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Abstract: Determining the residual value of tractors is imperative for comprehensive cost analyses
within the agricultural machinery sector. Despite numerous studies offering various models and
independent variables, the double square root regression approach, originally developed by Cross
and Perry and adapted by ASABE for North American contexts, has been widely utilized. However,
factors such as the complexity of OEM portfolios, steep price increases due to compliance with diesel
emission regulations, and limited data availability in Europe and its market specificities necessitate
improvements in predictive accuracy. This study evaluates different tractor cohort alternatives
beyond engine horsepower to enhance predictive robustness. Incorporating brand and powertrain
type alongside engine power significantly improved model performance and exhibited the strongest
robustness, as evidenced by reduced the root mean square error (RMSE) and increased R-squared
values. These findings contribute to the refinement of tractor residual value estimation models,
offering valuable insights for stakeholders in the agricultural machinery industry.
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1. Introduction

Investing in capital assets, such as machinery, is crucial for long-term success [1].
Managing machinery effectively involves attention to its entire life cycle, including its
procurement, maintenance optimization for maximum productivity, and eventual sale
when financially viable. The accurate tracking of machinery life cycle costs requires proper
depreciation calculation to monitor machine-related costs over time.

Efficient machinery management entails having the appropriate size and type of
machine available at the right time and cost. After selecting ownership and operation
costs, including size and type, several common acquisition alternatives exist, such as
rental, leasing, or custom hire [2]. Minimizing production costs associated with machinery
necessitates routine benefit and cost assessment, comparing the ownership, lease, rental,
and custom hire [3].

Machinery costs encompass ownership and operation costs as well as losses due to
lack of timeliness [4,5]. Ownership costs, regardless of machine age and usage, include
depreciation, interest, taxes, insurance, and housing. Operating costs, linked to age and
usage, encompass labor, fuel, diesel exhaust fluid (DEF), and repair/maintenance costs.

Understanding equipment ownership and operation costs is advantageous for maxi-
mizing profits. Ownership costs represent cumulative cash flows irrespective of machine
productivity, while operation costs reflect expenses incurred during machine use. Selecting
the appropriate machine type for a task requires understanding field operation costs. Fail-
ing to accurately estimate equipment costs can lead to hardship [6]. Efficient machinery
management aims to provide dependable services to various enterprises while minimizing
expenses, often intertwined with overall business operations.
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Machinery-related expenses often comprise over 50% of total crop production costs.
Regular evaluations of equipment ownership, leasing, or rental are crucial for cost reduc-
tion [3]. While conventional purchase plans remain common, leasing major machinery
items is increasing. Leasing options include operating leases, enabling tax-deductible
payments, and finance leases, offering depreciation deductions. Rollover purchases involve
buying a new machine with the intent to replace it after a year or season [7].

Regardless of the payment mode, the machinery’s residual value significantly impacts
financing costs. Lenders incorporate residual value into financing arrangements to ensure
the loan’s lien remains below it, mitigating risk. Uncertain residual values may lead
to higher financing costs, prompting lenders to incorporate a safety margin [8], thus
influencing manufacturers, sellers, purchasers, financiers, lessors, lessees, insurers, tax
authorities, users, and contractors.

The current landscape of research on used tractor markets in Europe faces several chal-
lenges. First, the availability of original source data is limited, primarily due to the smaller
size of the used tractor market in Europe and the lack of well-established agricultural
machinery auctions presenting a significant obstacle for empirical studies in this field.

Second, the compliance costs associated with diesel emission regulations, particularly
those imposed by the European Commission (EC) on off-road diesel engines, have led to
increased prices for tractors.

Third, the offerings of original equipment manufacturers (OEMs) have become more
diverse and complex since 1998, atomizing even more of the already scarce machine
population and, therefore, its transactional data.

These challenges underscore the complexities and limitations faced by researchers in
understanding and analyzing the dynamics of the used tractor market in Europe.

The present investigation revisits the commonly employed double square root regres-
sion model, originally devised for the United States market, utilizing auction outcomes
during the latter part of the 1980s. This model has been adapted to accommodate European
market dynamics, incorporating data from advertisements, evolving engine power seg-
ments, and incorporating influential factors such as brand and powertrain configurations,
which exert substantial impacts on pricing dynamics.

