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Abstract: Increased heat stress is a common feature of global climate change and can cause adverse
impacts on crops from germination through maturation and harvest. This review focuses on the
impacts of extreme heat (>35 ◦C) on plants and their physiology and how they affect food and
water security. The emphasis is on what can be done to minimize the negative effects of heat stress,
which includes the application of various materials and approaches. Nano-farming is highlighted as
one promising approach. Heat is often combined with drought, salinity, and other stresses, which
together affect the whole agroecosystem, including soil, plants, water, and farm animals, leading to
serious implications for food and water resources. Indeed, there is no single remedy or approach
that can overcome such grand issues. However, nano-farming can be part of an adaptation strategy.
More studies are needed to verify the potential benefits of nanomaterials but also to investigate
any negative side-effects, particularly under the intensive application of nanomaterials, and what
problems this might create, including potential nanotoxicity.

Keywords: climate change; food security; global warming; nano-agriculture; nanotoxicity; water security

1. Introduction

Climate change can be defined as long-term changes in climatic parameters such as
rainfall, temperature, wind, humidity, and others [1]. Ongoing global climate change has a
complicated nature that influences local, national, and regional conditions with economic,
social, and environmental consequences [2]. Climate change is considered a worldwide
hazard that affects crop productivity and food security [3–6], as well as soil, water, and
energy resources [7–10], the overall bioeconomy [11,12], and our ability to fulfill the United
Nations’ Sustainable Development Goals [13–16]. The rising average global temperature
and more frequent extreme thermal events are major concerns with climate change [17].

Heat stress often refers to a period during which plants and other organisms are
subjected to high temperatures (normally >35 ◦C) for long enough to permanently alter
their ability to grow in a normal manner. The ideal temperature range for most crops and
other organisms is between 20 to 30 ◦C [18]. Heat stress can damage crops, cattle, poultry,
and aquaculture production [19,20]. Heat stress also negatively affects biodiversity [21],
life quality in cities [22], and workers’ health and productivity [23]. Extreme heat stress
events have been recorded in several places around the world, e.g., in species losses in
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coastal areas of eastern China [21], projected reduced yields in corn production in the
USA [24] and rice yields in southern China [25], and increased problems with human
health [26–28]. At warm temperatures, plants can induce thermos-morphogenesis, whereas
high temperatures trigger heat acclimation that leads to negative effects on growth and
development [29]. These effects involve the production of reactive oxygen species (ROS)
that cause damage to cell organelles and membranes, which reduces the assimilation of
nutrients and the photosynthetic process [30]. Several approaches have been suggested
to address heat stress [31] or related stress mitigations [32]. Recently, nanotechnology has
been suggested as one approach [33], an approach we will focus on in this review paper.

Nano-farming refers to the application of nanomaterials (NMs) or nanoparticles
(NPs) in agricultural production [34]. This can be performed in different ways, including
nano-priming of seeds to increase germination through the regulation of ROS [35], nano-
fertilization to increase crop productivity during the growing season [36], nano-pesticide
application for plant protection [37], nano-sensors to support smart farming [38,39], nano-
harvest [40] or nano-postharvest [41,42] applications to reduce food spoilage, and plant
nano-bionics to enhance or modify plant functions [43]. Nanomaterials have the potential
to enhance the productivity of crops by improving the delivery of nutrients, managing pest
control, and supporting crop stress resilience [44]. Nanotechnology has promising applica-
tions that may contribute to sustainable development and food security if used properly.

This review focuses on climate change in agriculture and nano-farming under heat
stress. The main goal is to investigate how nano-farming can be used to mitigate heat stress,
one of several negative effects of climate change. Management strategies are suggested
that can be applied in a systematic way to improve food and water security under heat
stress conditions.

2. Climate Change: A Global Issue
2.1. Climate Change Features

Climate change is a global concern with serious consequences for life on our planet
(Figure 1; [1]). Climate change is defined as “periodic modification of Earth’s climate brought
about as a result of changes in the atmosphere as well as interactions between the atmosphere and
various other geologic, chemical, biological, and geographic factors within the Earth system” [45].
Climate change adaptation means altering our behavior, systems, and (in some cases) ways
of life to protect our families, economies, and the environment in which we live from the
impacts of climate change [1]. Common features of climate change include increasing
temperatures, elevated atmospheric CO2 concentrations, and changes in precipitation with
more extreme weather events [46]. Climate change has a direct impact on the agricultural
sector through temperature fluctuations, flooding, and drought, which may cause signifi-
cant damage to the productivity of crops [47,48]. At the same time, agriculture, forestry,
and land use activities also contribute to climate change, with 18.4% of global greenhouse
gas emissions coming from these sectors. Changes in both range and arable land use affect
balances of greenhouse gases (GHGs) [7,49]. Although climate change is expected to benefit
the production of some crops in some places [3,50], the overall pattern is a negative effect
on productivity, particularly in areas with a high population density [3]. Global problems
related to climate change include heat stress, a lack of water for irrigation, changes in
rainfall patterns, and decreased food production [51]. These impacts can be found in nearly
all sectors, including agriculture.
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Figure 1. The definitions of major terms associated with climate change [1] (free images from
https://www.flaticon.com/icons, accessed on 22 September 2023).

