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Abstract: The mechanical properties of a plug seedling substrate determine whether it will crush
during the transplantation, thereby affecting the integrity of the root system and the survival rate
of transplanted seedlings. In this study, we measured eight morphological parameters of pepper
seedlings using machine vision and physical methods, and the corresponding substrate mechanical
parameters of the plug seedlings were tested using a texture analyzer. Based on the experimental data,
a BPNN framework was constructed to predict the substrate mechanical properties of plug seedlings
at different growth stages. The results indicate that the BPNN with a framework of [8, 15, 15, 1]
exhibits higher R2 and lower errors. The mean absolute error (MAE), mean squared error (MSE), and
mean absolute percentage error (MAPE) values are 7.669, 88.842, and 9.076%, respectively, with an
R2 of 0.867. The average prediction accuracy of 20 test data set is 90.472%. Finally, predictions and
experimental validations were conducted on the substrate mechanical properties of seedlings grown
for 47 days. The results revealed that the BPNN achieved an average prediction accuracy of 93.282%.
Additionally, it exhibited faster speed and lower computational costs. This study provides a reference
for the non-intrusive estimation of substrate mechanical properties in plug seedlings and the design
and optimization of transplanting an end-effector.

Keywords: plug seedling; mechanical properties; BPNN; prediction

1. Introduction

Manual transplanting is more labor-intensive and spacing between adjacent seedlings
is uneven; this non-uniformity causes difficulties in subsequent agricultural operations.
So, mechanical transplantation is adopted by farmers for efficient vegetable seedlings
transplantation and to decrease the operating cost and time [1,2]. The integrity of raising
medium during the transplantation process is crucial for protecting the seedling roots
and improving the survival rate of transplanted seedlings. The raising medium is in-
herently discrete, and although it can take on a fixed shape when bound in plug trays,
the original stable form of the substrate is easily disrupted during the process of using a
transplanting gripper.

In recent years, the study of mechanical properties such as compressive strength,
tensile strength, and creep of substrate blocks has aroused interest. These studies on
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mechanical properties provide a basis for the design and manufacturing of automated
transplanting machinery and systems for plug seedlings [3]. Sami Mohamed et al. carried
out an investigation into the effect of different soil moisture content and pickup speeds
on the pickup force, balance, resistance, and lump damage during the transplanting of
seedlings [4]. In Jiang Z et al.’s research, a force measure system with tension and pressure
transducers was installed on the designed end-effector [5]. The adhesive force FL between
the root plug and the cell of seedling trays and the extrusion force FK on the root plug
were measured and analyzed. Some studies believe that compressive force is the main
factor causing the plug seedlings substrate to be broken. Liu Jiaodi used a TA-XT2i
texture analyzer to investigate the variation patterns between compressive resistance and
compression quantity at different stages of the growing medium [6]. Ren Zhirui believes
that compression speed is also a factor worth considering; he found that the most suitable
picking condition is the gripper moving at a speed of 3 to 5 mm/s [7].

Although obtaining the mechanical properties of seedling substrate through sensors
and instruments is more accurate and reliable, it is less efficient. Some researchers have
applied the discrete element method (DEM) to complete this research, and results show
that the DEM is suitable for solving nonlinear problems in seedling substrate research [8,9].
Hongbin Bai et al. simulated the seedlings grasping process of transplanting the end-
effector and optimized the design of the seedling gripper [10]. Gao Guohua et al. utilized
the ECM adhesive force elastoplastic contact model as the particle contact model and
established a complex particle model with various material properties; this model allows
for the interaction investigation between steel needles and the seedling substrate [11]. The
DEM has clear advantages in terms of efficiency, but before simulating seedling substrate
mechanical properties it is necessary to establish geometric models for particles of different
materials and define their properties. Additionally, it is crucial to choose an appropriate
physical model for particle contact. Some of these parameters are unknown and need to be
obtained through preliminary experiments. Errors in experimentation and modeling may
lead to misleading test results.