1.1. Current Issues
1.1.1. Limited Original Source Data Availability

Compared to the European passenger car industry [9], the market for used tractors
in Europe [10] is notably smaller. Unlike North America, where agricultural machinery
auctions are well-established, continental Europe lacks such a tradition. Even in the
United Kingdom, where auctions have a longer history, significant variations exist in the
terms and conditions. Ref. [11] highlights the considerable challenge of obtaining large
datasets necessary for empirical studies in this domain, underscoring a significant obstacle
for researchers.

1.1.2. Diesel Emission Regulation Compliance Cost Fosters Price Increase

While on-road diesel emission regulations have also impacted costs [12], the ramifica-
tions of the regulatory measures instituted by the European Commission (EC) regarding
off-road diesel engine emissions [13–17] have been more pronounced. The fixed costs asso-
ciated with compliance must be allocated among a smaller number of engines, resulting in
elevated costs per unit.

1.1.3. Original Equipment Manufacturer (OEM) Size Increase

The OEM offering has experienced a significant increase since 1998. Therefore, cur-
rently, there are offerings of compact utility tractors of 55.4 kW, utility tractors of 120 kW,
and row crop tractors of 380 kW. An example of a single OEM size increase evolution can
be seen in Figure 1.
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Figure 1. OEM (original equipment manufacturer) product offering size increase.

1.1.4. Original Equipment Manufacturer (OEM) Portfolio Complexity Increase

The current spectrum of products offered by OEMs has experienced significant de-
velopment [17], resulting in a situation where a single engine power option is available in
diverse specifications that encompass multiple wheelbase variations and shipping masses.
This broad range of offerings includes a variety of features, drivetrain alternatives, and user
interface configurations integrated within distinct levels of technology packages (Figure 2).
Consequently, it is not uncommon to encounter products from the same OEM featuring
identical engine power but differing in specifications and feature combinations, resulting
in manufacturer’s suggested retail price (MSRP) average disparities of 1.24 times or more
between the most and least economical options (Figure 3).
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Figure 2. Number of OEM (original equipment manufacturer) agricultural tractor configuration
offerings in Germany in November 2023.
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Figure 3. Agricultural tractor OEM (original equipment manufacturer) list price (manufacturer’s suggested
retail price (MSRP)) and minimum MSRP option (marked with ×) in Germany in November 2023.

1.2. Previous Studies

Various studies have endeavored to develop predictive models for determining the
residual value of agricultural equipment, particularly combines and tractors. Early models,
such as those proposed by ASAE in 1979 and [18], predominantly relied on age as a
determining factor, with additional considerations for power, motor type, manufacturer,
usage, and technological advancements. Ref. [19] introduced a Cobb–Douglas model
incorporating age, header size, and manufacturer.

Reid and Bradford [20] aimed to construct a replacement model for farm tractors, inte-
grating variables such as age, engine power, and net farm income. Their study utilized data
spanning from 1954 to 1978 from a distributor association, incorporating indicator variables
for manufacturers and technological periods. The residual value percent, calculated by
normalizing the remaining market value against the inflation-adjusted list price using the
wholesale price index, underscored the significance of economic factors in replacement
model development for farm tractors, facilitating accurate replacement predictions.

Perry et al. [21] investigated tractor residual value percent (RVP) utilizing auction sale
data from 1985 to 1988. Their analysis involved adjusting list prices and auction prices
for special options to a common year using average price changes reported by the U.S.
Department of Agriculture. The study underscored the significance of considering multiple
predictors, including macroeconomic indicators, and highlighted the limitations of the
ASAE approach, advocating for more comprehensive datasets in model construction.

Perry and Glyer [22] investigated the value loss rate of tractors by analyzing auction
records from 1984 to 1988. Their study employed a multifaceted approach, utilizing price
per power unit (HP) as the response variable and incorporating tractor engine power, age,
condition rating, and auction region as predictor variables. A Box–Cox flexible functional
form was employed for the statistical analysis. The study emphasized the necessity of con-
sidering multiple factors and employing sophisticated statistical techniques to accurately
estimate the value loss rate of tractors, thereby offering invaluable insights for farmers and
stakeholders in the agricultural industry.
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Cross and Perry [23,24] conducted a similar study using auction sale data from 1985
to 1988. Their analysis mirrored previous studies, incorporating similar predictors and
interaction terms. The hypothesized interactions aligned with those of [21,22]. The model
yielded an RSqAdj value of 0.8032, reinforcing the importance of multiple predictors and
highlighting the limitations of the ASAE approach.

