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Abstract

:

Against the backdrop of global environmental challenges and sustainable development goals, this paper pioneers the application of social network analysis to the study of spatial associations in China’s agricultural green development. It not only enhances the understanding of the spatial interconnectivity and network structural characteristics of agricultural green developments, but also captures the complex dependencies and interactions among provinces through a network lens, offering a fresh perspective on regional agricultural cooperation and competition. The study reveals: (1) The spatial network of China’s agricultural green development displays strong overall connectivity and enhanced stability, with regional green development trends becoming increasingly interlinked and interdependent. (2) The network exhibits a clear hierarchical and core-periphery structure which, over time, shows signs of diminishing, indicating a narrowing of developmental disparities among regions. (3) Significant shifts in the roles and positions of provinces within the network occur due to the relocation of industrial focal points and adjustments in development strategies, highlighting the complexity of dynamic changes among regions. (4) The spatial association network can be divided into four main clusters: Net spillover block, Bidirectional spillover block, Net beneficial block, and Broker block, with significant gradient characteristics in the relationships between these clusters, suggesting directional and differential flows and exchanges of resources and information among regions. (5) Geographic proximity, economic development level, informatization, and agricultural technological advancement significantly influenced the development and structural evolution of the network.
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1. Introduction


As economic and social development has progressed, the environmental challenges posed by human economic activities. such as climate change, air pollution, water contamination, and land degradation have emerged as formidable obstacles to global sustainability. These issues are pervasive worldwide, affecting every nation, from the most developed to the developing, with the pressures of ecological deterioration and the quest for sustainable growth. Consequently, these concerns have become focal points of international attention [1]. In response, the concept of green development, which advocates for the harmonious progress of both society and the natural environment, has gained traction. Green development promotes economic growth while safeguarding ecological balance, aiming for sustainability across economic, social, and environmental spheres through efficient resource use, reduced chemical consumption, and enhanced biodiversity. This philosophy has received widespread recognition and adoption internationally [2]. In the realm of agricultural production, which is fundamental to human survival and societal advancement, the stakes involve food security and ecological equilibrium. With the global population on the rise and escalating food demands, agriculture faces heightened challenges. Traditional farming methods, heavily reliant on the extensive use of fertilizers and pesticides, have led to significant environmental issues such as soil degradation, water pollution, and a reduction in biodiversity. Thus, promoting a shift towards agricultural green development has become an imperative choice in global agricultural reform and a critical strategy to ensure food security and achieve sustainability goals [3].



To propel agricultural green development, the European Union has implemented a series of environmental policies for agriculture. These include measures to promote eco-friendly farming practices through agricultural environmental actions and organic farming initiatives, encouraging farmers to adopt sustainable methods [4]. In the United States, the focus has been on fostering innovative agricultural technologies through the Sustainable Agriculture Research and Education program, aimed at enhancing both the environmental and economic efficiency of farming [5]. Meanwhile, Japan has concentrated on developing precision and smart agriculture technologies to reduce resource wastage and increase production efficiency [6]. In China, amid rapid economic growth and population expansion, agricultural green development has become a critical focus for policymakers and academics alike. The socio-economic conditions of a large population and limited per capita resources mandate a green development path for Chinese agriculture [7]. The Chinese government has established numerous policies and measures to support this green transformation, including the “Zero Growth” action plan for chemical fertilizer and pesticide use, and the promotion of integrated water and fertilizer management, green pest control, and ecological breeding techniques [8].These initiatives aim to diminish the environmental impact of agricultural production, improve efficiency and product quality, and achieve a harmonious coexistence between agriculture and environmental conservation.



Agricultural green development is an integral part of China’s strategy to build a strong agricultural nation and has garnered extensive attention from the academic community. Current research on this topic mainly focuses on three areas: firstly, exploring the essence and connotations of agricultural green development [9,10,11]; secondly, constructing and refining the evaluation systems for this development [12,13,14]; and thirdly, analyzing the factors influencing agricultural green development [15,16,17]. With advances in spatial econometric tools, the spatial distribution and dynamic changes in agricultural green development have increasingly become a focal point of study. Scholars are beginning to use spatial econometric models to explore the heterogeneity and spatiotemporal evolution of agricultural green development [18,19,20,21,22]. In the context of China’s deepening unified market strategy, the flow of technology, labor, and capital across regions is accelerating, which makes the spatial relationships between economic development and agricultural activities less constrained by geography and more complex and networked across regions. Although existing studies have revealed the significant spatial effects of agricultural green development, there are several limitations: Firstly, most studies rely on spatial econometric models to explore spatial effects between specific regions, neglecting the spatial network effects at a national scale and lacking a holistic and systematic research perspective. Secondly, these studies are primarily based on attribute data, failing to analyze the internal structure characteristics of the spatial network in agricultural green development, which prevents a comprehensive portrayal of the spatial network features of China’s agricultural development. Lastly, research on agricultural spatial networks often relies on cross-sectional data from a single time point, which does not adequately reveal how spatial network characteristics evolve over time. This limitation hinders a deeper understanding of the dynamic properties of the agricultural green development spatial network, thereby affecting the effective advancement of related policies and practices.