Numerous factors influence the damage to seedlings substrate in transplanting; these
factors exhibit a high degree of complexity, strong interdependence, and considerable
uncertainty [12]. Artificial neural networks (ANNs) have been widely employed in estab-
lishing mathematical models for complex relationships. They possess significant advan-
tages in handling fuzzy, stochastic, and nonlinear data [13–15]. In predicting and optimizing
agricultural equipment parameters, ANNs also show great promise. Some researchers
predict the optimal values of the seeder forward speed, seed metering plate inclination and
the seed level in the hopper based on ANN-PSO, obtained 100% cell fill of seed metering
machine [16]. Kumar, S.P. et al. proved the potential of the ANN as an efficient technique for
modeling soil–tool interactions under specific experimental conditions [17]. In this study,
the mechanical properties of the seedling substrate are regarded as a nonlinear problem
influenced by multiple factors; a back propagation neural network (BPNN) framework is
proposed to describe the relationship between parameters (seedling age, plant height, leaf
area, etc.) and the mechanical properties of the substrate. This facilitates the prediction of
substrate mechanical properties under different parameter conditions, thereby reducing
the research time cycle and manpower costs.

2. Materials and Methods
2.1. Experimental Materials and Instruments

The experiment was conducted from June to August 2023 in the Key Laboratory
of Intelligent Horticultural Equipment of the Ministry of Agriculture and Rural Affairs.
The experimental subjects were pepper seedlings, and they were sowed on May 12 in
indoor conditions. The seedling tray used had 200 cells, and the cell shape approximated a
frustum. The upper dimensions of the cell were 20 mm × 20 mm, the lower dimensions
were 10 mm × 10 mm, and the depth was 38 mm. The substrate was prepared by uniformly
mixing peat, vermiculite, and perlite in a conventional ratio of 3:1:1. The particle sizes
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of perlite and vermiculite were 1–3 mm, while peat had a particle size of 1–5 mm. After
sowing and watering the seedlings every 2 days, a handheld soil moisture meter (YGY-TRY
type) was used to collect soil moisture content data. To maintain consistent substrate
moisture during the experiment, the seedling was thoroughly watered 2 days before testing,
ensuring that the moisture content remained in the range of 69.38% to 72.14%.

The mechanical properties of the substrate were tested via a CTA texture analyzer
(Tianjin Chuangxing Electronic Equipment Manufacturing Co., Ltd., Tianjin, China) The
load force range of the analyzer is 0–50 kg, with a load force accuracy of 0.01–0.0001 g.
It has a deformation displacement range of 0–310 mm, with a displacement resolution
accuracy of 0.0001 mm. The detection speed ranges from 0.0001 mm/s to 40 mm/s, and
the speed resolution accuracy is 0.1–0.001 mm/s. The data acquisition rate is between
200 sps and 25,000 sps. This machine is capable of measuring parameters such as puncture
resistance, yield strength, tensile (compression, bending) strength, and elastic modulus
according to standards such as GB, ASTM, and JISDIN, among others; it is controlled by
a small computer, and automatically completes loading, unloading, and data collection
and analysis.

2.2. Test Methods for Plant Morphological Parameters

Under conditions where water content, substrate volume density, and component
ratios remain constant, the density of the plug seedling root systems influences the cohesion
of the substrate. The degree of root development exhibits a significant correlation with
the stem and leaf parameters of the plant [18]. Therefore, morphological parameter data
were collected separately for pepper seedlings at 22 days, 27 days, 32 days, 37 days, and
on the 42nd day. As shown in Figure 1, these parameters include plant height (distance
from the growing surface to the tip of the bud), leaf length (measured using the longest
dimension), leaf width (measured using the widest dimension), leaf quantity (excluding
those with a length less than 3 mm), root length (measured using the longest dimension),
and root quantity (counting only those roots with a length exceeding 5 mm).