Unterschultz and Mumey [25] conducted a comparable study, utilizing data from 1985
to 1988. Their analysis followed a similar framework, incorporating analogous predictors
and interaction terms. The hypotheses mirrored previous studies; like their predecessors,
they emphasized the significance of multiple predictors and underscored the limitations of
the ASAE approach.

Wu and Perry [26] sought to enhance farm equipment depreciation estimation, uti-
lizing 16 years of sale data (1984–1999). Their study updated prior estimates, analyzed
potential model issues, and compared forecasting accuracy across functional forms. Auc-
tion sale data from the Midwest served as the primary source. The Box–Cox function
yielded the highest log-likelihood value but provided marginal improvement over the
double square root and sum-of-year’s digit functions. Thus, either of the latter two ap-
pears most practical for applied work. This study contributes to more accurate equipment
depreciation forecasting, aiding financial decision-making in agriculture.

Fenollosa and Guadalajara [27] aimed to develop models for estimating the mar-
ket value of second-hand agricultural tractors in Spain. They created a matrix with
12,570 observations and 42 variables, considering temporal, mechanical, locomotive, and
safety and comfort factors. An ordinary least squares (OLS) regression was used to con-
struct the depreciation model, while a cluster analysis identified new horsepower groups.
The linear-logarithmic model explained 89.8% of the value, with power, age, traction type,
air-conditioning, and the manufacturer as major variables.

Wilson [11] aimed to develop a methodology for accurately representing market prices
for new and used agricultural tractors. Data on 968 tractors were collected from trade
magazines between January and October 2001, including advertised price, age, hours
worked, make, and model. List prices when new were adjusted for inflation, and the
power rating of each tractor was obtained. Discounts from list prices were calculated, and
average discount rates over 1986–2001 were determined. The percentage depreciation
was calculated, and dummy variables were constructed for manufacturers. OLS and
Box–Cox models were compared for predicting depreciation, with OLS identified as the
preferred option. The chosen model incorporated the natural logarithm of the tractor’s age
and a variable to account for high first-year depreciation. This model explained 84.2% of
variation in depreciation and provided a more precise depiction than conventional methods,
contingent on accurate manufacturer discount data.

Daninger and Gunderson [28] investigated tractor depreciation modeling to identify
the most accurate functional form for price forecasting. Analyzing two decades of auction
sale data across six major brands, they assessed various functional forms, including expo-
nential, Cobb–Douglas, sum-of-year’s-digits, square root, double square root, and linear
formulations. Crop price indices and prime rates were utilized to control broader economic
conditions. The study discarded the remaining value approach due to market heterogeneity.
The results favored the double square root and sum-of-year’s-digits models, with SizeClass
indicators reducing variability. Their unique approach offers insights into challenges in
determining used tractor values, contributing to the field of tractor depreciation modeling.

ASABE [5] updates STANDARD D497.7, first published in 1997, providing a simplified
version of depreciation regressions outlined by [23,24] serving as agricultural machinery
depreciation standards. ASAE’s Agricultural Machinery Management Data (ASAE D497.4,
1998) offers a residual value regression method based on Cross and Perry’s work (1996),
omitting net farm income as an economic indicator. The regression equation considers
machine age in calendar years and annual utilization in hours, derived from auction sale
data spanning 1984 to 1993. Tabulated coefficients for various agricultural equipment
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types, including three sizes of farm tractors, are included in the standard, contributing to
machinery depreciation analysis.

Ruiz-Garcia and Sanchez-Guerrero [29] propose leveraging data science to aid farmers
in tractor purchasing decisions, recognizing its significance as a major investment. They
developed a web-based decision support tool (DST) to address farmers’ primary concerns,
particularly regarding price, employing predictive analytic methodologies. The DST uti-
lizes various algorithms, including parametric and non-parametric regression models,
to predict prices for both new and second-hand tractors. Utilizing a dataset comprising
227 observations of new tractors and 1003 of second-hand tractors from diverse European
countries, the developed models achieved high accuracy, with RSqAdj exceeding 0.99.
Employing techniques such as regression trees, support vector machines, ensembles of
regression trees, Gaussian process, and neural networks, the DST is operational online,
providing free access to assist farmers in making informed tractor purchasing decisions.

