper utilized the univariate Moran’s I index to examine the spatial
correlation between the regional transition performance (TRA) and carbon emissions (EMI).
Additionally, the bivariate value of the regional transition performance and Moran’s I was
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calculated to investigate the spatial correlation characteristics between the two variables
(Table 1).

The Moran’s I values for the TRODF areas exhibited fluctuations ranging from 0.270
to 0.634. Significance was observed at the 1% level for all years, indicating robust spatial
agglomeration. This suggests that areas with higher levels of transformation performance
tended to be spatially adjacent, while lower-performing regions also exhibited spatial
adjacency. The trend of the Moran’s I values for carbon emissions in organic dry farming
areas showed less apparent changes, implying strong spatial agglomerations in carbon
emissions within these areas.

An analysis of the bivariate Moran’s I value for transformation performance and
carbon emissions revealed that, although significance was not observed in some years,
the overall relationship was significantly positive. This indicates pronounced spatial
agglomeration and dependence characteristics between the TRODF agricultural areas and
carbon emissions. These findings suggest a mutual influence among neighboring provinces,
with notable clustering characteristics (Table 2).

Table 2. Results of the Moran’s I statistic test.

Year 2005 2006 2007 2008 2009 2010 2011 2012

TRA 0.439 *** 0.450 *** 0.438 *** 0.540 *** 0.476 *** 0.322 *** 0.434 *** 0.384 ***

EMI 0.346 *** 0.348 *** 0.332 *** 0.323 *** 0.318 *** 0.306 *** 0.290 *** 0.264 ***

Year 2013 2014 2015 2016 2017 2018 2019 2020

TRA 0.440 *** 0.420 *** 0.634 *** 0.386 *** 0.396 *** 0.270 *** 0.469 *** 0.303 ***

EMI 0.250 *** 0.214 *** 0.201 0.200 0.199 0.187 0.178 0.183

Note: *** represent the significance levels of 1%.

3.2.2. Parameter Estimation and Analysis of Results

After the initial examinations, the panel FE model was used for the basic regression,
and the reliability of this study’s conclusions was verified using the endogeneity test and
the robustness test. Furthermore, the spatial Durbin model was used to analyze the spatial
spillover effect. Table 3 shows the estimated results of the model basis.

Table 3. Parameter estimation and results.

Variable
Panel FE Model Endurance Test Robustness Test Spatial Durbin Model

lnEMI lnEMI lnCOG lnEMI Main W × X

TRA
−2.022 *** −2.022 −0.490 * −0.424 * −0.309 *** −0.005

(−6.55) (−2.02) (−1.84) (1.83) (−3.93) (−0.03)

GOV
3.496 *** 3.496 0.230 0.859 ** 0.0121 0.268
(−6.92) (3.50) (1.06) (2.66) (0.08) (0.69)

POP
0.000 *** 0.000 *** −0.000 ** −0.000 * −0.000 *** −0.001 **
(11.97) (0.00) (−2.53) (−2.03) (−6.01) (−2.50)

ENR
123.166 * 123.166 27.538 113.670 * 42.268 ** 312.711 ***
(−1.91) (123.17) (0.49) (2.09) (2.22) (4.47)

INF
0.038 * 0.038 ** 0.027 ** 0.027 0.015 −0.064 ***
(−1.93) (0.04) (2.25) (1.62) (1.38) (−4.57)

SIZ
−65.310 *** −65.310 9.354 0.940 −3.203 −72.095 ***

(−10.11) (−65.31) (1.74) (0.12) (−1.36) (−10.56)
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Table 3. Cont.

Variable
Panel FE Model Endurance Test Robustness Test Spatial Durbin Model

lnEMI lnEMI lnCOG lnEMI Main W × X

cons/rho
6.668 *** 6.668 8.563 *** 6.138 *** −0.742 ***
(20.91) (6.67) (14.15) (7.2) (−4.08)

N/individual 240 210 240 240 240

R2 0.44 0.00 0.43 0.54 0.68

Note: the t-value is given in parentheses; in the endogeneity test model, the AR (1) test result is −1.99 (p = 0.046),
the AR (2) test result is 0.90 (p = 0.366), and the Hansen test result is 5.60 (p = 1.000). Cons represents the constant
term in the non-spatial measurement model (panel FE, endogeneity, robustness), and the rho in the spatial
measurement model represents the spatial lag term, the same as below. And *, **, and *** represent the significance
levels of 10%, 5%, and 1%, respectively.