Figure 1. Plug seedling morphological parameters measurement.

The leaf area is considered one of the optimal indicators for assessing seedling quality.
Conventional leaf area measurement relies primarily on leaf area meters, which incur high
equipment costs and may also cause damage to plants. Some researchers have explored
methods for testing the leaf area of potted seedlings based on machine vision, achieving
high accuracy [19]. In this study, a CCD camera was used to capture an image at a distance
of 20 cm directly above the seedlings; a square reference object measuring 10 × 10 mm
was placed in a position level with the canopy. The image processing procedure, as shown
in Figure 2, includes pre-processing, target segmentation, edge detection, and leaf area
calculation. When the seedlings grow to the stage of having four cotyledons, the leaf
tips tilt downward slightly. To ensure the accuracy of the leaf area calculation, before
collecting photos, the leaves are gently curled in the opposite direction manually to keep
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them in as horizontal a state as possible. To validate the accuracy of the leaf area obtained
through the machine vision method, a AM350 portable leaf area meter was also used to
test the corresponding seedlings. The results indicated an error ranging between 1.89%
and 3.54%. This discrepancy arises because the visual method provides the leaf projection
area, whereas the actual leaf is not a perfectly flat plane. If such an error is present in each
individual seedling, its impact on the entire system can be ignored.

Figure 2. Process of obtaining leaf area of seedlings based on machine vision. Note. (a) is the method
of image acquisition; (b) is the images have captured; (c) is the image pre-processing, including
brightness, contrast, Gaussian blur and sharpening; (d) is target segmentation based on its color
feature; (e) is the process of morphological processing and target edge extraction and (f) is leaf
area calculation.

2.3. Test Methods for Mechanical Properties

The mechanical properties of the substrate for plug seedlings mainly include tensile,
compressive, and puncture forces. Tensile force is the sum of the adhesive force between
the substrate and the cell walls, together with their gravitational forces. It determines the
pulling force exerted by the end-effector during transplanting. Compressive and puncture
forces can assess the intrinsic mechanical characteristics of the substrate. Each test was
repeated 12 times.

The method for tensile force testing is as follows: knotting cotton threads with a
diameter of 0.05 mm into a symmetrical “cross” shape and putting it at the bottom of
the cells before fill substrate and sowing. This approach reduced the impact of tensile
materials on the force results and avoided issues such as direct seedling pulling that lead to
damage to young seedlings. During the experiment, the plug seedlings are placed directly
beneath the probe. As shown in Figure 3, four cotton threads are clamped using a designed
fixture, and the seedlings are vertically pulled upward at a speed of 1 mm/s to assess the
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tensile load variation curve. A flat plate probe is used to test the substrate compression
resistance. The substrate block was placed on the experimental platform, and the flat plate
descended vertically at a loading speed of 1 mm/s. The changes in the compressive load
on the substrate were recorded. Research indicates that the intact rate of the substrate is
highest when using a needle-type end-effector with a diameter of 3 mm [20]. Therefore,
in the puncture test, a steel needle with a diameter of 3 mm was used to puncture along
the four edges of the cell. During this process, a portion of the circular surface of the steel
needle came into contact with the cell wall made of PVC material, while another portion
came into contact with the substrate. The insertion depth was consistent with the depth of
the cell (3.8 mm), and the loading speed was also set at 1 mm/s.

Figure 3. Test method of mechanical properties of plug seedlings. Note. (a) is the TCA texture
analyzer used in the experiment; (b) is the test process of the pullout force of the substrate; the
substrate is pulled out by holding and stretching the thin wires buried in the holes before sowing to
obtain the maximum pulling force; (c) is the testing process on the force required for the steel needle
of the transplanter puncture into the substrate and (d) uses the flat-plate compression method to test
the maximum compression force when the substrate is broken.