Witte et al. [30] aimed to estimate current functions describing the market value of used
tractors in Germany, crucial for price assessments and remaining value estimations for inter-
nal accounting while emphasizing manufacturer and engine power differences. Departing
from previous research, they utilized online advertisements as a data source to estimate
market values. Multiple linear regressions were employed to fit various transformations
and describe absolute prices, with the exponential model selected for its minimal sum of
squared deviations of back-transformed estimates. While online advertisements provided a
large dataset, actual sale prices may differ. The study tested whether relations from online
ads could predict auction results and highlighted the significance of manufacturer-specific
devaluation in estimating actual sale prices, contributing to a more accurate assessment of
the German used tractor market.

Herranz-Matey and Ruiz-Garcia [31] address challenges arising from limited transac-
tional data, heightened by non-road diesel emission regulations’ impact on prices and man-
ufacturers’ complex portfolio offerings. They propose a methodology utilizing equivalent
new models to absorb price increases due to emission regulations while grouping mod-
els into cohorts to enhance dataset size. Evaluating various machine learning-optimized
regression models, they recommend a power regression model with the lowest residual
mean squared error (RMSE) and highest adjusted coefficient of determination (RSqAdj).
This transparent and robust model, fed by publicly available data and operable through
mainstream spreadsheets, empowers stakeholders to optimize model selection and invest-
ment strategy, ensuring resilience and efficacy in residual value estimation. The model’s
flexibility and robustness were rigorously tested against transactional data from tractor
auctions [32] and advertisements for harvester combines [33].

In synthesis, numerous studies over time have endeavored to strike a harmonious equi-
librium between user-friendliness and regression robustness, consistently finding that the
double square root approach achieves this balance optimally (Figure 4). Despite advance-
ments in computational capabilities facilitating access to more intricate non-parametric
models, their adoption is deemed unwarranted when dealing with sufficiently extensive
datasets. Consequently, the enduring popularity of the double square root coefficients intro-
duced by Cross and Perry in 1988 and endorsed by the ASABE underscores the imperative
to revisit and update these coefficients. This revision is essential for accommodating the
evolving complexities inherent in contemporary market dynamics, such as the availability
of transactional data and product intricacies.
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1.3. Goals

Amidst the extensive literature offering various models and independent variables, the
double square root regression approach, originally formulated by Cross and Perry and subse-
quently adapted by ASABE for North American contexts, has gained widespread acceptance.

In light of existing challenges, there exists a discernible imperative to address divergent
data availability in Europe, the evolution of manufacturer’s suggested retail price (MSRP),
and the escalating density of original equipment manufacturer (OEM) product offerings.
Consequently, there is a pressing need to update the current double coefficients employed
in the regression model.

Simultaneously, the authors posit that the prevailing OEM product portfolio necessi-
tates the delineation of distinct power cohorts and the consideration of additional factors to
refine the classification of cohorts, thereby enhancing the robustness of agricultural tractor
residual value forecasting. This endeavor aims to empower stakeholders to more accurately
assess property costs, facilitating data-driven decision-making and ultimately enhancing
the success of their enterprises.

2. Materials and Methods
2.1. Dataset

Due to the limited availability of primary data sources and the incomplete nature
of secondary sources in Europe, akin to numerous prior investigations, this study relied
on online advertisements of three web portals (agriaffaires, traktorpool, and mascus) for
used agricultural tractors. Specifically, it focused on professional advertisements for used
agricultural tractors exceeding 74 kW with more than 300 operational hours featuring age,
working hours, and advertised price. This selection criterion aims to mitigate potential
price distortions arising from original equipment manufacturer (OEM) demonstration
discounts or the sale of ex-rental units. The study focused on tractors manufactured by
major OEMs, including Case IH, Claas, Fendt, John Deere, Massey Ferguson, and New
Holland, across various European countries, encompassing Austria, Belgium, Denmark,
Estonia, Finland, France, Germany, Italy, Latvia, Lithuania, Netherlands, Norway, Poland,
Spain, Sweden, and the United Kingdom

This study analyzed the dataset, consisting of 10,043 unique observations, defined
earlier, obtained in November 2023.
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2.2. Data Systemization and Preprocessing

ASABE [4], in ASAE EP496.2 DEC99, was used. ASAE states that the depreciation cost
reflects the reduction in value of an asset with use and time. The actual total depreciation
can never be known until the equipment has been sold; however, an estimated depreciation
can be predicted from any of several methods. Different computational methods are used
depending upon the objective (for more detailed information, consult an engineering
economics textbook).