(1) Panel fixation effect

Initially, the analysis employed the panel fixed effects model as the foundational
framework. The results indicate that the TRODF exerts a notable negative influence on
carbon emissions. This suggests that the TRODF is conducive to reducing carbon emissions.
Furthermore, provinces engaging in economic, social, and ecological transformations
related to organic dry farming demonstrate pronounced energy-saving and emissions-
reduction effects, as highlighted in Table 3.

(2) Endurance test

To address the endogeneity problem resulting from omitted variables and reverse
causality, the model undergoes an endogeneity test, as shown in Table 4. In consideration
of the presence of heteroscedasticity, the Generalized Method of Moments (GMM) remains
robust and optimal. Estimates are made using the differential GMM model, assuming no
autocorrelation for the disturbance term and employing the first order of the transition
performance lag as the instrumental variable.

Table 4. Model-based estimation results.

Order Z Prob > z

1 −0.21438 0.8303
2 −0.10131 0.9193

The p-value of 0.777, which exceeds the threshold of 0.05 for AR (1), leads to the
rejection of the null hypothesis, signifying the absence of first-order autocorrelation in
the disturbance term. The difference GMM, which is reliant on the assumption of no
autocorrelation in the disturbance term, provides a consistent estimate. The Arellano–Bond
test reveals no autocorrelation in the disturbance items, confirming the consistency of the
difference GMM estimator. This emphasizes the validity of the previously established
conclusion regarding the dampening effect of the performance of the organic dry farming
transition on carbon emissions.

(3) Robustness test

To some extent, the endogeneity test helps us to elucidate the model’s robustness.
Furthermore, this study extends the robustness testing by substituting and constraining
the explanatory variables. Initially, the explanatory variable was substituted with carbon
intensity, revealing that the TRODF remained significantly negative at the 10% significance
level. This reaffirms the reliability of the conclusion that provincial transformation is
conducive to reducing carbon emissions.

Additionally, in light of the potential impact of excluding extreme values, the carbon
emission level of the dependent variable experiences a 1% reduction at both ends. The data
demonstrate that the original results remain credible, underscoring the high robustness
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of this paper’s findings. This implies that the transformation of organic dry farming
agriculture indeed yields a carbon emissions reduction effect.

(4) Spatial Durbin model

In order to generate a deeper understanding of the spatial impact of the transformation
performance of organic dry farming on carbon emissions, we utilize a spatial measurement
model to extend the original model (refer to Table 4). Initially, both the LM lag and LM
error successfully pass the significance test—Lagrange multipliers and lag factors—with
p-values well below 0.05, indicating the presence of spatial autocorrelation in the model.
Moreover, both the Wald test and the LR test, which assess significance, confirm that the
SDM model cannot be simplified into an SLM model or a SEM model. Subsequently, the
results of the Hausman test reveal a negative statistic, the correction of the variance and
covariance matrix, and an infinitesimally close-to-zero p-value for the corrected estimator,
signaling the absence of random effects. Consequently, we confirm the validity of the
fixed-effect model.

When examining the outcomes of the spatial Durbin model, the coefficient rho for the
spatial lag term of the explained variable is significantly negative. This indicates the notable
positive spillover effect of organic dry farming carbon emissions from neighboring areas
and the significant negative impact of the organic dry farming transformation performance
on carbon emissions. However, at the level of the overall transformation performance, the
spatial lag term coefficient is not statistically significant.