2.2. Climate Change Threats

The warming that accompanies climate change leads to the melting of glaciers and
polar icecaps, rising sea levels, and increased risks of forest fires, heat waves, droughts,
floods, cyclones, hurricanes, and typhoons. These threats lead to food insecurity, climate
refugees, a loss of biodiversity, and negative human health effects (Figure 2; [47,48]). There
is a need to understand the global climate impacts and their ecological dynamics, to identify
hotspots of vulnerability and resilience, and to identify management interventions that
may assist biosphere resilience to climate change. On the other hand, greenhouse gas
balances are important components of the global carbon and nitrogen cycles [7]. These
gases can be absorbed or emitted by lakes [52], oceans [53], livestock [54–56], agricultural
and agroforestry systems [55,57], natural terrestrial ecosystems [57,58], and soils [7,55,59].
The main sources of GHGs are CO2 (74%), CH4 (17%), and N2O (9%) (Figure 3; [60]). Recent
studies have focused on aspects of the GHG balance, including urban balances [61,62];
climate-smart management to reduce GHGs from agricultural production [63], transporta-
tion and energy [64,65]; and GHG reduction strategies for various regions around the
world [57,66,67]. Global warming results from the accumulation of GHGs in the atmo-
sphere. This increases the average global temperature due to radiation absorption in the
thermal infrared range. These GHGs include carbon dioxide (CO2), nitrous oxide (N2O),
nitric oxide (NO), ozone (O3), volatile organic compounds (VOCs), methane (CH4), and
water vapor, as well as industrial GHGs, including hydrofluorocarbons (HFCs), perfluoro-
carbons (PFCs), and sulfur hexafluoride (SF6). GHGs can create irreversible damage to the
health of living beings, the ozone layer, and the broader environment [68].

https://www.flaticon.com/icons
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2.3. Climate Change and Heat Stress

There is a relationship between climate change and heat stress. Temperature is one
of the main climatic elements that controls the activities of humans, including farming
practices. Increased temperatures as a result of climate change create heat stress for live-
stock, humans, crops, and the entire ecosystem [19,24,69]. Extreme weather events, which
have been increased by climate change, are major causes of loss of life and infrastructure
damage all over the world [70]. Thus, heat stress exposure is projected to increase with
ongoing climate change. Atmospheric temperature is an important climatic factor that
significantly impacts the growth and development of all living organisms (microbes, plants,
animals, and humans). At the farm level, the activities of plants, animals, and soil organ-
isms are closely linked to temperature. Studies have shown that seasonal temperature
changes have large impacts on growth [71], which has led to changes in vegetation and
seawater temperature [72]. For example, the seawater temperature in the coastal zone of
the Baltic Sea has increased by 0.2 ◦C per decade [73], and in the Yangtze River, China, the
increase has been 0.40 to 0.52 ◦C per decade [74]. Increases in temperature also affect urban
areas [75], air quality [76], water supply [77], and food security [3], which increase the risks
of mortality [78,79].

2.4. Climate Resilient Agriculture

In the absence of climate change mitigation, multiple adverse impacts on agroecosys-
tem resources could include reduced soil fertility; increased soil erosion and pollution of
soil, water, and air; a reduction in fish production; increased loss of global biodiversity;
and loss of drinking water [80]. Recent studies have examined the benefits of climate-smart
agriculture, including reduced GHG emissions and enhanced food security. Hellin et al. [81]
argue that climate-smart agriculture has morphed into a platform that focuses on tech-
nical aspects at the expense of socio-economic issues and therefore leads to increased
social and political vulnerability for low-income farmers. Because of this, they advocate a
pivot from climate-smart to climate-resilient agriculture to promote more equitable socio-
economic outcomes [81]. Recent studies on climate-resilient agriculture include modelling
crop–water–income dynamics [82], examining the role of rhizosphere microorganisms in
climate-resilient sustainable plant production [83], climate-resilient agricultural indicators
for addressing hunger and poverty [84], knowledge gaps in climate-resilient practices
in India [85], and strategies to strengthen the climate-resilient health system [86]. These
are only a few examples. Smart technologies for climate-resilient agriculture may include
carbon-smart agro-forestry and microbial-smart, water-smart, weather-smart, energy-smart,
and knowledge-smart approaches [87].

Climate change can be addressed within farming systems by harnessing soil carbon
sequestration as a sustainable solution for environmental challenges [88]. It is important
to understand the dynamics of soil organic carbon stock in agro-ecosystems under a
changing climate to maintain the productivity of soils and offset GHG emissions [89].
Crop residue return can mitigate the negative effects of climate change on SOC and crop
productivity [90,91]. Smart agriculture can be an effective tool in achieving sustainability
goals [92]. Climate-smart practices can reduce the energy demand and the emissions
of CO2 [93]. Therefore, there is a need for climate-smart agro-practices for the global
adaptation to climate change [94].