Therefore, this study employs relational data and network analysis methods to deeply explore and elucidate the spatial network characteristics and their dynamic changes in China’s agricultural green development. Initially, an enhanced gravity model is introduced to quantify and interpret the interaction strengths among various regions in China more precisely. Additionally, utilizing social network analysis, the aim is to reveal the spatial network structure, evolutionary trends, and regional clustering characteristics of China’s agricultural green development, and to discuss the roles and impacts of various provinces within this network in depth. Moreover, the study incorporates the Quadratic Assignment Procedure (QAP) analytical method to further examine the factors driving the formation of the agricultural green development spatial network, offering new perspectives and empirical evidence for exploring resource flows and promoting coordinated regional agricultural development. The principal contributions of this research are manifold: from a research perspective, it integrates global network analysis and relational data, providing a novel viewpoint for examining the spatial connections in China’s agricultural green development; methodologically, this paper is the first to apply the modified gravity model, social network analysis, and QAP method to analyze the spatial network characteristics of agricultural green development and its influencing factors, demonstrating the effectiveness of these methods in exploring spatial network structures and dynamics; from the scale of the study, based on data from all 31 provinces in China, it comprehensively analyzes the spatiotemporal evolution and driving forces behind the agricultural green development spatial network. The structure of this article is organized as follows: the second part systematically reviews the related literature; the third part details the research methodologies and data sources; the fourth part delves into the structural characteristics and dynamic changes in China’s agricultural green development spatial network; the fifth part discusses the driving factors behind the formation of this spatial network; the sixth part systematically summarizes the findings and proposes relevant policy recommendations and directions for future research and improvement.




2. Literature Review


Agricultural green development underscores the importance of sustainable agricultural practices, aiming to strike a balance between agricultural production and the natural environment to fulfill the present and future demands for agricultural products while safeguarding the ecological environment. The concept of agricultural green development mirrors contemporary society’s new recognition and requirements for sustainable agricultural advancement, eliciting widespread interest from the academic community upon its introduction. Research within the academic realm concerning agricultural green development predominantly concentrates on the following four areas.



2.1. Definition of the Essence of Agricultural Green Development


The essence of defining the connotation of agricultural green development is fundamental to research in this field. It aids in delineating the scope of study and establishing a shared understanding. According to Kansanga (2019), agricultural green development was defined as a process that respects the laws of nature, utilizing advanced scientific techniques to explore the sustainability of agricultural development [23]. Jaung W (2016) posited that agricultural green development is a fundamentally new developmental concept, demanding a commitment to sustainable development with green institutional construction and innovative mechanisms as safeguards [24]. Alsanius et al. (2021) asserted, after researching the Norwegian agricultural and fisheries sectors, that agricultural green development involves addressing agricultural environmental issues through innovative technologies and maximizing the use of locally sustainable resources [25]. Gargano et al. (2021) contended that agricultural green development involves applying various professional skills to clean production in the agricultural sector, facilitating the transformation of agricultural ecological development [26]. Huang T et al. (2022) viewed agricultural green development as an extension and practice of the green development concept in the agricultural domain [9]. Liu Y et al. (2022) characterized agricultural green development as a systemic undertaking encompassing the entire process of greening in six aspects: agricultural production layout, resource utilization, technological means, industrial systems, agricultural product supply, and consumption [10]. Zhou F et al. (2023) perceived agricultural green development as a comprehensive endeavor, including resource conservation, ecological stability, clean production, supply security, and enhanced benefits [11].




2.2. Measurement and Evaluation of Agricultural Green Development


Currently, the academic community employs two primary approaches to measure the level of agricultural green development. The first involves measurement through individual indicators, primarily encompassing the comprehensive calculation of agricultural green total factor productivity and agricultural carbon emissions [27]. Agricultural green total factor productivity is determined by identifying input and output elements in the agricultural production process, comprehensively assessing the level of agricultural green development from the dimensions of production efficiency and resource consumption. A higher numerical value of agricultural green total factor productivity indicates a faster pace of agricultural green development [22,27,28,29,30,31,32]. Conversely, agricultural carbon emissions are measured by the release of carbon dioxide (CO2) and other greenhouse gases into the atmosphere during agricultural activities in the production and operation processes, gauging the degree of agricultural greening. A lower agricultural carbon emission quantity and intensity indicates a higher level of agricultural green development [33,34,35,36,37,38]. The second approach involves constructing composite indices for measurement from multiple perspectives. Due to the complexity of agricultural green development as a systemic undertaking, and its involvement in various aspects, a single indicator quickly falls short of reflecting its entirety. Therefore, constructing a comprehensive evaluation index system can encompass more abundant information, making the agricultural green development comprehensive evaluation index relatively more convincing [11,12,13,14].