Further exploration of the impact of the organic dry farming transformation on carbon
emissions is conducted via province classification and performance zoning. The primary
reasons for these effects relate to the facilitation of the break from traditional agriculture,
which promotes the vertical extension and high-quality development of the agricultural
industrial chain, and especially the green development of the industrial structure. This, in
turn, encourages the rational development and utilization of agricultural input elements,
alleviates pressure on the ecological environment, and reduces carbon emissions. Moreover,
the transformation and development of organic dry farming represent a comprehensive
process involving economic, social, and environmental transformations. This process
promotes enhanced social functionality, fosters a positive environmental protection mindset
throughout society, improves farming techniques in order to reduce pollution emissions,
and encourages consumers to adopt energy-saving and emission-reducing measures in
daily life—all contributing to the mitigation of agricultural carbon emissions.

Regarding the control variables, the influence of government intervention on carbon
emissions appears to be insubstantial. This suggests that the macro-control impact of
government intervention on organic dry farming has not significantly elevated carbon
emissions. Nevertheless, an excess of interventionist policies may potentially result in
diminished resource allocation within the market, thereby causing an upsurge in carbon
emissions due to a resource mismatch.

The size of the population exhibits a negative correlation with carbon emissions, which
is primarily attributed to the diminishing effects of population growth. As the population
reaches a certain threshold, per capita carbon emissions experience a relative reduction.
The impact of infrastructure on carbon emissions is positive but lacks statistical significance.
This can be attributed to the current developmental stage of the organic dry farming
infrastructure, which may pose risks to the existing ecosystem, consequently contributing
to heightened carbon emissions.

On the other hand, the negative correlation between the market size and carbon emis-
sions implies that a robust market economy has the potential to attract skilled individuals.
This, in turn, fosters a spillover of knowledge and technology, thereby exerting a discernible
impact on reducing carbon emissions (Table 5).
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Table 5. Basic estimation results of the spatial Durbin model.

Test Statistic df p-Value

Spatial error:
Lagrange multiplier 14.369 1 0.000
Robust Lagrange multiplier 22.708 1 0.000
Spatial lag: 1
Lagrange multiplier 3.826 1 0.050
Robust Lagrange multiplier 12.165 1 0.000

3.2.3. Heterogeneity Analysis

To investigate the heterogeneity of the carbon emission reduction effects across various
development stages and spatial locations, we categorized the development stages based on
the midpoint year, focusing specifically on the stage of performance in 2013. Additionally,
spatial locations were delineated according to the national standard (Table 6).

Table 6. Results of the heterogeneity analysis.

Variable
Different Stages of Development Different Spatial Locations Different Time Stages

Lag Area Start Area Across the
Area NC Northeast Northwest 2005–2013 2014–2020

TRA 0.319 **
(2.11)

−0.036
(−0.57)

−0.019
(−0.07)

−0.252 ***
(−3.74)

0.292 *
(1.75)

−0.034
(−0.18)

0.05
(1.489)

−2.59 ***
(−113.376)

W × TRA −0.407 ***
(−2.87)

−0.039
(−0.38)

−0.049
(−0.16)

−0.376 ***
(−2.85)

−0.278 *
(−1.66)

0.0133
(0.006) — —

Controlled
variable yes yes yes yes yes yes yes yes

rho −0.149
(−1.09) 0.006 (0.04) −0.593 ***

(−3.51)
−0.616 ***

(−4.83)
−0.033
(−0.24) 0.161 (1.08) 20.29

(314.22)
436.505
(18.83)

N/individual 48 96 64 80 48 80 210 105

R2 0.957 0.944 0.710 0.808 0.977 0.925 0.537 0.436

Note: *, **, and *** represent the significance levels of 10%, 5%, and 1%, respectively.

(1) Different development stages of organic dry farming areas

Building on the findings of the previous study, the 15 provinces engaged in organic dry
farming are categorized into lag, starting, spanning, and pilot areas. Provinces within the
lag zone include Gansu, Ningxia, and Qinghai. The starting area comprises Heilongjiang,
Jilin, Inner Mongolia, Shanxi, Shaanxi, Xinjiang, Hebei, Henan, Liaoning, and Shandong.
Lastly, the pilot area includes Beijing and Tianjin. Given the limited number of provinces in
the pilot zone, the spatial measurement model is not applicable to this subset. Consequently,
the spatial Durbin Model (SDM) results for the lag, starting, and spanning areas are
exclusively examined in this context.