2.4. BPNN Construction

The construction process of the BPNN is as follows: The input data consist of eight
variables related to the pepper seedling growth, including the growth stage (days), canopy
height (mm), leaf length (mm), leaf width (mm), leaf quantity (number of leaves), root
length (mm), root quantity (number of roots) and leaf area (cm2). Therefore, the input
layer comprises eight neurons. During the transplanting, the end-effector steel needle
pierces into the substrate and then pulls upwards to remove the seedling. The primary
mechanical characteristics in this process are the puncture force and pull-out force; the
lateral compression load on the substrate is limited. To simplify the model, a weighting
of the puncture force, compression force, and pull-out force output is performed using
weights of 0.3, 0.1, and 0.6, respectively; at the same time, min-max normalization is used
to linearly scale the data to the range of [0, 1] to avoid errors, and denormalization is
performed when displaying predicted values. The output layer of the network consists of
only one neuron, referred to as the comprehensive mechanical characteristic of the substrate.
The network is trained on a datasets including 60 data and tested on a separate datasets
having 20 sets of data to evaluate its performance.

The lower number of hidden layers has a significant impact on the accuracy of the
network. Conversely, exceeding the optimal number of hidden layers results in a magnitude
increase in training time and network complexity [21]. Experiments conducted by Karsoliy
indicate that the number of neurons in the first hidden layer should be nearly equal to that
in the second hidden layer, facilitating ease of training [22]. At the same time, two hidden
layers are generally sufficient to address nonlinear complex problems, with the option
of adding a third hidden layer if precision is the primary criterion for network design.
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Two principles guide the determination of the number of neurons in the hidden layers:
(i) the number of neurons should be two-thirds (or 70–90%) of the size of the input layer,
and (ii) the number of neurons in the hidden layers should be less than twice the number of
neurons in the input layer. Adhering to these principles, the recommended configuration
includes two to three hidden layers with 5 to 15 neurons. A full factorial design method
is applied for the test and a total of 22 experiments were conducted to select the optimal
hidden layer structure.

Lenovo computers are used for online training. The system is Windows 10, the
processor is Intel Core i7-14700, 2.5 GHz, the memory is 16 GB, the hard disk capacity is
1024 GB, and the graphics chip is NVIDIA GeForce RTX3060. We utilized a Sigmoid as the
activation function for both the hidden layer and the output layer, with a learning rate of
0.25, training target error of 0.001, and a total of 60,000 iterations. Commonly employed
evaluation metrics including mean square error (MSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and coefficient of determination (R2) are selected to
assess the predictive performance of the network. The calculation formulas for these four
statistics are provided below:

• Mean square error (MSE):

MSE =
1
n

n

∑
i=1

(Yi − Ŷi)
2 (1)

• Mean absolute error (MAE):

MAE =
1
n

n

∑
i=1

∣∣Yi − Ŷi
∣∣ (2)

• Mean absolute percentage error (MAPE):

MAPE =
100%

n

n

∑
i=1

∣∣∣∣∣Yi − Ŷi
Yi

∣∣∣∣∣ (3)

• Coefficient of determination (R2):

R2 = 1− ∑n
i=1 (Yi − Ŷi)

2

∑n
i=1 (Yi − Yi)

2 (4)

Here, n represents the total number of observations, Yi is the actual value, Ŷi is the
predicted value, and Yi is the mean of the actual values. MSE and MAE provide information
on the magnitude of errors, MAPE emphasizes the relative percentage errors. Larger values
of them suggest a higher variability in the errors. R2 assesses the overall explanatory power
of the model and ranges from 0 to 1; a higher R2 value suggests a better ability of the model
to explain the variance in the data.