2.3. Spatiotemporal Distribution Characteristics of Agricultural Green Development


As spatial econometric tools and methods advance, the introduction of spatial econometric models propels scholars to delve deeper into the spatial relationships of agricultural green development. Therefore, some researchers utilize the Theil index, Moran index, and spatial Durbin model to analyze the spatial pattern evolution characteristics of agricultural green development [39,40,41]. Deng et al. (2022) found significant regional imbalances in the level of agricultural green development in China, with inter-regional disparities continuously widening, indicating a pronounced spatial correlation in agricultural green development [19]. Liu et al. (2023) discovered significant spatial agglomeration characteristics in the efficiency of agricultural green development in China, with the progression of time posing spatial dispersion risks [20]. Zhou F et al. (2023) employed methods such as kernel density estimation, Moran’s I index, and Markov chain to analyze regional differences and spatial evolution of agricultural green development in China [11]. Zhu et al. (2022) investigated the spatiotemporal convergence of agricultural green development in China through sigma convergence, absolute beta convergence, conditional beta convergence, and dynamic spatial convergence [22]. Yu et al. (2022) demonstrated a significant spatial correlation among the agricultural green development of various provinces in China, without exhibiting absolute α convergence and absolute β convergence characteristics [21].




2.4. Factors Influencing Agricultural Green Development


Regarding research on factors influencing agricultural green development, in terms of economic factors, Wang et al. (2023) found that industrial agglomeration has a positive promoting effect on agricultural green production efficiency. Under different scales of land transfer, the impact of industrial agglomeration on agricultural green production efficiency exhibits heterogeneity [42]. Ge et al. (2023) discovered that urbanization, as a measure to facilitate the migration of rural populations, effectively promotes the transformation of agricultural green development [43]. In terms of policy factors, Deng et al. (2023) found that financial support for agriculture can significantly influence agricultural green development by strengthening rural infrastructure [15]. Sun et al. (2022) found that when the level of regional economic development is low, environmental regulations have limited impact on agricultural green development [16]. In the realm of financial service factors, Wang et al. (2023) discovered that agricultural credit input significantly enhances the total factor productivity of local agricultural green development [17]. Fang et al. (2021) found that agricultural insurance has a significant positive impact on the total factor productivity of agricultural green development [44]. However, Hou et al. (2022) reached the opposite research conclusion, finding that agricultural insurance has an inhibitory effect on agricultural green development [3]. Gao et al. (2022) found that digital inclusive finance promotes agricultural green development by improving green technological levels [45]. Regarding technological factors, Jiang et al. (2022) found that the digital economy significantly enhances the level of green development in Chinese agriculture [46].



Amidst the global environmental challenges and the objectives of sustainable agricultural development, the academic community has extensively studied the spatial effects of China’s agricultural green development, yielding a wealth of research findings. However, these studies have certain limitations. Firstly, while many studies have identified significant spatial spillover effects in China’s agricultural green development, most have employed tools like Moran’s I index and spatial econometric panel models. While these attribute data-based analytical methods can reveal trends and patterns in spatial distribution to a certain extent, they fail to delve into the complex interactions and network structures between regions. The analysis of attribute data is constrained by the characteristics of the data itself, making it difficult to capture dynamic relationships between regions and the structural features of the overall network. Secondly, when discussing the spatial clustering characteristics of agricultural green development, the existing literature often fails to consider all 31 provinces as an interconnected network system, instead performing analysis based on geographic “adjacency” effects alone. This approach overlooks the cross-geographical influences and potential spatial connections between non-adjacent provinces, thus failing to comprehensively reveal the spatial correlation network and overall structure of China’s agricultural green development. Lastly, although traditional spatial econometric methods have certain advantages in analyzing geographic spatial factors, they have not fully considered the structural forms, spatial clustering patterns, and their underlying operational mechanisms of agricultural green development. As a result, these methods fall short of thoroughly depicting and reflecting the intrinsic connections and impact mechanisms between regions in agricultural green development.



In light of these deficiencies, this paper makes concerted efforts in several areas to address the shortcomings of the existing research. Firstly, by introducing complex network analysis methods and constructing a spatial correlation network of agricultural green development, this paper overcomes the limitations inherent in analyses based solely on “attribute data”. This method allows for a comprehensive consideration of both the direct and indirect connections between regions, offering a more detailed depiction of the spatial correlation network structure of agricultural green development across China, and capturing the complex interactions between regions. Secondly, by viewing China’s 31 provinces as a tightly connected network, this study transcends simple geographic “adjacency” or “neighboring” effects. Utilizing a network perspective and methodology, it delves into the nationwide spatial clustering characteristics and their evolutionary processes. This approach enables a holistic understanding of the spatial relational structure of China’s agricultural green development, identifying the interrelationships and key nodes within the complex network structure, and providing a fresh perspective for understanding spatial clustering characteristics.



Moreover, unlike traditional methods that focus solely on geographic spatial factors, this paper further explores the structural forms, clustering patterns, and evolutionary trends of the agricultural green development spatial correlation network. Utilizing tools such as modular and centrality analyses from social network analysis, the paper not only reveals the overall structure and group clustering patterns of China’s Agricultural green development spatial relations but also analyzes the underlying mechanisms and operational dynamics behind these network structures and clustering modes. Finally, this paper does not merely focus on a static description of the spatial correlation network, it also explores the dynamic processes and driving factors behind the evolution of the agricultural green development spatial correlation network structure. By integrating multi-dimensional factors, including economic, social, and environmental aspects, it reveals the factors influencing the evolution of the agricultural green development spatial correlation network, providing theoretical foundations and practical guidance for policy formulation.