2.5. Climate Change and Nano-Farming

This section will explore the role of nanomaterials in combating climate change and
the action of nanomaterials under heat stress. Changes in atmospheric CO2 drive climate
change, including changes in temperature, as well as floods, droughts, heat waves, etc.
These stressful conditions may be ameliorated with nanomaterials [68,95]. Nanomaterials
can reduce GHG emissions (mainly CO2) via CO2 sequestration by nanomaterials such as
carbon nanotubes (CNTs), SiO2-NPs, and TiO2-NPs [95]. Many nanomaterials can indirectly
mitigate climate change by increasing plant tolerance to abiotic stress and resistance to
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phyto-diseases [96]. These nanomaterials can be classified based on their functionalized
chemical groups into the following categories:

(1) Nanofilms for the electrocatalytic reduction of CO2 [97];
(2) Nano-metal organic frameworks (MOFs) as absorbents for GHG sequestration [98];
(3) Nanofibers as catalysts for the conversion and sequestration of CO2 [99];
(4) Nanocomposites for photocatalytic CO2 reduction and H2 evolution reactions [100];
(5) Carbon nanotubes to reduce CO2 emissions and utilization [101];
(6) Nano-membranes to combat climate change using hydrogen production as a clean

energy source instead of fossil fuels [102];
(7) Nano-zeolites for CO2 capture [103];
(8) Nano-silica to reduce CO2 emissions [104].

Nano-farming approaches and other strategies can be considered for agro-productivity
under the changing climate through the following targets: (1) reducing agricultural produc-
tion losses under climate change and heat stress, (2) ensuring food security under changing
climate and socio-economic environments, and (3) reducing the adaptation consequences to
water and energy resources. Several farming activities are dependent on climatic elements
that can threaten local and global food security [105]. Therefore, maintaining agricultural
productivity under climate change is a critical need that can be achieved through strategies
such as (i) agronomic management (depending on soil, water, and crop factors), (ii) crop
genetic improvements to create tolerance to heat and other stresses, and (iii) nano-farming
approaches (Figure 4; [105]).
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3. Heat Stress and Agroecosystems
3.1. Agroecosystems in a Changing World

Agroecosystems are vital to our modern societies and the global environment [106,107].
Each component of the agroecosystem is affected by climate change and heat stress, in-
cluding soil [7,108], water [50], microbes [109], plants [110–112], animals [113], and hu-
mans [114–116] (Figure 5; [48,109,110]). As examples, these impacts may involve changes in
crop phenology, soil moisture content, soil carbon pools, and vegetation respiration, among
others. The complexity and diversity of agroecosystems make it hard to quantitatively
analyze the overall impacts [117]. Recent studies have focused on topics such as the impacts
of climate change and heat stress on soil organic carbon sequestration under lowland rice
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cultivation [118], the impact of high temperatures (40 ◦C) on chickpea production [119],
and the ability of biochar to improve Thymus vulgaris growth under heat stress (33 ◦C) [120].
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3.2. Food Security under Heat Stress

Food security is defined as follows: “food security is achieved when all people,
at all times, have physical and economic access to sufficient, safe and nutritious food
to meet their dietary needs and food preferences for an active and healthy life” [121].
Increased heat waves linked to climate change threaten global food security over both
the short and long term (Figure 6; [121–124]). Society has a major challenge in providing
sufficient, nutritious, affordable, and safe food for the global population. Food security
was identified as a key issue by organizations like the United Nations FAO [121] during
the World Food Summit in 1996. This challenge is still relevant due to ongoing global
climate change, degradation of water and land resources, biodiversity loss, and food
wastage, which all contribute to food insecurity [125]. Research has addressed several
dimensions of food security, including food availability, access to food, utilization and
stability of the food systems, and social acceptability of food sources (e.g., [122,123,126]).
Global food security is under threat due to factors such as pollution [127,128], drought,
and heat stresses [129,130]. Minimizing food waste and proper food management are other
important factors in food security [131]. Heat stress impacts food security as it affects
wild plant, fish, and animal production, as well as crop, aquiculture, and farm animal
production. Studies have documented the negative impacts of heat stress on rice [132],
fish [133], and farm animal [20] productivity, respectively. Other examples include “No
farmer no food” [134], the interaction between food production and climate change [135],
decreased cucurbits production in North Africa due to heat stress [136], decreased salmon
production under future climate change [137], food and water insecurity [138], and global
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agri-food trade under climate change [139]. Food production includes food processing,
transport, sorting, and disposal of food wastes [135].

Agriculture 2024, 14, x FOR PEER REVIEW 8 of 26 
 

 

productivity, respectively. Other examples include “No farmer no food” [134], the inter-

action between food production and climate change [135], decreased cucurbits production 

in North Africa due to heat stress [136], decreased salmon production under future climate 

change [137], food and water insecurity [138], and global agri-food trade under climate 

change [139]. Food production includes food processing, transport, sorting, and disposal 

of food wastes [135]. 

 

Figure 6. Impacts of heat stress on food security that can cause food insecurity over both short and 

long terms [121–124]. 