The residual value (RV) is calculated as follows:

RV =
Used tractor retail price (€)

Used tractor retail price when new (€)
(1)

Following Herranz-Matey and Ruiz-Garcia equivalent tractor approach [31–33], the
following is calculated:

RV =
Used tractor retail price (€)
Equivalent new tractor (€)

(2)

2.3. Data Analysis

ASABE [5] defines remaining value as follows:

RVn = 100
[
C1·C2

√
n·C3

√
h
]2

(3)

Providing the C1, C2, and C3 for tractor cohorts of three sizes, small (S), <60 kW (80 hp);
medium (M), 60–112 kW (80–150 hp); and large (L), >112 kW (150 hp).

As the engine power (Pwr) of tractors has experienced substantial growth (Figure 1),
new categorizations based on terciles (i.e., dividing data into three equal groups based on
their distribution) have been introduced for evaluation purposes. The proposed dataset
based terciles are as follows: more than 143 kW (large, L), between 107 and 143 kW
(medium, M), and less than 107 kW (small, L).

Several studies conducted since the 1980s have consistently affirmed the significant
influence of brand on tractor residual value (RV) [32]. RV, a critical metric in assessing
the worth of a tractor over time, incorporates various factors, including the market’s
perception of the tractor’s brand, size, model, and specifications, such as transmission type
and user interface. Additionally, it considers the tractor’s operational costs, field-proven
performance, reliability, and the availability of parts and service support [31].

The OEM (original equipment manufacturer) landscape has witnessed a notable
increase in the complexity of product offerings over time, leading to the bundling of specifi-
cations into packages tailored to different customer segments [17]. Notably, manufacturers
such as AGCO, ARGO, CNH, and SDF have adopted distinct branding strategies, resulting
in varying residual values among their respective brands.

Due to constraints regarding access to primary transactional data and the limited
availability of detailed secondary data, researchers have resorted to creating cohorts of
machines with similar characteristics to overcome these limitations. This approach not only
addresses data scarcity but also enhances the robustness of regression analyses, not only
within the realm of tractors but also across other products characterized by scarcity and
diverse options, such as combines [33].

Given the significant influence of tractor brands on residual value and based on previ-
ous studies [17,31,32], brands exhibiting similar depreciation trends have been clustered
into three tiers (A, B, and C) (Table 1).
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Table 1. Brand tier cohort grouping details.

Brand OEM Brand Tier

Brand I OEM I B
Brand II OEM II B
Brand III OEM III A
Brand IV OEM IV A
Brand V OEM III C
Brand IV OEM I C

Additionally, as the variety of tractor specification combinations has expanded (as
illustrated in Figure 2), engine power and two distinct powertrain-based cohorts (Pwr|Prt),
namely, those equipped with stepped and stepless transmissions (Table 2), have under-
gone assessment to determine whether notable price discrepancies influence differential
depreciation patterns [31,32].

Table 2. Powertrain type cohort grouping details.

Brand Powertrain Powertrain Type

Brand I

Multimode continuous transmission Stepless
Input coupled continuous variable transmission Stepless

Full power shift transmission Stepped
8 speed dual clutch partial powershift transmission Stepped

6 speed partial powershift transmission Stepped
4 speed partial powershift transmission Stepped
2 speed partial powershift transmission Stepped

Power shuttle transmission Stepped

Brand II

Multimode infinite variable transmission Stepless
Input coupled infinite variable transmission Stepless

6 speed partial powershift transmission Stepped
4 speed partial powershift transmission Stepped

Brand III Output coupled infinite variable transmission Stepless

Brand IV

Multimode infinite variable transmission Stepped
Input coupled infinite variable transmission Stepped

Full power shift transmission Stepped
8 speed dual clutch partial powershift transmission Stepped

4 speed partial powershift transmission Stepped
2 speed partial powershift transmission Stepped

Power shuttle transmission Stepped

Brand V

Output coupled infinite variable transmission Stepless
8 speed dual clutch partial powershift transmission Stepped

7 speed partial powershift transmission Stepped
6 speed partial powershift transmission Stepped
4 speed partial powershift transmission Stepped

Brand VI

Multimode continuous transmission Stepless
Input coupled continuous variable transmission Stepless

Full power shift transmission Stepped
8 speed dual clutch partial powershift transmission Stepped

6 speed partial powershift transmission Stepped
4 speed partial powershift transmission Stepped
2 speed partial powershift transmission Stepped

Power shuttle transmission Stepped

Ultimately, tractor power, brand tier, and powertrain-based cohorts (Pwr|Brd|Prt)
are concurrently utilized to conduct residual value regression analysis.
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2.4. Regressin Analysis

Root mean square error (RMSE) and R-squared (Rsq) are widely recognized as robust
metrics for assessing the performance and reliability of regression models, each offering
unique yet complementary insights.