3. Data Sources and Methods


3.1. Methods


3.1.1. Refined Gravity Model


The spatial correlation network of agricultural green development constitutes a set of relationships among various regions. Simultaneously, these regions act as “nodes” within the network, and the connections between regions in agricultural green development form the “links” of the network. The strength of connections between regions represents the degree of correlation in agricultural green development. Following the approach of BAI C [47], the traditional gravity model underwent refinement and improvement in this study. The modified gravity model was employed to construct the spatial correlation matrix for agricultural green development among Chinese provinces, portraying the spatial correlation relationships between them. Subsequently, the obtained gravity matrix underwent the removal of extreme values for each row, and the average value was taken as the threshold. The values in the row above the threshold were set to 1, indicating the presence of a correlation in agricultural green development between the provinces at the intersection of that row and column. Conversely, the values below the threshold were set to 0, signifying the absence of a correlation in agricultural green development between the provinces at the intersection of that row and column. The formulated refined gravity model is as follows:


   R  i j   =  L  i j        G i   P i   H i   3     G j   P j   H j   3         D  i j      g i  −  g j        ,      L    i j   =    H i     H i  +  H j     



(1)







In Equation (1), the term Rij denotes the gravitational intensity between province i and province j, while Lij signifies the gravitational coefficient reflecting the proportionate contribution of province i to the connection with province j. Hi and Hj, respectively, stand for the agricultural green development index of provinces i and j, whereas Gi and Gj represent the total agricultural output of provinces i and j. Pi and Pj indicate the rural population of provinces i and j, and gi and gj denote the agricultural per capita output of provinces i and j. Dij represents the spatial distance between the provincial capitals, and Dij/gi − gj encapsulates the economic-geographic distance between province i and province j.




3.1.2. Methodology of Social Network Analysis


Social Network Analysis (SNA) is a methodology delving into phenomena such as network structures, organizational relationships, and the flow of resource elements. Employing “relations” as the fundamental unit of analysis, SNA utilizes graph theory tools and algebraic modeling techniques to investigate the patterns of relationships among entities. This approach unveils the interconnections and interactions between entities, and finds broad applications in fields such as economics, management, and sociology [48]. This study employs Social Network Analysis to scrutinize the overall structural characteristics, individual structural features, and clustering characteristics of the interprovincial agricultural green development spatial correlation network in China.



(1) Overall network structural characteristics.



The overall network structural characteristics delineate the relational structure and the strength of associations between regions. Key metrics encompass network density, network connectivity, network degree, and network efficiency [49]. Specifically, network density is the ratio of the actual number of relationships in the network to the theoretically maximum number of relationships. It gauges the tightness of connections among nodes in the spatial correlation network, reflecting the intensity of the associations between nodes [50]. In this context, a higher network density implies a closer connection between provinces in agricultural green development. The calculation formula is given by (2), where N represents the number of nodes, and L represents the number of existing relationships in the network.


  D =  L  N × ( N − 1 )    



(2)







Network connectivity reflects the robustness of the spatial correlation network, emphasizing the impact of the logarithm of unreachable node pairs within the network. A value of 1 indicates the absence of unreachable node pairs in agricultural green development across regions, signifying the robustness of the spatial correlation network [51].The calculation formula is provided by (3), where N represents the number of nodes in the network, and V represents the number of unreachable nodes in the network.


  C = 1 −   2 V   N × ( N − 1 )    



(3)







The network degree signifies the asymmetrical reachability of the spatial correlation network. A high value in network degree indicates that specific nodes assume a “leadership” role in the spatial correlation network, exercising “control” over the flow of internal elements within the network. However, if these “leadership” nodes encounter disruptions, the supporting force contributing to the formation of the spatial correlation network weakens. Hence, a lower network degree implies a reduced dependence of the spatial correlation network on individual or a few nodes, enhancing the stability of the network [52]. The specific calculation formula is given by (4), where D H represents the network degree, K denotes the actual number of symmetrically reachable node pairs in the network, and max(K) represents the maximum number of possible symmetrically reachable node pairs in the network.


  H = 1 −  K  max ( K )    



(4)







Network efficiency reflects the abundance of network association lines, and a lower network efficiency indicates greater stability in the overall spatial correlation network of agricultural green development [53]. In this study, a higher efficiency in the agricultural green development correlation network implies more redundant connections, indicating lower stability in the spatial correlation network. The specific calculation formula is presented as (5), where E represents network efficiency, M denotes the actual number of redundant connections in the network, and max(M) signifies the maximum number of redundant connections in the network.


  E = 1 −  M  max ( M )    



(5)







(2) Individual network structural characteristics.