3.3. Heat Stress and Cultivated Plants 

Atmospheric temperature is important for all living organisms. During a plant’s life 

cycle, many stressful situations may occur. Some stresses can cause interruptions or dam-

ages in crop growth and development. Among these are stresses caused by unfavorable 

temperatures (thermal injuries) such as freezing injuries (<0 °C), chilling injuries (12–0 °C), 

and heat stress injuries (>35 °C). An average 0.3 °C increase in the global surface temper-

ature is expected in the next decade, while the global target is to keep the overall increase 

below 2 °C compared to pre-industrial levels [140]. Heat stress can lead to irreversible 

damage to plant functions or development. Several responses have been recorded, includ-

ing changes at morpho-biochemical, physiological, and molecular levels (Figure 7; 

[17,30,141]). These impacts can cause changes in phenology, increase oxidative stress, in-

hibit seed germination, cause turgor loss, alter photosynthesis, lower transpiration rates, 

and reduce biomass and carbohydrate metabolism [141]. Heat stress can cause significant 

reductions in crop yield and reduce the synthesis of starch, protein, fiber, and essential 

mineral contents [109]. Yield reductions up to 50% have been reported in onion (Allium 

cepa L.) [142], cotton (Gossypium hirsutum L.) [143], and rice (Oryza sativa L.) [144]. Plant 

adaptation to heat stress can be summarized with the following strategies: 

(1) Maintain protein and flower homeostasis and non-coding RNA regulation; 

(2) Minimize cellular damage and enhance antioxidant enzymes; 

(3) Protect heat shock proteins, the formation of buds, and the development of pollen 

and fruits from dehydration, and delay leaf senescence; 

Figure 6. Impacts of heat stress on food security that can cause food insecurity over both short and
long terms [121–124].

3.3. Heat Stress and Cultivated Plants

Atmospheric temperature is important for all living organisms. During a plant’s life cy-
cle, many stressful situations may occur. Some stresses can cause interruptions or damages
in crop growth and development. Among these are stresses caused by unfavorable temper-
atures (thermal injuries) such as freezing injuries (<0 ◦C), chilling injuries (0–12 ◦C), and
heat stress injuries (>35 ◦C). An average 0.3 ◦C increase in the global surface temperature is
expected in the next decade, while the global target is to keep the overall increase below
2 ◦C compared to pre-industrial levels [140]. Heat stress can lead to irreversible damage to
plant functions or development. Several responses have been recorded, including changes
at morpho-biochemical, physiological, and molecular levels (Figure 7; [17,30,141]). These
impacts can cause changes in phenology, increase oxidative stress, inhibit seed germination,
cause turgor loss, alter photosynthesis, lower transpiration rates, and reduce biomass and
carbohydrate metabolism [141]. Heat stress can cause significant reductions in crop yield
and reduce the synthesis of starch, protein, fiber, and essential mineral contents [109]. Yield
reductions up to 50% have been reported in onion (Allium cepa L.) [142], cotton (Gossypium
hirsutum L.) [143], and rice (Oryza sativa L.) [144]. Plant adaptation to heat stress can be
summarized with the following strategies:

(1) Maintain protein and flower homeostasis and non-coding RNA regulation;
(2) Minimize cellular damage and enhance antioxidant enzymes;
(3) Protect heat shock proteins, the formation of buds, and the development of pollen

and fruits from dehydration, and delay leaf senescence;
(4) Promote the photosynthesis rate and antioxidant defenses, and activate defense

pathways;
(5) Regulate heat shock factors, transcription, and epigenetics;
(6) Utilize heat-tolerant varieties [17,30,141].
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Figure 7. Plant responses to heat stress. The direction of the arrows indicates the positive or negative
effects of heat stress on the given plant processes within each of the boxes. Global surface temperature
increases are relative to the 20th century average [145].

Thermal stress can cause enormous damage to cell membranes, as well as many
plant processes, including triggering oxidative stress, producing ROS, decreasing protein
synthesis/metabolism, and altering the production of antioxidants and phytohormones,
leading to changes in hormonal homeostasis [17]. In some regions like Egypt, higher
temperatures have been recorded in recent years, reaching more than 50 ◦C and causing
catastrophic productivity damage to many crops, including banana and other horticultural
crops (Figure 8). Such high temperatures cause heat stress and clearly inhibit crop growth
due to sunburned leaves and twigs, senescent leaves, and blotching of fruits and leaves [30].
Generally, the signs of heat stress on plants can be manifested by symptoms such as rolling
and cupping of leaves; drying of leaf margins; dropping of flowers and/or fruits, buds and
blossoms; premature blooming and bolting; or wilting of the entire plant [18].
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Figure 8. Heat stress on new banana leaves (photos in group (A)), heat stress in rose plants causing
deformation of the flowers as a result of a decrease in the number of petals (photos in group (B)),
and heat stress on Chrysanthemum morifolium plants, which prevents flowering by causing abscission
of flower buds (photos in group (C)). These stress symptoms were observed after a period with air
temperatures of 45 ◦C (measured in the shade) during the summer of 2023 in Egypt (photos by M.
El-Mahrouk).

3.4. Plant–Pathogen Interactions under Heat Stress

Plant production faces serious challenges due to both climate and pathogen stressors
due to the continuous changes in plant pathogens under changing climatic conditions [146].
There is a strong link between heat stress and phytopathogens, where increasing temper-
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atures may support the growth and spread of plant pathogens [147]. The role of applied
nanomaterials against phytopathogens from one side [148], and to mitigate heat stress
from the other [149], is an important global issue due to the impact on crop productivity.
Nano-pesticides have received considerable attention for application against individual
and combined stresses (e.g., [150–152]). Plant–pathogen interactions also occur under other
stresses [153], such as drought [154–156], water stress [157], and elevated atmospheric
CO2 [158].