3. Results and Discussion
3.1. Neural Network Framework Results

As for the BPNN framework, the results of 22 orthogonal experiments are presented
in Table 1. The neural network demonstrates the minimum MAE, MSE, and MAPE values
when configured with two hidden layers, each containing 15 neurons. Specifically, the cor-
responding values are 7.669 for MAE, 88.842 for MSE, and 9.076% for MAPE. Additionally,
the R2 achieves its maximum value of 0.867, indicating the highest predictive accuracy of
the network. Therefore, the optimal architecture for the BPNN in predicting the mechanical
properties of the substrate is determined as [8, 15, 15, 1].
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Table 1. Comparison of results of different hidden layer network structures.

No. Number of
Hidden Layers

Hidden
Layer 1

Hidden
Layer 2

Hidden
Layer 3 MAE MSE MAPE (%) R2

1 2 5 5 0 11.289 191.325 12.350% 0.607
2 2 6 6 0 12.023 231.834 13.924% 0.524
3 2 7 7 0 11.761 231.280 13.727% 0.525
4 2 8 8 0 13.637 268.522 15.624% 0.448
5 2 9 9 0 13.550 257.552 15.164% 0.471
6 2 10 10 0 12.867 228.178 14.509% 0.531
7 2 11 11 0 12.189 224.697 13.687% 0.539
8 2 12 12 0 9.327 143.817 11.132% 0.705
9 2 13 13 0 11.710 218.793 13.588% 0.551

10 2 14 14 0 9.527 157.982 10.935% 0.676
11 2 15 15 0 7.669 88.842 9.076% 0.867
12 3 5 5 2 12.155 239.242 13.654% 0.509
13 3 6 6 3 11.876 206.582 13.571% 0.576
14 3 7 7 3 13.495 283.368 15.416% 0.418
15 3 8 8 4 13.942 289.851 15.917% 0.405
16 3 9 9 4 13.497 258.325 15.250% 0.471
17 3 10 10 5 9.117 138.587 10.582% 0.715
18 3 11 11 5 11.715 191.551 13.375% 0.607
19 3 12 12 6 12.847 233.136 14.804% 0.521
20 3 13 13 6 12.998 252.724 14.989% 0.481
21 3 14 14 7 12.572 229.730 14.844% 0.528
22 3 15 15 7 9.191 141.258 10.884% 0.710

Figure 4 presents the prediction results and ground truth comparison of the neural
network framework [8, 15, 15, 1] on a test set comprising 20 groups. The actual value of the
seedling mechanical properties is tested by the texture analyzer, including the maximum
load (g) of puncture, compression and pull-out of the seedling substrate. These three are
weighted to form the comprehensive mechanical properties (g) of the substrate, and the
value show by the ordinate. It is evident that the BPNN model exhibits effective training
and demonstrates a high degree of fitting. Notably, the seventh group exhibits the largest
prediction error, with a ground truth of 76.824 g and a predicted value of 105.442 g, resulting
in a prediction accuracy of 71.698%. The fourth group demonstrates the best prediction
performance, with a ground truth of 71.703 g and a predicted value of 74.224 g, yielding a
prediction accuracy of 96.631%. The average prediction accuracy across the 20 data sets
is 90.472%.

Figure 4. Comparison of the predicted and real values of the test set.
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A regression analysis between the network output and the corresponding targets
was carried out. There were 60 training and 20 testing data. Figure 5 demonstrates the
correlation of experimental and BPNN predicted values for seedling substrate mechanical
properties on training and testing datasets, respectively. It shows a good fit of BPNN
predicted values to the actual measured data, and with R2 = 0.867 for the training data and
R2 = 0.804 for the testing data.

Figure 5. Regression plots of BPNN during training and testing.

3.2. Prediction Verification Test

To further validate the prediction accuracy of the BPNN, predictions and experimental
verification of the substrate mechanical properties of 47-day-old pepper seedlings were
conducted. Nine seedlings were randomly selected from the tray, and eight parameters
were measured as input for the neural network trained in the previous section to predict
their mechanical properties. Subsequently, the mechanical properties of the seedling
substrate cultivated under the same conditions were experimentally tested using a texture
analyzer, including puncture load, compression load, and tensile load peaks. Each test was
repeated nine times. Figure 6 illustrates the puncture test load curve. After the steel needle
made contact with the surface of the growing substrate, the force continuously increased
until reaching a peak. After penetrating the substrate, the force decreased. The maximum
load peak among the nine repetitions was 143.848 g, the minimum was 75.592 g, and the
average of the puncture load peaks for the steel needle was 117.586 g.