In the context of spatial correlation networks, individual network characteristics refer to the specific attributes and status of nodes within a network. Key measurement indicators include: degree centrality, closeness centrality, and betweenness centrality [54]. A higher degree centrality indicates that a region is closer to the center of the agricultural green development spatial correlation network. When the degree centrality of a node is higher than the mean, it is more likely to influence other nodes in the spatial correlation network of agricultural green development. In a network, a higher degree centrality of a node implies greater control over other members in the network [55]. The calculation is performed using Formula (6), where N represents the total number of nodes in the network; inDC is the in-degree of the node; outDC is the out-degree of the node. DCi is the degree centrality of node i, which is the sum of the in-degree and out-degree of node i.


  D  C i  =   ( i n D C + o u t D C )   2 ( N − 1 )    



(6)







Closeness centrality in social network analysis measures the average shortest path length from a node to other nodes. Closeness centrality represents a node’s ability to remain unaffected by other nodes’ “control” in the network. When a node’s closeness centrality is higher than the mean, it indicates that the node is closer to other nodes in the spatial correlation network of agricultural green development. This proximity enhances the advantage of transmitting information and driving the flow of elements [56]. Closeness centrality also reflects the extent to which a node in the network remains unaffected by other nodes. The specific calculation formula is provided as (7), where N is the number of nodes in the network, and di is the geodesic distance from node i to other nodes.


   d i  =  1  N − 1     ∑  j = 1  N    d  i j          CC   i  =  1   d i     



(7)







Betweenness centrality is a metric in social network analysis that measures the number of times a node serves as an intermediary or bridge in the network [57]. Betweenness centrality reflects the role of a node as an intermediary in the spatial correlation network. When a node lies on the shortcut paths between many node pairs, its betweenness centrality is higher. When the betweenness centrality of a node exceeds the mean, its intermediary role in the spatial correlation network becomes more pronounced, influencing and regulating the agricultural green development in other regions. The specific calculation formula is given by (8), where N is the number of nodes in the network, and gjk(i) represents the number of shortest paths passing through node i between province j and province k, where j ≠ k ≠ i and j < k.


    BC  i  =   2   ∑ j N     ∑ k N    g  j k   ( i ) /  g  j k         3  N 2  − 3 N + 2    



(8)








3.1.3. Clustering Network Structural Characteristics


The analysis of clustering structural characteristics in spatial correlation networks involves characterizing the internal structural state of the correlation network and the roles and statuses of its members through spatial clustering. In this study, following the approach of WANG H [58], the sectors in the agricultural green development spatial correlation network are categorized into four types: “Net beneficial block”, “Net spillover block”, “Broker block” and “Bidirectional spillover block”. The specific criteria for classification involve defining a sector as a “Net beneficial block” when the actual internal relationship proportion is greater than the expected internal relationship proportion, and the receiving relationships are significantly greater than the relationships emitted by that sector. Sectors with a clear balance between receiving and emitting relationships are classified as “Bidirectional spillover blocks”. Sectors are labeled as “Net spillover blocks” when the actual internal relationship proportion is less than the expected internal relationship proportion, and the emitted relationships are significantly greater than the received relationships. Sectors with a small difference between emitted and received relationships are designated as “Broker blocks”.




3.1.4. QAP Analysis Method


The Quadratic Assignment Procedure (QAP) is a non-parametric method suitable for situations where the data structures are complex and the relationships between variables are intertwined. It objectively reflects the correlations and regression relationships between variables. After analyzing the structural characteristics of the agricultural green development spatial correlation network, it is necessary to further examine the factors driving changes in this network. These factors can induce variations in the network, leading to different structural characteristics. Due to the presence of multicollinearity among variables in the spatial correlation network, it can affect the estimation results of regression models. The QAP model, not requiring assumptions of independence and normal distribution, effectively addresses the issue of multicollinearity in relationship data. The application of the QAP model to analyze relationship data yields more robust results [59]. Therefore, this study utilizes the QAP model to analyze the driving factors of the agricultural green development spatial correlation network. The selected influencing factors and their representations are as follows.



(1) Geographical spatial proximity (Distance): represented using an interprovincial adjacency weight matrix, with a value of 1 for adjacent provinces and 0 otherwise. (2) Economic development level (Pgdp): represented by per capita GDP. (3) Environmental regulation level (Envi): represented by the proportion of investment in completed industrial pollution control projects to industrial GDP. (4) Industrial structure (Indus): represented by the proportion of GDP from the tertiary industry to the region’s GDP. (5) Agricultural technology investment level (AgriS): represented by the amount of agricultural science and technology R&D investment. (6) Informationization level (Infor): represented by per capita postal and telecommunication business volume. (7) Financial support for agriculture (Fin): represented by the proportion of agricultural expenditure to total fiscal expenditure. (8) Economic openness level (Open): represented by the proportion of import and export trade to GDP. (9) Urbanization level (Urban): represented by the proportion of urban population to total population. (10) Human capital level (Human): represented by the average years of education for the population. Based on this analysis, a quantification model for the driving factors of the agricultural green development spatial correlation network is established (Formula (9)).