3.5. Mechanisms of the Plant Response to Heat Stress

Response mechanisms are a promising research area, which include morphological,
physiological, biochemical, and molecular mechanisms (e.g., [17,29,30,159]). Research into
the plant response to heat stress has included how to reduce the stomatal number and their
conductance; how to increase the plant root system; how to decrease leaf folds, curls, and
leaf area; and how to reduce water loss via evapotranspiration. Plants under thermal stress
may increase the cell wall polysaccharide and lignin contents, while the starch content
and the size of mesophyll cells may decrease [17]. There is an urgent need to understand
how genes (genomics), proteins (proteomics), ions (ionomics), metabolites (metabolomics),
transcripts (transcriptomics), and phenotypes (phenomics) are related to the stress of
concern so that heat-stress-tolerant crop varieties can be developed [129]. Materials like
melatonin, which can promote the photosynthetic process, improve enzyme activities,
and increase the production of ATP, can support heat-stressed plants [159]. The harmful
effects of heat stress on plants can also be alleviated by applying certain elements (e.g., Ca,
Se, and Si), materials, and plant-growth-promoting rhizobacteria (PGPR) [160,161]. An
overview of materials that may be used is given in Table 1. Biochar, β-sitosterol, seaweed
extract, chitosan, sodium nitroprusside and gibberellic acid, brassinosteroids, abscisic
acid, nano-chitosan–glycine betaine, nitric oxide, and various Si and Se materials can be
useful [109,162–166].

Table 1. Response of cultivated plants under heat stress to anti-stressors.

Plant Species Anti-Heat-Stressor Impact Ref.

Common thyme
(Thymus vulgaris L.)

Eucalyptus wood-derived
biochar (5%) and β-sitosterol

(100 ppm)

Enhanced tolerance by increasing photosynthetic pigment
production and antioxidant activity, and by maintaining the

nutrient supply.
[120]

Rice (Oryza sativa L.) Biochar application
(40 g kg−1 soil)

Increased rice tolerance by improving the
root-zone environment. [164]

Brassica juncea (L.)
Czern & Coss

Ortho-silicic acid (3 ppm);
seaweed extract (5 ppm)

Both treatments mitigated the adverse effects of heat stress by
increasing the photosynthetic rate and chlorophyll content and

decreasing membrane injury and the MDA content.
[167]

Rice (Oryza sativa L.) Silicon (12 g per pot) Increased yield, dry matter accumulation, and tolerance under
high-temperature conditions. [168]

Table grapes (Vitis
vinifera L.) Silica fertilizer (23% Si)

Increased yield and quality, mainly by increasing total soluble
solids, macro- and micro-nutrients, and

photosynthesis efficiency.
[169]

Wheat (Triticum
aestivum L.)

Selenium at 25, 50, 75 and
100 mg Se L−1

Under heat stress, 75 mg Se L−1 provided more of a benefit
than the other doses.

[170]

Wheat (Triticum
aestivum L.)

Nano-chitosan–glycine
betaine 100 mM for 18 h

Seed priming improved heat and drought tolerance by osmotic
adjustment, conserving water, activating antioxidants, and

increasing yield.
[171]

Cotton (Gossypium
hirsutum L.)

Foliar chitosan (0.2, 0.4, 0.6,
and 0.8 g L−1)

Under heat stress, 0.8 g L−1 increased fiber quality and
phenological and yield attributes more than the other doses.

[172]

Wheat (Triticum
aestivum L.)

Sodium nitroprusside and
gibberellic acid (100 µM and

5 µg/mL)

The treatment increased NO, H2O2, SOD, POD, APX, proline,
GR, and GB that scavenged ROS and decreased the adverse

effects of stress.
[173]

Soybean (Glycine
max L.)

Brassinosteroids as
24-epibrassinolide (up to

1 µM)

Improved the capacity of antioxidants to protect the
photosynthetic apparatus under heat stress. [166]
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Table 1. Cont.

Plant Species Anti-Heat-Stressor Impact Ref.

Wheat (Triticum
aestivum L.)

Nitric oxide (100 µM) and
abscisic acid (100 µM)

Regulated the expression and activity of enzymatic
antioxidants, with produced osmolytes acting as a possible

strategy for heat tolerance.
[165]

Chrysanthemum
morifolium Ramat.

Biological nano-Se (50, 100,
150 and 200 mg L−1)

Nano-Se to 200 L−1 improved heat tolerance by enhancing
antioxidant enzymes and decreasing polyphenol oxidase and

electrolyte leakage.
[174]

Wheat (Triticum
aestivum L.)

Biological Se-NPs
(100 mg L−1)

Enhanced plant tolerance to drought and heat stress by
increasing growth and productivity; inhibited fungal disease

as well.
[175]

Cucumber (Cucumis
sativus L.)

Silicon (200 mg L−1) and
nano-Se (25 mg L−1)

Both Se and Si foliar applications boosted plant growth and the
yield of cucumber under salinity and heat stress by increasing

fruit yield and quality.
[176]

Abbreviations: MDA (malondialdehyde), SOD (superoxide dismutase), POD (peroxidase), APX (ascorbate
peroxidase), GR (glutathione reductase), GB (glycine betaine), ROS (reactive oxygen species).