RMSE quantifies the average discrepancy between predicted and observed values,
providing a numerical measure of model accuracy. By computing the square root of the
mean of squared differences, RMSE places greater emphasis on larger errors, thereby
offering a comprehensive evaluation of predictive performance [34].

In contrast, R-squared evaluates the goodness of fit by gauging the proportion of
variance in the dependent variable explained by the independent variables, with values
ranging from 0 to 1. A higher R-squared value indicates a better fit of the model to the
data [35]. Together, RMSE and R-squared furnish a robust assessment of a regression
model’s predictive capacity and its ability to capture the underlying relationships among
variables in regression analysis [36].

3. Results
3.1. Regression Analysis

To ascertain the potential impact of incorporating additional features, such as brand
tier and powertrain type, into the engine power cohort criteria on the robustness of double
square root residual value forecasting, various alternatives have been examined.

As delineated earlier, tractors have been categorized into cohorts predicated on engine
power terciles: those with less than 107 kW (small, S), those ranging between 107 and
143 kW (medium, M), and those exceeding 143 kW (large, L). This segmentation into new
engine power intervals has demonstrated enhanced forecasting efficacy, characterized by
reduced root mean square error (RMSE) and augmented R-squared values (Figure 5).
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Figure 5. Revised engine power segment regressions RMSE and R-squared compared to ASABE
(bubble size represents degrees of freedom (df)) of ASABE and engine power (Pwr) grouped cohorts.

Moreover, the regression analysis of tractor residuals based on engine power and brand
tier cohorts (categorized as A, B, and C) has evinced greater robustness when juxtaposed
with engine power-centric cohorts (Figure 6).
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Figure 6. Revised engine power segment regressions RMSE and R-squared compared to engine
power- and brand tier-based cohorts (bubble size represents degrees of freedom (df)) of engine power
(Pwr) and engine power and brand (Pwr|Brd) grouped cohorts.

Likewise, the analysis of a tractor residual regression, incorporating engine power and
powertrain type cohorts (specifically, stepped (std) and stepless (sls) transmissions), has
demonstrated superior robustness compared to the engine power-centric cohorts (Figure 7).
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Figure 7. Revised engine power segment (Pwr) regressions RMSE and R-squared compared to
engine power (Pwr|Prt)- and powertrain type-based cohorts (bubble size represents degrees of
freedom (df)).

Furthermore, the tractor residual regression analysis encompassing engine power,
powertrain type, and brand tier-based cohorts has exhibited heightened robustness relative
to engine power-centric cohorts (Figure 8).
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Figure 8. Revised engine power (Pwr) segments regressions RMSE and R-squared compared to
engine power-, brand tier-, and powertrain type (Pwr|Brd|Prt)-based cohorts (bubble size represents
degrees of freedom (df)).

Cohorts comprising engine power, brand tier, and transmission type have demon-
strated superior performance in double square root regression compared to scenarios
involving solely engine power and brand tier, engine power and transmission type, and
engine power alone (Figure 9, Table 3).
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Table 3. Studied cohort regression RMSE and R-Squared results.

Cohort Criteria Cohort Regression RMSE R-Squared

ASABE
ASABE [≥112 kW] 0.06215 0.79288

ASABE [60–112 kW] 0.07430 0.71295
ASABE [<112 kW] 0.07289 0.68387

Pwr
>143 kW 0.06159 0.83499

107–143 kW 0.06394 0.80116
<107 kW 0.07182 0.71795

Pwr|Prt

>143 kW stepless 0.06542 0.84204
107–143 kW stepless 0.05341 0.84314

<107 kW stepless 0.06120 0.82763
>143 kW stepped 0.05886 0.83028

107–143 kW stepped 0.06572 0.79290
<107 kW stepped 0.07225 0.71085

Pwr|Brd

>143 kW C 0.05941 0.84793
107–143 kW C 0.05904 0.83011

<107 kW C 0.05826 0.80803
>143 kW B 0.05834 0.86266

107–143 kW B 0.05615 0.83892
<107 kW B 0.07114 0.69262
>143 kW A 0.05000 0.88252

107–143 kW A 0.05415 0.85558
<107 kW A 0.07001 0.73496

Pwr|Brd|Prt

>143 kW C stepless 0.05574 0.87824
107–143 kW C stepless 0.04768 0.71821

<107 kW C stepless 0.04986 0.65347
>143 kW B stepless 0.05168 0.89827

107–143 kW B stepless 0.05326 0.81155
<107 kW B stepless 0.04858 0.86220

3.2. Residual Value

The updated regressions based on engine power terciles reveal a notable trend: tractors
with higher power levels experience a faster rate of depreciation compared to those with
lower power levels. Specifically, the residual values at 10 years and 500 h per year (HPY)
demonstrate this pattern: <107 kW: 0.499, 107–143 kW: 0.423, and >143 kW: 0.384 (Figure 10.)