    Agd   ij   = f (    Distance      ij      , Pgdp    ij      ,   Indus    ij   ,      AgriS    ij      ,   Infor    ij      ,   Envi    ij      , Fin    ij      ,   Open    ij      ,   Urban    ij      , Human   ij  )  



(9)







In Formula (9), Agdij represents the matrix of the agricultural green development spatial correlation network, and Pgdpij, Enviij, Indusij, AgriSij, Inforij, Finij, Openij, Urbanij, and Humanij are the standardized difference matrices for each respective factor. Distanceij is the adjacency weight matrix.





3.2. Data Sources


Based on the availability of data, this study focuses on the 31 provinces and municipalities within Mainland China, excluding Taiwan, Hong Kong, and Macau regions. This study selects all 31 provinces of China as its research subjects, encompassing over 95% of the country’s territory. Consequently, the sample provinces can, to a considerable extent, represent the state of agricultural green development in China. The research timeline spans from 2003 to 2020. Data regarding the evaluation indicators for China’s agricultural green development, gravity model calculation data, and variables for driving factors are sourced from the corresponding annual volumes of the “China Statistical Yearbook”, “China Environment Statistical Yearbook”, “China Rural Statistical Yearbook”, “China Population and Employment Statistics Yearbook”, and “China Agricultural Statistical Data”, along with provincial statistical yearbooks and the provincial annual statistical data from the National Bureau of Statistics of China’s website. The map data for China’s provincial administrative boundaries are obtained from the National Geomatics Center of China. For instances where certain regional variables are missing data, a linear interpolation method is employed for supplementation.




3.3. The Measurement of Agricultural Green Development Levels


Agricultural green development is characterized by harnessing the initiative of agricultural producers to harmonize the economic, social, and ecological benefits of agricultural development. It emphasizes an all-encompassing and comprehensive approach to greening, fundamentally integrating “green” practices throughout the entire process and all aspects of agricultural production, distribution, and consumption. This sustainable method of agriculture aims to minimize the environmental impact while simultaneously enhancing the agricultural productivity and economic benefits. As a systemic project, agricultural green development encompasses a rich variety of content. Drawing upon the scholarly work of Zhou (2023) on the construction and measurement of an evaluation index system for green agricultural development, this paper develops an assessment framework for agricultural green development from five dimensions: resource conservation, ecological stability, clean production, secure supply, and enhanced efficiency [11], as illustrated in Table 1.





4. Results and Analysis


4.1. Analysis of the Overall Network Characteristics


Table 2 and Figure 1 revealed that the connectivity degree of the spatial correlation network for agricultural green development in China was consistently registered at one, maintaining a stable condition throughout the study period. The research indicates that no province was isolated in China’s green agricultural progression during this time; each maintained direct or indirect connections with others, ensuring robust network connectivity. The network density fluctuated between 0.2978 and 0.3473, showing a slight downward trend, yet remaining relatively stable. This reflects that, despite provinces maintaining some level of agricultural green development ties, the closeness of these connections weakened slightly. The primary reason for this is the rapid economic development and industrial restructuring in China, with some provinces prioritizing industrial and service sectors, potentially leading to reduced focus and investment in green agricultural initiatives, thus diminishing inter-provincial collaboration in this area.



The network’s hierarchy level oscillated between 0.1250 and 0.3307, indicating a degree of hierarchical structure within the network that generally showed a declining trend. This suggests that, while some provinces held central positions in the network, the prominence of these central positions has gradually lessened. This change is closely linked to the implementation of China’s rural revitalization strategy. As the strategy progresses, provinces previously on the periphery of the network have begun to enhance their status, not only through advancements in agricultural green development within these regions, but also due to increased agricultural technology and resource exchanges with central provinces. Thus, the implementation of this strategy is instrumental in balancing development across provinces and promoting a more equitable network of agricultural green development. The network efficiency exhibited a fluctuating upward trend, ranging from 0.5356 to 0.6115, indicating a multi-layered phenomenon of spatial spillover in China’s agricultural sector, pointing to a need for further enhancement of the network’s stability.




4.2. Analysis of Individual Network Characteristics


4.2.1. Analysis of Network Degree Centrality


This paper selects data from the years 2003, 2010, 2015, and 2020, employing Ucinet 6.0 software to calculate the centrality of the agricultural green development spatial association network. Through a temporal analysis and a comprehensive horizontal comparison among provinces, the study observes the dynamic evolution of the network’s degree centrality in agricultural green development, as illustrated in Table 3 and Figure 2.



Table 3 and Figure 2 revealed that, from 2003 to 2020, the spatial network of China’s agricultural green development underwent significant transformations, with profound shifts in the roles and influence of various regions. In the initial stages of development, economically advanced areas such as Beijing, Shanghai, and Tianjin occupied central positions within the network. These regions, boasting higher levels of agricultural economic development and large agricultural product markets, had stringent demands for both the quantity and quality of agricultural goods. Their advantages in attracting talent, capital investments, and resource allocation cemented their central status in the network. However, as urbanization accelerated and the industrial and service sectors became more prominent, the scale of agricultural production in these areas rapidly diminished. The decreasing proportion of agriculture in socio-economic activities led to a significant decline in their roles and impact within the agricultural green development spatial network.