4. Nano-Food Farming: Is It a Crucial Solution?

Agriculture is the main source of our food [126]. Adapting agriculture to climate
change is a critical approach to sustain food security and avoid deteriorating major nat-
ural resources, including soil and water. These adaptations might involve agronomic
management (e.g., reducing soil water evaporation, altered cultivation schedules, and
irrigation expansion), genetic improvements (through the cultivation of tolerant cultivars),
and application of amendments such as nanomaterials. How can the nano-food farming
approach support plant and animal production under different stresses such as heat stress?
Is nano-food farming a reasonable solution to address heat stress? To what extent can
this solution support global food security? Which sectors in agriculture can utilize the
nano-food farming approach to address heat stress? Several questions need to be answered
to determine whether the nano-food farming approach is a solution to heat stress. Many
studies have investigated the potential of nanotechnology as a potent and novel technique to
enhance the agricultural food sector (e.g., [34,177,178]). Nano-farming for food security can
be achieved with farming practices such as applying suitable nano-agrochemicals to improve
crop performance [96,179–182], nano-bioremediation of polluted soil and water [183], and
nano-smart farming for food security [44,184]. Heat stress can shorten crop growing cycles
and phenology, which reduces the total biomass and productivity [185]. Furthermore,
warmer temperatures intensify evapotranspiration, leading to water stress and limited
yields [105]. More studies are needed to investigate this approach, as presented in the
following sections.

5. Nano-Farming for Global Food Security

What is the relationship between the nano-farming system and food security? What
are the obstacles to achieve global food security? To what extent can the nano-farming
system contribute to food security?

Nano-farming has both direct and indirect relationships with global food security,
depending on which farming practices are used. For example, there are many agricultural
practices linked directly to food production, such as nano-fertilization, nanopesticides,
etc. Recently, many reports have confirmed that nanotechnology can contribute to global
food security amid the escalating challenges posed by the growth of the global popu-
lation and the impacts of climate change [43,182,186–188]. The use of nanomaterials in
producing food has received substantial investigation, such as nano-identification and
tracking of agri-foods [189], nano-management of agro-wastes [190,191], nano-biosensors
to detect pathogens [192], nano-enhancement of the shelf-life of agri-products [193], nano-
agrochemicals for crop improvement [179], nanofibers for wastewater treatment [194],
nano-bio-remediation of soil and water [195], and nano-carriers to provide targeted deliv-
ery of treatments [196]. These areas of nanomaterials research help address the overarching
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issue of global food security. This review aims to shed light on the transformative potential of
nanotechnology to pave the way for a more resilient and sustainable future for agriculture.

Nano-farming approaches may include nano-priming of seeds [171,197].
Al Masruri et al. [171] primed wheat seeds with chitosan–glycine–betaine s (100 mM) for
18 h and found that the nano-priming improved heat tolerance. They linked the improve-
ments to an adjusted osmotic pressure that conserved the tissue water content, activated
the antioxidant system, supported carbon assimilation, and activated grain-filling enzymes,
all processes that sustain crop productivity. Nano-fertilization and nano-plant protec-
tion are other potential practices. Nano-selenium has shown positive results against heat
stress [174,176], as has nano-silicon [198]. Sári et al. [40] found that a biological form of
the nanomaterials is preferable over other forms. Nanotoxicity and nano-safety are urgent
issues that may lead to food insecurity under the nano-farming system if nanomaterials
are mismanaged.

6. Nano-Management of Heat Stress

Which nanomaterials are effective against heat stress in plants or animals? What are
the necessary doses of NMs needed under which temperatures to alleviate heat stress?

Many management practices may be used to prevent heat stress in plants. These
include traditional methods such as temporary shading to protect crops from excessive
sun exposure during heat waves, sufficient watering, particularly spraying, applying
mulch to reduce soil temperatures and conserve water, and using heat-resistant crop
cultivars [18]. Agrivoltaics, the production of crops and/or livestock beneath solar panels,
has also shown promise to reduce the impacts of heat stress on crops and animals due
to the shading effect of the solar panels and modification of the microclimate under the
panels [199–201]. Approaches to mitigate heat stress can be grouped into (1) agronomic
management, (2) genetic improvement, and (3) nano-farming (Figure 9; [17,30,141,162]).
Plants can prepare for heat stress by thermo-priming or by protecting themselves from as
much damage as possible by thermotolerance. Agronomic strategies include crop factors
(earlier planting dates, analyzing crop growth responses, and changing the crop type or
growing cycles), soil factors (reducing soil evaporation by mulching, soil conservation with
amendments, and changing the fertilizer system), and water factors (hanging irrigation
systems, reducing water and energy consumption, and improving crop water use and
water productivity) [105].

Agriculture 2024, 14, x FOR PEER REVIEW 14 of 26 
 

 

Mung bean (Vigna 

radiata L.) 

Nano-ZnO (15, 30, 45, 

and 60 mg L−1) 

40 °C during the 

flowering stage 

Foliar nano-ZnO protected plants from heat 

stress by improving physiological and bio-

chemical attributes. 