Regarding the spatial impact of overall carbon emissions, the rho coefficient of the
spanning provinces is significantly negative. Notably, the carbon emissions from provinces
within the spanning regions exhibit a significant positive spillover effect on neighboring
regions. In lagging areas, the development of organic dry farming demonstrates a signifi-
cant positive impact on local carbon emissions, and its influence on the carbon emissions
of nearby provinces is also notably positive. This is likely due to the fact that lagging
areas, being in the early stages of development, possess significant development potential.
The primary developmental focus involves enhancing the construction of upstream and
downstream infrastructure. In the process of advancing agriculture to meet basic food
demands, the use of chemical fertilizers, pesticides, and other agricultural inputs in lagging
areas contributes to increased carbon emissions in the province.
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However, due to the imperative for transformation and economic development, these
areas undertake agricultural and industrial development for neighboring provinces. This,
in turn, promotes the enhancement of resource processing and utilization levels in neigh-
boring provinces, fosters the construction of new urban areas, encourages the development
of strategic emerging industries, and facilitates the transformation and development of
neighboring provinces, thereby exerting a noteworthy carbon emissions reduction effect.

In starting areas, the impact of provincial transformation development on carbon
emissions is not deemed significant. This could be attributed to the ecological challenges
faced by starting area provinces during the promotion of economic development. These
areas face severe talent shortages and funding constraints. Furthermore, the establishment
of a robust organic dry farming transformation system is still in progress, and the trans-
formative impact on agricultural development is not yet sufficient to significantly reduce
carbon emissions.

For provinces in a transitional development phase that spans regions, there is no dis-
cernible significant impact on carbon emissions in the region and neighboring cities. This is
likely due to the fact that economic growth in cross-regional provinces predominantly relies
on tertiary industry. The emphasis in these provinces is on quality and efficiency, with tradi-
tional agricultural development constituting a small proportion of overall development. As
a result, the impact on carbon emissions reduction in agriculture is considered insubstantial.
The modest share of traditional agricultural development in these provinces translates to
a limited driving effect on neighboring regions, further diminishing the significance of
carbon emissions reduction in agriculture.

(2) For provinces with different locations

The impact of the transformation of organic dry farming in agricultural provinces on
carbon emissions was examined separately in north China, northeast China, and northwest
China. The transformation of organic dry farming in the provinces of north China signif-
icantly suppressed carbon emissions in the region and in its neighboring provinces. In
contrast, the transformation of organic dry farming in northeast China resulted in a notable
increase in carbon emissions within the region but significantly inhibited carbon emissions
in neighboring provinces. Meanwhile, the carbon reduction effect in northwest China and
adjacent regions was not pronounced.

This discrepancy may be attributed to the relatively limited diversity of agricultural
types in north China. Beijing and Tianjin, in particular, possess distinct advantages in terms
of resources for innovation, attracting a considerable number of innovative talents and a
good deal of innovation capital. This dynamic exerts a robust influence on agricultural
transformation and development in the region, resulting in a discernible reduction in
carbon emissions. Northeast China, serving as China’s traditional and stable commodity
grain base, is also the nation’s largest commodity grain base. To a certain extent, the
scale of organic dry farming development in this region diminishes agricultural inputs in
neighboring provinces, thereby yielding a significant carbon reduction effect.

In contrast, traditional agriculture in northwest China is characterized by widespread
distribution, with organic dry farming constituting a relatively small proportion of the total.
Additionally, the agricultural development conditions in this region are challenging, poten-
tially leading to substantial resource consumption during the agricultural development
process. Consequently, the transformation and development of organic dry farming may
not exhibit a conspicuous inhibitory effect on carbon emissions at this stage.