Figure 6. Puncture load curve.
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Figure 7 shows the tensile load curve; the load steadily increases over time during the
tensile test, reaching a peak before decreasing. The minimum peak tensile load is recorded
at 82.102 g, the maximum at 157.738 g, with an average of 120.957 g. Inconsistent tension
in the cotton thread fixation, leading to variations in the initiation of force application by
the textural analyzer probe, results in a significant variationin the time taken to reach the
peak among different experimental groups. However, this variation does not impact the
ultimate experimental outcomes.

Figure 7. Curve of tensile load.

Similarly, due to differences in substrate sizes, there are variations in the time the probe
is subjected to force during compression testing, resulting in different peak load arrival
times in the compression load curve (Figure 8). The maximum peaks are concentrated
around 150 g, which is the maximum target load of the experiments, because there is no
phenomenon of sudden collapse of the solid substrate. In the course of the plate compres-
sion, there is no distinct yielding failure point observed in the substrate. Additionally,
the compression failure of the substrate initiates from areas with fewer roots, gradually
expanding the extent of fragmentation.

Figure 8. Curve of compressive load.

Using weights of 0.3, 0.1, and 0.6, the peak values of puncture, compression, and
tensile loads were weighted and integrated for comparison with the predicted results.
The comprehensive mechanical property values of the nine groups of seedling substrates
predicted based on the BPNN ranged from smallest to largest: 81.697 g, 92.384 g, 104.368 g,
110.522 g, 112.258 g, 121.867 g, 127.981 g, 130.621 g, and 150.346 g, with an average of
114.672 g. In contrast, the experimentally obtained true values were 99.465 g, 105.189 g,
111.908 g, 115.731 g, 123.678 g, 124.365 g, 137.548 g, 140.385 g, and 148.103 g, with an
average of 122.933 g. The average prediction accuracy of the BPNN reached 93.282%, a
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level deemed acceptable for agricultural applications. This indicates that the model has
good predictive performance, and using the neural network method for predicting the
mechanical properties of plug seedling substrates is feasible.

Mechanical property tests revealed that the load peak of the compress test remained
relatively stable, showing no significant variation in the growth time of seedlings. The
compressive load primarily depended on the substrate ratio and moisture content, both
of which remained consistent, thereby accounting for the aforementioned results. Load
peak values of puncture and tensile exhibited a continuous increase over time. Due to the
robust fiber structure present in the root system, this ensures a high cohesion force within
the substrate.

Plug seedlings substrate block consists of a plant root and growing medium with
different solid materials, and its mechanical properties are closely related to the success rate
of transplanting and the degree of damage, playing an important role in key components
design such as the end-effector mechanism. Currently, researchers focus on the following
three aspects: (i) the characteristics of the substrate block itself, including compressive
properties, creep properties, tensile properties, etc. [23]; (ii) the adhesiveness between the
substrate and tray cell wall, such as the bonding force between the root system and pore
wall and the influence of substrate moisture content on the success rate of seedling picking;
and (iii) the interaction process between the substrate and the transplanting manipulator,
involving factors such as the friction coefficient between the substrate and the seedling
needle, and the broken pattern of the substrate caused by the steel needle [24]. These
methods require the use of mechanical instruments and sensors, etc.; although they can
obtain more accurate information, they are invasive and destructive to the experimental
objects and are unsustainable. This process is also very time-consuming.