Agriculture 2024, 14, 654 13 of 19 
 

 

107–143 kW A 0.05415 0.85558 
<107 kW A 0.07001 0.73496 

Pwr|Brd|Prt 

>143 kW C stepless 0.05574 0.87824 
107–143 kW C stepless 0.04768 0.71821 

<107 kW C stepless 0.04986 0.65347 
>143 kW B stepless 0.05168 0.89827 

107–143 kW B stepless 0.05326 0.81155 
<107 kW B stepless 0.04858 0.86220 

 
Figure 9. Averaged RMSE and R-squared of the different analyzed cohort criteria (engine power 
groups (Pwr), engine power and powertrain type (Pwr|Prt), engine power and brand tier (Pwr|Brd) 
and engine power, brand tier and powertrain (Pwr|Brd|Prt)). 

3.2. Residual Value 
The updated regressions based on engine power terciles reveal a notable trend: 

tractors with higher power levels experience a faster rate of depreciation compared to 
those with lower power levels. Specifically, the residual values at 10 years and 500 h per 
year (HPY) demonstrate this pattern: <107 kW: 0.499, 107–143 kW: 0.423, and >143 kW: 
0.384 (Figure 10.) 

 
Figure 10. Tractor residual value double square root regression of revised engine power (Pwr)-
based cohorts (500 HPY). 

Moreover, the regression analysis based on engine power and transmission type 
cohorts reveals that tractors equipped with stepped transmissions exhibit superior value 
retention, particularly within the >143 kW segment, and to a lesser extent, within the <107 
kW segment, with the exception of the 107–143 kW segment (Figure 11). 

0.7299

0.7847
0.8078 0.8170 0.8181

0.0698

0.0658
0.0628

0.0596

0.05580.055

0.060

0.065

0.070

0.075

0.080

0.085

0.55

0.60

0.65

0.70

0.75

0.80

0.85

ASABE Pwr Pwr|Prt Pwr|Brd Pwr|Brd|Prt

RM
SE

R-
Sq

ua
re
d

R-Squared RMSE

Figure 10. Tractor residual value double square root regression of revised engine power (Pwr)-based
cohorts (500 HPY).

Moreover, the regression analysis based on engine power and transmission type
cohorts reveals that tractors equipped with stepped transmissions exhibit superior value
retention, particularly within the >143 kW segment, and to a lesser extent, within the
<107 kW segment, with the exception of the 107–143 kW segment (Figure 11).
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Furthermore, the double square root regression analysis of tractor residual values,
considering engine power- and brand tier-based cohorts, elucidates that brand tier A
demonstrates superior residual values across all power segments, whereas brand tier B
exhibits better residual values in lower power segments compared to brand tier C, a trend
that reverses in larger power segments (Figure 12).
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Lastly, the double square root regression analysis encompassing engine power-, brand
tier-, and transmission type-based cohorts confirms the trends observed in the stepped
transmission cohorts (Figure 13) and accentuates them further in the case of stepless
transmissions (Figure 14).
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4. Discussion

The reappraisal of the double square root regression defined in ASABE STARNDARD
D497 provides enhanced predictive accuracy in the European tractor residual value estimation.
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Prior research has established a correlation between tractor power and distinct residual
value behavior, leading to the formation of cohorts based on tractor engine power. The
intensification of tractor power has reached a level where utility tractors now possess
equivalent power to row-crop tractors from six generations prior, necessitating a novel
segmentation of engine power. The implementation of new engine power segments,
derived from dataset terciles, has resulted in enhancements in both the root mean square
error (RMSE), which declined from 0.0698 to 0.06589, and the R-squared value, which
escalated from 0.7299 to 0.7847 (Figure 5).