(3) Provinces at different stages

Considering the different stages of temporal development, with 2013 as the delineating
point, the impact of the transformation of organic dry farming on carbon emissions was
not significant prior to 2013. However, after 2013, the overall transformation performance
in each province exhibited a noteworthy reduction in local carbon emissions. During the
period of 2005–2013, China underwent a shift from economic accumulation to a growth rate
transition, experienced structural adjustment challenges, and navigated the early phase of
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stimulus digestion. Organic dry farming, being in its nascent stage of development during
this period, primarily focused on dryland agriculture. TRODF remained at a low level, as
is indicative of its position in the traditional dry farming development stage. This phase
was characterized by the dual challenges of economic development and environmental
pollution, resulting in the limited effectiveness of carbon emissions reduction through the
organic dry farming transformation.

The 2012 report to the 18th National Congress of the Communist Party of China
emphasized the need to expedite the development of modern agriculture, enhance the
comprehensive agricultural production capacity, and ensure national food security along
with the effective supply of critical agricultural products. The state strongly supported
the modern agriculture initiative, leading local governments to implement preferential
subsidy policies for organic dry farming and enterprises. This proactive approach attracted
a significant influx of innovative talents, contributing to substantial carbon emissions
reduction effects across economic, social, and ecological boundaries.

3.2.4. Decomposition of the Transformation Effect of Agricultural Provinces

In terms of economic industrial transformation (Table 7), the impacts of the organic
dry farming agricultural economy, industrial transformation, and ecological transformation
on carbon emissions appear to be insignificant. This may be attributed, in part, to the
influence of economic and industrial transformation, wherein issues related to balanced
industrial development, rational allocation, and sustainable development remain unre-
solved. Moreover, industries and enterprises are confronted by the challenges posed by a
new round of technological and industrial revolutions, resulting in difficulties related to
technological innovation and transformation, thereby impeding the effective reduction of
urban carbon emissions.

Table 7. Decomposition of the transformation of organic dry farming provinces.

Variable

Economic and Industrial
Transformation Transformation of Social Life Ecological Transformation

Main Wx Main Wx Main Wx

TRA 0.329
(0.91)

0.073
(0.06)

−2.559 ***
(−5.92)

−5.283 ***
(−2.67)

−0.394
(−0.98)

−0.249
(−0.49)

GOV 0.055
(0.34)

0.453
(1.14)

−0.090
(−0.60)

0.390
(1.10)

0.016
(0.10)

0.204
(0.50)

POP −0.001 ***
(−6.36)

−0.001 ***
(−3.10)

−0.001 ***
(−5.10)

−0.001 ***
(−2.17)

−0.001 ***
(−6.19)

−0.001 ***
(−2.62)

ENR 41.558 **
(2.11)

390.727 ***
(5.82)

65.280 ***
(3.60)

465.918 ***
(7.14)

43.040 **
(2.13)

327.269 ***
(4.45)

INF 0.029 ***
(2.76)

−0.074 ***
(−5.27)

0.017 *
(1.75)

−0.0024
(−0.10)

0.0245972 **
(2.28)

−0.080 ***
(−5.43)

SIZ −3.054
(−1.26)

−71.476 ***
(−9.98)

−3.294
(−1.48)

−77.055 ***
(−11.37)

−3.548
(−1.47)

−72.782 ***
(−10.17)

Controlled
variable yes yes yes

rho −0.749 ***
(−3.97)

−1.030 ***
(−5.68)

−0.753 ***
(−4.05)

R2 0.653 0.695 0.661

Note: *, **, and *** represent the significance levels of 10%, 5%, and 1%, respectively.

From the perspective of social transformation, it is clear that advancements in social life
can significantly reduce carbon emissions in the region and neighboring cities. This suggests
that, as residents experience an improvement in living standards, there is a heightened
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demand for high-quality public services and a better living environment. Simultaneously,
residents gradually shift their consumption patterns, raising awareness of low-carbon
consumption and thereby reducing the carbon emissions associated with daily life. The
enhancement of residents’ quality of life demonstrates a substantial carbon emissions
reduction effect, fostering green and low-carbon urban development.

Finally, the transformation of the environment does not exhibit a pronounced in-
hibitory effect on carbon emissions in this region or in neighboring provinces. This could
be attributed to the relatively slow progress made in the environmental protection indus-
try, the circular economy, and the low-carbon economy during the process of ecological
transformation. Additionally, the growth potential of new agriculture and the capacity of
organic dry farming have not made notable contributions to reducing carbon emissions.