Simultaneously, the Heilongjiang Province in the Northeast, endowed with abundant arable land, water resources, and favorable climatic conditions, displayed clear advantages in transitioning towards agricultural green development. The province rapidly transformed its agricultural sector by adopting advanced agricultural technologies, promoting large-scale production, and implementing modern farm management models. Heilongjiang led the nation in agricultural scale and mechanization. Coupled with the operation of large state-owned farms and the application of agricultural science and technology, the province progressively assumed a central position within China’s agricultural green development spatial correlation network, exerting a strong exemplary influence on other regions.



Moreover, coastal economically developed regions such as Jiangsu, Zhejiang, and Fujian, benefiting from their rich arable lands and advantageous geographical conditions, have consistently maintained core positions within the network. These areas, equipped with advanced agricultural technologies and vast consumer markets, continuously attract substantial agricultural resources. Their superior natural environments and high levels of socio-economic development have enabled them to lead in the network over the long term, significantly influencing the flow of agricultural green development resources in other regions. Conversely, most areas in Northwest China, particularly provinces like Gansu, Xinjiang, and western Tibet, due to environmental and geographical constraints, have remained on the periphery of the agricultural green development spatial correlation network, with relatively weak connections to the network’s central regions.




4.2.2. Analysis of Network Closeness Centrality


Utilizing data from the years 2003, 2010, 2015, and 2020, this study employs Ucinet 6.0 software to assess the closeness centrality within the agricultural green development spatial association network. This analysis reveals the dynamic evolution of closeness centrality in China’s agricultural green development spatial association network (Table 4 and Figure 3).



According to Table 4 and Figure 3, in the initial stages of agricultural green development, the eastern coastal provinces established close ties with other regions by absorbing key resources such as labor and agricultural products from the central and western areas, along with external investments and technology exports. This strategy not only advanced the local agricultural sustainability, but also enhanced the provinces’ network closeness centrality through interaction and resource sharing within the network. However, provinces like Jiangxi, Hainan, Shanxi, and Jilin, burdened by their relatively undeveloped agricultural economies, unfavorable geographical positions, and transportation constraints, maintained peripheral ties with other provinces, positioning them on the margins of the agricultural green development spatial association network. This reveals that, in the early phases, resource flow and information exchange within the network tended to concentrate around economically developed provinces, seldom reaching those with lower economic development levels.



As China’s economy rapidly expanded and underwent significant industrial restructuring, major economic activities in regions like Shanghai, Beijing, and Tianjin increasingly focused on non-agricultural sectors such as industry and services, significantly reducing the scale and input in agricultural production. This shift weakened these areas’ agricultural ties with other provinces, gradually marginalizing their positions in the agricultural green development spatial association network. Concurrently, provinces such as Heilongjiang leveraged their advanced agricultural technologies and abundant resources to swiftly enhance their level of agricultural green development. This not only spurred agricultural growth within the province, but also, through close cooperation with other provinces, significantly reduced the developmental distance to other nodes, thereby elevating Heilongjiang’s network closeness centrality and establishing it as a pivotal player in agricultural green development. Moreover, provinces like Jiangsu, Zhejiang, and Fujian, with their solid agricultural foundations and strategic locations, have consistently maintained core positions within the agricultural green development network, fostering tight connections and consistently short developmental distances with other regions.




4.2.3. Analysis of Network Betweenness Centrality


This study utilizes data from the years 2003, 2010, 2015, and 2020, employing Ucinet 6.0 software to calculate the betweenness centrality of the agricultural green development spatial association network. This analysis aims to reflect the dynamic evolution of betweenness centrality among provinces within China’s agricultural green development spatial association network (Table 5 and Figure 4).



Table 5 and Figure 4 revealed that, during the initial stages of agricultural green development, regions such as Beijing, Shanghai, Tianjin, and Liaoning emerged as key convergence points within the agricultural sector, thanks to their ability to concentrate a vast array of talents, capital, and informational resources. This aggregation not only propelled the green agricultural development of these areas, but also significantly influenced the developmental trajectories of other regions, endowing them with high network betweenness centrality. However, as the economy progressed and industrial focus shifted, these regions saw a diminished influence over the flow of agricultural green development resources. This was due to economic diversification and a focus on high-tech and service industries, which gradually decreased agriculture’s proportion relative to other industries, thereby affecting these provinces’ mediating role in the agricultural green development spatial network. Meanwhile, economically prosperous coastal provinces such as Jiangsu, Zhejiang, and Fujian, with their robust agricultural bases, advanced agricultural technology, and vast markets, continuously attracted various resources related to agricultural development. These provinces maintained close cooperation in agricultural pursuits with other regions, wielding long-term significant influence on the flow of green development elements, reflected in their high and stable network betweenness centrality.