The artificial neural network (ANN) is a mathematical model that mimics the physio-
logical structure and function of the human brain’s neural network. By training on known
data, it learns to identify underlying patterns and utilizes its strong generalization ability
to predict future data. This method has found wide applications in the field of agriculture.
S Pohan et al. applied the backpropagation algorithm of neural networks to predict the
growth of greenhouse plant seedlings, achieving an accuracy of 92.79%, which closely
approximates actual data [25]. Marvellous M demonstrated the potential of ANN models
as tools for selecting high-yielding sugarcane seedlings by predicting the stem count, stem
height, and stem diameter [26]. Researchers also examined the performance of predicting
pea seed yield using both linear (MLR) and non-linear (ANN) models, achieving highly
accurate predictions with a correlation coefficient of 0.936. These studies explored the
mapping relationship between seedling growth status and yield, showcasing the powerful
potential of ANNs [27]. However, there is limited literature on the study of mechanical
properties of plug seedling substrates.

In fact, the factors that influence the mechanical properties of the substrate are limited,
including the substrate material, material ratio, moisture content, and seedling growth stage
(degree of root system development), etc. Therefore, it is theoretically feasible to predict the
mechanical properties of the substrate through these parameters. Our research results also
confirm this view. However, the relationship between these factors and the target exhibits
strong nonlinearity and uncertainty, constituting a multi-parameter coupled problem. The
ANN has the ability to learn and build models of nonlinear complex relationships, which is
very important because the relationship between input and output faced in our study is
nonlinear and complex. After learning, an ANN can infer unknown relationships between
unknown data. At the same time, the ANN network structure is simple and the computing
cost is low. Given the advantages of artificial neural networks in rapidly simulating complex
nonlinear problems, this study employed an ANN to establish a predictive model for the
mechanical properties of plug seedling substrates. The average prediction accuracy reached
93.282%, which is a remarkably surprising result. It significantly reduces the traditional
research time cycle and saves on expensive equipment costs.
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There is still a need for some work to improve this research. The moisture content and
the material ratio of the substrate are also variable, influencing the mechanical properties of
the bowl seedling substrate blocks [28]. Considering that current seedlings are cultivated
on a large scale in a controlled indoor environment, the moisture content of seedlings
in different trays remains relatively constant. Therefore, in this study, the conventional
moisture content values during the transplantation period of plug seedlings were referenced
and set as a constant, maintaining within the range of 69.38% to 72.14% and investigating
the substrate mechanical properties. The material ratio of the matrix only uses conventional
parameters. An ideal neural network prediction model should accurately forecast the
mechanical properties of different targets in various environments. Hence, the subsequent
work will explore the prediction of substrate mechanical properties considering additional
factors, including the moisture content and material ratio.

4. Conclusions

This study utilizes eight parameters, namely plant height, leaf length, leaf width, leaf
number, root length, root number, and leaf area, measured at different growth stages of pep-
per seedlings, as inputs to construct a BPNN for predicting substrate mechanical properties.
The optimal hidden layer and neuron numbers of the network were determined through
orthogonal experiments, revealing that the optimal network architecture is [8, 15, 15, 1]. At
this configuration, the network achieves the minimum values for MAE, MSE, and MAPE,
which are 7.669, 88.842, and 9.076%, respectively. The R2 is 0.867. The average prediction
accuracy for the 20 test set data is 90.472%.

To further validate the prediction accuracy of the BPNN, predictions and experimental
verifications were conducted on the mechanical properties of the substrate for pepper
seedlings with a growth period of 47 days. The average value of the peak load obtained
from the steel needle penetration was 117.586 g, and the average tensile load was 120.957 g.
During the plate compression process, there was no apparent yield point observed in
the substrate block. Comparing the results with the nine sets of values measured by the
texture analyzer, the BPNN achieved an average prediction accuracy of 93.282% for the
comprehensive mechanical properties. This level of accuracy indicates that predicting
the mechanical properties of the substrate for pepper seedlings based on neural network
methods is feasible.
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