4. Discussion

Organic dry farming represents an environmentally sustainable, health-conscious, and
high-quality mode of agricultural production. It constitutes a pivotal approach to fostering
high-quality agricultural development and advancing low-carbon agricultural practices. To
advance the progress of organic dry farming, it is imperative to conduct a comprehensive
analysis of both the three-dimensional aspects of production and the associated production
relations. This analytical approach aims to produce insights into the principles guiding
high-quality and low-carbon development within the realm of organic dry farming.

This study aimed to enhance the system used to assess economic development and
facilitate the multifaceted evolution of organic dry farming. This involves, firstly, opti-
mizing the agricultural production mode and enhancing both the efficiency and quality
of agricultural products in order to achieve a three-dimensional agricultural production
paradigm. The advancement of new agricultural machinery and equipment, which are
integral to the promotion of organic dry farming, necessitates a substantial labor force. To
bolster agricultural production efficiency, the adoption of innovative agricultural machinery,
particularly intelligent and automatic systems, can be encouraged.

Furthermore, the promotion of organic dry farming requires robust support from
scientific and technological innovation. It is necessary to intensify efforts related to scientific
and technological innovation, fostering the development of new technologies and varieties
tailored to the specifics of organic dry farming. This approach is essential for augmenting
the efficiency of agricultural production and improving product quality. Realizing the three-
dimensional production of organic dry farming entails embracing ecological agricultural
practices. This includes promoting methods such as ecological breeding and ecological
planting, which aim to safeguard the ecological environment and enhance the quality of
agricultural products.

The transformation of organic dry farming in provinces should be conducted ac-
cording to local conditions, promoting the three-dimensional development of production
relations. Considering the variations in production conditions across different regions, it
is imperative to tailor the approach to the specific needs of each province at the various
stages of the development of organic dry farming. This involves further enhancing the
transformation performance in lagging and starting areas, continuously promoting the
transition in spanning regions, and emphasizing the optimization of planting structures.

To promote agricultural transformation upgrading and carbon emission reduction, it
is crucial to focus on the development of advanced technology and modern agriculture,
fostering economic growth, improvements in quality, and enhanced transfer efficiency.
Climate-Smart Agriculture Investment Plan and Conservation Farming Systems developed
in Bangladesh can be used to increase crop productivity, agricultural transformation, and
carbon reduction in the context of environmental sustainability. Additionally, provinces
engaged in organic dry farming that are situated in different spatial locations should adopt
region-specific strategies. For instance, cities in northern China should leverage their
geographical advantages and knowledge-based innovation to play a driving and radiating
role in the development of northeast and northwest China. Meanwhile, northwestern



Agriculture 2024, 14, 459 18 of 20

provinces should capitalize on national policies that favor the development of the western
region, aiming to achieve robust growth in this region.

The three-dimensional transformation of agricultural production relations should
be facilitated via the adjustment of production relations, the optimization of agricultural
resource allocation, and the enhancement of farmers’ incomes. Strengthening agricultural
policy support is crucial here, and financial subsidies, rural credit, and other methods are
required to foster the development of organic dry farming and augment farmers’ incomes.
The establishment and promotion of agricultural cooperatives are instrumental in realizing
the three-dimensional production relations of organic dry farming. The adjustment of coop-
erative production relations, facilitated through the organizational structure of cooperatives,
aims to maximize farmers’ interests and enhance agricultural production efficiency.

The three-dimensional production relations of organic dry farming necessitate the
implementation of land circulation. This can be achieved by optimizing the allocation of
agricultural resources through land circulation, thereby improving the efficiency of agri-
cultural production and increasing farmers’ incomes. Moreover, the reduction in carbon
emissions resulting from the transformation and development of organic dry farming
primarily stems from the transformation of social life. Structural adjustment strategies are
employed to reform and upgrade traditional agriculture, promote agricultural moderniza-
tion, and reduce the reliance of agriculture on chemical agents.