[149] 

Cucumber (Cucumis 

sativus L.) 
Bio-nano-Se at 25 mg L−1 

41 to 26 °C all sea-

son 

Foliar NPs-Se promoted plant growth by in-

creasing nutrient uptake and plant biomass. 
[176] 

Sorghum (Sorghum 

bicolor L. Moench) 

Foliar applied Se-NPs 

(10 ppm) 
38 °C for 10 days 

Se-NPs can protect sorghum plants by en-

hancing the antioxidative defense system un-

der heat stress. 

[210] 

Wheat (Triticum aes-

tivum L.) 

Foliar nano-Se (5, 10, 50 

mg L−1) 
Not mentioned 

Gene expression of heat shock factor (A4A) 

and high-molecular-weight glutenin subunit 

1Bx was altered; nitrate reductase activity was 

changed. 

[211] 

Tomato (Lycopersicon 

esculentum Mill.) 

Nano-TiO2 (0.1–0.2 g 

L−1) 
35 °C for 7 days 

Nano-TiO2 promoted photosynthesis in to-

mato leaves under mild heat stress. 
[215] 

 

Figure 9. Comparisons between soil and plant management approaches for heat stress mitigation 

[141,162]. 

7. Nano-Food Farming and Nanotoxicity 

Are there any negative sides of nano-farming? There is the potential for the accumu-

lation of NMs in the environment that may pose serious risks to human health [216]. The 

main reasons for these risks (nanotoxicity) relate to the high chemical reactivity of NPs, 

greater access to human bodies, and bioavailability compared with larger particles. Envi-

ronmental nanotoxicity still remains poorly understood and many questions need to be 

answered, such as what levels of nano-exposure are we currently facing? What levels of 

exposure could harm our health? What are the main sources of nanotoxicity under the 

nano-farming approach? In general, all nano-farming practices can be considered a source 

of nanotoxicity if NMs are over applied. It is crucial that we be judicial in the use of NMs 

in farming practices to avoid problems from nanotoxicity [217]. Recent studies on the risks 

Figure 9. Comparisons between soil and plant management approaches for heat stress mitigation [141,162].



Agriculture 2024, 14, 656 14 of 25

Nanomaterials such as nano-Se, nano-ZnO, nano-chitosan, and nano-TiO2 can also
enhance crop production under heat stress (Table 2). The main impact of heat stress on crops
may be in creating oxidative stress and the generation of ROS, reducing photosynthesis
and vegetative and reproductive phases [17,140,162,202–204]. Reviews on crop heat stress
include molecular and agronomic attributes in crops like wheat [205], maize [204], rice [206],
tomato [140], and peas [207], or on plants in general [29,109,202,208]. As presented in
Table 2, each applied NM had a certain action against heats stress at a given dose under the
studied conditions. Plants can be protected against heat stress by enhancing the antioxidant
defense system and mitigating physio-biochemical and gene expression attributes [209–211].
Under heat stress, NMs offer many advantages for targeted slow release and transportation
compared with organic molecules [212]. Applied NMs can support stressed plants to reduce
the negative effects of heat stress and improve their tolerance to high temperatures [213].
These NMs can also regulate and activate specific stress-related genes, which in turn
increase heat shock protein activity and aquaporin to enable plants’ resistance to such
stress [212]. The application of NMs also enhances the plant survival under such stress
conditions by supporting the adaptations of the plant anatomy and regulating the opening
of plant stomata under heat stress [214].

Table 2. Impact of nanomaterials (NMs) on cultivated plants under heat stress.

Plant Species Applied NMs Heat Stress General Impact Ref.

Wheat (Triticum
aestivum L.)

Se-NPs foliar spray
(10 mg·L−1) 38 ◦C for 5 h·day−1 NMs mitigated physio-biochemical and gene

expression attributes under heat stress. [209]

Bread wheat (Triticum
aestivum L.)

Nano-sized
chitosan–glycine
betaine (100 mM)

37/28 ◦C all
seasons (4 months)

NMs increased the activity of antioxidant
enzymes and sustained plant growth and yield. [171]

Mung bean (Vigna
radiata L.)

Nano-ZnO (15, 30, 45,
and 60 mg L−1)

40 ◦C during the
flowering stage

Foliar nano-ZnO protected plants from heat
stress by improving physiological and

biochemical attributes.
[149]

Cucumber (Cucumis
sativus L.)

Bio-nano-Se at
25 mg L−1

41 to 26 ◦C
all season

Foliar NPs-Se promoted plant growth by
increasing nutrient uptake and plant biomass. [176]

Sorghum (Sorghum
bicolor L. Moench)

Foliar applied Se-NPs
(10 ppm) 38 ◦C for 10 days

Se-NPs can protect sorghum plants by
enhancing the antioxidative defense system

under heat stress.
[210]

Wheat (Triticum
aestivum L.)

Foliar nano-Se
(5, 10, 50 mg L−1) Not mentioned

Gene expression of heat shock factor (A4A) and
high-molecular-weight glutenin subunit 1Bx

was altered; nitrate reductase activity was
changed.

[211]

Tomato (Lycopersicon
esculentum Mill.)