The complexity of the product portfolio has amplified, and the transmission type,
which is associated with the user interface (i.e., electronic controls superseding mechanical
controls, thereby enabling the utilization of electronic control units that offer operation au-
tomation functionality), serves as a crucial differentiator in both productivity and efficiency
(Figure 2). It also influences purchasing capacity requirements (Figure 3), thereby impacting
the residual value behavior of the tractor. This necessitates the continuous expansion of
tractor cohorts with additional dimensions to enhance predictive accuracy. Subsequent
regression analyses, based on cohorts of both engine power and transmission type, have
demonstrated further improvements in both RMSE (decreasing from 0.0658 to 0.0628) and
R-squared (increasing from 0.7847 to 0.8078) compared to analyses based solely on engine
power cohorts (Figure 6).

Additional studies have also indicated that the brand is another determinant that
drives distinct residual value behavior, leading to the creation of cohorts based on tractor
engine and brand tier. Moreover, the utilization of brand type-based cohorts in lieu of
transmission type-based cohorts has resulted in reductions in RMSE (decreasing from 0.0628
to 0.0596) and enhancements in R-squared (increasing from 0.8078 to 0.8170) (Figure 7).

Furthermore, the integration of cohorts based on engine power, brand tier, and trans-
mission type in regression analyses has culminated in even more robust results, as evi-
denced by further reductions in RMSE (decreasing from 0.0596 to 0.0558) and improvements
in R-squared (increasing from 0.8170 to 0.8181) (Figure 8).

In all scenarios, the residual value of larger tractors depreciates more rapidly than that
of smaller tractors. Tractors with lower engine power attract a larger customer base due to
the prevalence of smaller-scale farming and livestock operations and the fact that smaller
tractors may serve a secondary role even in larger operations (Figure 10).

Tractors equipped with stepless transmissions exhibit a lower residual value compared
to their counterparts featuring stepped transmissions. This factor is more pronounced in
the lower engine power segments, as the introduction of this type of transmission to these
segments is relatively recent. Furthermore, the customer demographic for these segments
tends to be more risk averse and/or price sensitive due to the size of the farm and livestock
operations and the secondary role assigned to the tractor (Figure 11).

Top-tier brands maintain a higher residual value across all power segments. The
remaining brand tiers exhibit stronger residual value retention in different engine power
categories, as they have traditionally concentrated more on certain engine power segments
than others (Figure 12).

When both the transmission type and brand tier are considered in conjunction with
engine power segments to form distinct regression cohorts, the residual value behavior
remains consistent for stepped transmissions (which are more prevalent in the market
and therefore influence the overall behavior) (Figure 13). However, the behavior is more
extreme for tractors featuring stepless transmissions (Figure 14), as the brand significantly
impacts factors such as years of market presence, productivity, reliability, and the capacity
for maintenance and service to support them.

The complexity of the product portfolio is larger in the smaller power segment
(Figure 2); therefore, they might require further category-based cohort regressions in
order to obtain more forecast robustness and consider extending the study to the less fre-
quent and more feature-diverse high-value crop specialty tractors for orchards, vineyards,
and horticulture.
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5. Conclusions

The dynamic shifts in product dimensions and intricacy, alongside substantial price
escalations attributed to adherence to road diesel emission regulations and the adoption of
web-based platforms for used tractor advertisements to mitigate the scarcity of primary
and detailed secondary sources in Europe, underscore the necessity for a reassessment
of the double square root regression prescribed in ASABE STANDARD D497 [5]. This
reassessment is aimed at refining predictive accuracy in estimating tractor residual values
within the European context.

The refinement of engine power segmentations based on dataset percentiles, coupled
with the incorporation of the brand tier and transmission type as criteria for cohort group-
ing, has fortified the resilience of the regression model. This enhancement is manifested in
the reduction in root mean square error (RMSE) to 0.0558 and the increase in the R-squared
value to 0.8181, contrasting with an RMSE of 0.0698 and an R-squared value of 0.7299
associated with the prevailing ASABE coefficients.

Furthermore, this methodology has facilitated a data-centric comprehension of market
attributes, including productivity, reliability, and maintenance serviceability, all of which
are influenced by brand dynamics and have a quantifiable impact on tractor residual values.

The reappraisal of the double square root regression framework furnishes heightened
predictive precision to various stakeholders, encompassing manufacturers, resellers, fi-
nanciers, insurers, and end-users. Consequently, these stakeholders are empowered to
conduct informed analyses that optimize decision-making processes, thereby enhancing
the overall efficacy of their endeavors.
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