The implementation of green agriculture strategies is integral to this process, involving
the reinforcement of ecological reconstruction and environmental protection. The estab-
lishment of green ecosystems in agriculture should be pursued to vigorously promote
ecological transformation.

According to the announcement issued by the Food and Agriculture Organization of
the United Nations (FAO), approximately 81% of the global cultivated land area is under
rainfed agriculture, yet it produces 60% of the world’s grains and 50% of its livestock.
The findings of this study hold certain reference significance for arid regions worldwide,
especially those similar to the arid regions in China.

While focusing on the benefits of organic dryland agriculture, it is important to
acknowledge the negative impacts it can have on biodiversity and resources. From a
biodiversity perspective, some organic farming practices may involve the use of natural
or organic pesticides to control pests. These pesticides can potentially affect non-target
species. Additionally, over-reliance on certain plant species for cultivation may disrupt eco-
logical balances within local ecosystems. In terms of resources, organic dryland agriculture
typically requires more land to produce the same quantity of crops and consumes more
energy for activities such as tillage, planting, weeding, and organic waste management.
This increased demand and consumption of energy may reduce resource efficiency. The
application of spatial analysis techniques provides a theoretical and methodological foun-
dation for addressing the development of organic dryland agriculture in China. However,
organic dryland agriculture involves multiple geographical elements, and in nations and
regions lacking sufficient spatial data, the application scope and accuracy of spatial analysis
techniques may be constrained. The present study did not fully address the potential
issues of multicollinearity, autocorrelation, and heteroscedasticity in the data. However,
the endogeneity and heteroscedasticity tests performed well, enhancing the accuracy and
reliability of the model.

5. Conclusions

TRODF agriculture exhibits an initial ascent followed by a subsequent decline, con-
tributing to an overall upward trajectory. The value increased from 0.0486 in 2005 to 0.1436
in 2006 and then decreased to 0.0590 in 2020. Correspondingly, regional disparities exhib-
ited a fluctuating upward trend, with the contribution rates of intra-regional disparities
from 2005 to 2020 consistently remaining above 70%. Intra-regional variances emerge as the
primary drivers of the overarching distinctions observed in organic dry farming. In partic-
ular, eastern China, central China, and southern China emerge as the principal contributors
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to the overall differences, followed by northern China and northwest China. Northeast
China, on the other hand, makes the smallest contribution rate to the overall differences.

The transformation performance of organic dryland agriculture is distinguished by
conspicuous spatial differentiation, showing differences between the lagging, starting, and
leaping zones. Most provinces experience a discernible upward leap in their transformation
performance, exhibiting a notable positive trend in this regard.

The transformation of performance in organic dry agriculture across different periods
presents the possibility of state transfer, primarily favoring cross-regional transitions,
followed by transitions in starting areas. The provinces’ transformation performance
demonstrates relative stability, with strong internal liquidity. However, there is a greater
likelihood of maintaining the initial state. State transfer in TRODF typically occurs among
neighboring grades, with infrequent instances of “jumping” transfers. This process is
characterized by long-term and persistent traits, making leapfrog development difficult
to achieve. The transitional development of provinces engaged in organic dry farming
exhibits a discernible correlation with the type of transition performance observed in the
neighboring provinces.

The transition of organic dry farming leads to a conspicuous reduction in carbon
emissions, exerting a significant impact on the mitigation of carbon emissions. Further-
more, a pronounced spatial spillover effect is observed in the process of the organic dry
farming transformation. Agricultural transformation in lagging areas significantly reduces
carbon emissions, exhibiting a substantial carbon emissions reduction effect on neighbor-
ing regions. In northern China, the transformation performance not only significantly
influences the carbon emissions within the region but also exerts a substantial inhibitory
effect on carbon emissions in neighboring provinces. Similarly, agricultural transformation
and development in northeast China exhibit a significant inhibitory effect on the carbon
emissions of adjacent regions. After 2013, the development of organic dry farming had
a notable carbon emissions reduction effect on the region, and the transformation and
development of social life exhibit a substantial capacity to reduce carbon emissions in the
provinces within the region.
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