Nano-TiO2
(0.1–0.2 g L−1) 35 ◦C for 7 days Nano-TiO2 promoted photosynthesis in tomato

leaves under mild heat stress. [215]

7. Nano-Food Farming and Nanotoxicity

Are there any negative sides of nano-farming? There is the potential for the accu-
mulation of NMs in the environment that may pose serious risks to human health [216].
The main reasons for these risks (nanotoxicity) relate to the high chemical reactivity of
NPs, greater access to human bodies, and bioavailability compared with larger particles.
Environmental nanotoxicity still remains poorly understood and many questions need to
be answered, such as what levels of nano-exposure are we currently facing? What levels
of exposure could harm our health? What are the main sources of nanotoxicity under the
nano-farming approach? In general, all nano-farming practices can be considered a source
of nanotoxicity if NMs are over applied. It is crucial that we be judicial in the use of NMs
in farming practices to avoid problems from nanotoxicity [217]. Recent studies on the risks
posed by nanotoxicity include nanotoxicity in agri-foods [178,217,218], nano-food pack-
aging [219], nano-agrochemical applications [220,221], disruption of soil ecosystems [222],
deterioration of human/animal health [223,224], and phytotoxicity [225,226].
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Engineered nanomaterials have several benefits for crop growth and/or human health
when they are applied in the right dose and form, with particular benefits shown for
biological NMs. However, NMs can be toxic under overdose situations
(Figure 10; [104,217,224,225,227]). Studies on the toxic mechanisms of NPs on human
health have shown NPs can cause damages such as genotoxicity, oxidative stress, inflamma-
tion, and cytotoxicity in different cell types [224]. Oxidative stress results from NPs through
ROS generation, DNA damage, mitochondrial dysfunction, and others [228]. Nanotoxicity
in plants can cause damages, including morphological, physiological, biochemical, anatom-
ical, and genetic damage. This toxicity may also include cytotoxicity via the disruption of
the cell cycle and genotoxicity through boosting and triggering the genes and antioxidant
enzymes controlling NP stress [225]. Nanotoxic stress can generate more ROS, leading to
protein degradation, lipid peroxidation, DNA damage, mitochondrial deterioration, and
malfunctioning of biomolecules [225]. Many future areas of research are needed, including
the roles of plant metabolites and rhizosphere exudates on NM transformation in soil. The
role of soil microorganisms at plant interfaces still needs to be explored, along with the
kinetics of NM transformations in both soil and plants. Indeed, long-term studies of NMs
in agro-ecosystems with a focus on soil quality are crucial [181]. The use of manufactured
NMs in edible coatings and food packaging will undoubtedly increase the ingestion of
NMs by humans. Although many NMs have been utilized as anti-microbials in nanofood
packaging and as nano-sensor technologies, new health risks are possible due to the migra-
tion of NMs into foods from the packaging. Many nano-techniques can be used in food
packaging, such as NPs (e.g., NP-TiO2, -SiO2, -Ag, and -ZnO), composites of nano-clay,
nano-encapsulation, bio-nanocomposites, nano-emulsions, and nano-sensors [229]. Nano-
agrochemicals, including nanofertilizers and nanopesticides, may cause health risks, as
reported by many studies [179,227,230,231].
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Figure 10. Mechanisms of nanotoxicity for both plants and humans. Nanotoxicity starts with the
application of nanomaterials on soil and plants, which introduces NPs to the food chain and then to
humans [104,217,224,225,227] (free image from https://www.freepik.com/premium-vector/plant-
soil-growth-agriculture-color-line-icon_40823886.htm, accessed on 10 February 2024.
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8. Conclusions and Future Perspectives

Climate change is a global threat facing us all. It includes overall increases in atmo-
spheric temperature and the carbon dioxide content, and changes in precipitation amounts,
timing, and patterns. These changes result in many extreme weather events that represent
great challenges facing the management of natural resources such as water, energy, and
soil, leading to challenges in food production. Heat stress can happen when the temper-
ature exceeds 35 ◦C over time and is challenging to biological systems. Food security
concerns due to heat stress are expected to increase under climate change, and several
countries already suffer from food insecurity. Reductions in the production of crops, fish,
and farm animals have been reported due to heat stress. The main impact of heat stress on
cultivated plants involves the generation ROS and oxidative stress. Strategies including
agronomic, molecular, and nano-approaches are needed to address heat stress in the future.
Nano-management is a vital approach to fight stress that results from high temperatures,
particularly biological nanomaterials. The concept of nano-farming for food security is a
crucial strategy that requires more attention. This is needed at the farm level, as well as for
researchers and decision makers.

This review identifies many questions concerning nano-farming, its features, problems,
and challenges. Nanotechnology has important contributions to make to agro-business and
global farming systems, but the overuse of nanomaterials may create nanotoxicity issues. It
is important to determine management practices and NM application rates that can support
nanofood farming and mitigate stresses such as heat stress on one hand, while avoiding
nanotoxicity and its associated problems on the other hand. Many nanomaterials can now
be found in commercial use, which may pose serious ecological risks. The production of
adequate amounts of safe and healthy food for humanity has become a great challenge.
This requires more efforts at all levels, including the national (for each country) and global
levels. Addressing climate change and heat stress with nano-farming still needs research
into the right management and regulations at the global level.
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