Particularly noteworthy is Heilongjiang Province which, with its abundant arable land and favorable natural conditions, has become one of China’s foremost areas in agricultural mechanization and large-scale development. The province, hosting numerous state-owned farms renowned for their advanced technology and standardized management, has become a focal point for capital, information, and technological resources, thereby strengthening its role as a bridge in linking regional agricultural green development. Heilongjiang’s role not only fostered its own agricultural progress, but also positively impacted the surrounding areas and the nation’s agricultural green development at large. Moreover, it was observed that some provinces in central and western China, such as Gansu and Guizhou, due to their geographical advantages and proximity to multiple provinces, became critical intermediaries in cross-regional collaboration and agricultural resource flow, effectively promoting regional agricultural green development and optimal resource allocation, thus playing a pivotal role in the regional agricultural economic development.





4.3. Cluster Characteristic Analysis of Spatial Association Network


To further unveil the internal structure within China’s agricultural green development spatial association network, following the approach of some scholars [58,59] the study utilizes the iterative converging method (CONCOR) provided by Ucinet 6.0 software to analyze the network’s clustering characteristics. The maximum module division depth parameter is set to 2, and the convergence criterion parameter to 0.2, dividing the network into four clustering modules. Based on indicators such as the number of incoming and outgoing relationships and the proportion of internal relationships among the modules, the roles of different blocks within the network are identified. The results are used to draw a diagram depicting the clustering block relationships in China’s agricultural green development spatial association network (Figure 5).



Figure 5 demonstrated that China’s agricultural green development exhibits pronounced spatial clustering, with the spatial association network being divided into four major blocks, totaling 282 relationships. Among these, internal relationships within blocks number 39, while inter-block relationships count for 243, indicating significant connections and spillover effects between blocks. The first block comprises six provinces and cities: Beijing, Tianjin, Xinjiang, Chongqing, Inner Mongolia, and Shandong, with an internal relationship count of 10, 45 outgoing relationships, and 31 incoming relationships. The gap between the incoming and outgoing relationships is relatively small, and the actual proportion of internal relationships exceeds the expected, categorizing it as a “Bidirectional spillover block”. Within this block, Beijing and Tianjin, as significant economic and consumption centers in China, import agricultural products from other regions and export resources such as technology, capital, and information, displaying bidirectional resource flow characteristics. Provinces like Xinjiang, Chongqing, Inner Mongolia, and Shandong, endowed with rich natural resources and elements for agricultural green development, are key production bases for agricultural products in China and serve as important consumption and trading markets. The bidirectional flow of agricultural green resources with other regions is markedly evident.



The second block consists of six provinces and cities: Jiangsu, Zhejiang, Hainan, Hubei, Heilongjiang, and Fujian. This block has an incoming relationship count of 96, significantly exceeding its outgoing relationship count of 48, with the actual proportion of internal relationships being greater than the expected, categorizing it as a “Net beneficial block”. Hainan Province, with its unique tropical climate, warm and moist conditions, and abundant sunshine, emerges as an important area for the cultivation and processing of tropical crops in China. The province’s distinctive resource and environmental advantages in tropical agriculture attract substantial inflows of capital, talent, and technological resources, positioning Hainan within the “Net Gain block”. Jiangsu, Zhejiang, Hubei, Heilongjiang, and Fujian provinces, with their natural advantages and market superiority in agricultural green development, have a solid foundation in agricultural development. These provinces have achieved high levels of agricultural production technology, management, and green agricultural standards, attracting and acquiring agricultural green development resources from other regions. The quantity of external resources these provinces attract and absorb significantly surpasses what they release, thus also categorizing them within the “Net beneficial block”.



The third block is composed of six provinces: Shanxi, Jiangxi, Anhui, Hebei, Gansu, and Henan. This block has an incoming relationship count of 84 and an outgoing relationship count of 45, indicating a considerable volume of both incoming and outgoing relationships. However, the actual proportion of internal relationships is less than expected, categorizing it as the “Broker block”. These provinces serve as geographical connectors facilitating the flow of agricultural resources between the eastern and western regions of China. Shanxi and Hebei provinces, located in North China, connect agricultural production areas and markets in the Northeast, East, and North China regions, playing a crucial “West-to-East” bridging role. Jiangxi and Anhui provinces, situated in the East China region, connect the flow of agricultural resources between South China and East China, acting as significant hubs. Gansu province, positioned in Northwest China, serves as an essential passage connecting the Northwest and Southwest regions, playing a vital role in the circulation and exchange of regional agricultural resources. These areas function as “bridges” and “intermediaries” in the circulation of agricultural products, resource allocation, and technology dissemination, making these provinces part of the “Broker block” within China’s agricultural green development spatial association network.



The fourth block consists of 13 provinces and cities: Shanghai, Guangdong, Guangxi, Jilin, Sichuan, Hunan, Yunnan, Tibet, Shaanxi, Liaoning, Qinghai, Ningxia, and Guizhou. It has an outgoing relationship count of 105 and an incoming relationship count of 32, with the number of outgoing relationships far exceeding incoming ones. Additionally, the actual proportion of internal relationships is less than expected, categorizing it as a “Net spillover block”. Shanghai and Guangdong, as economically developed areas of China, have industries dominated by manufacturing and services, with agriculture representing a very low proportion of the socioeconomic structure. The agricultural development potential in these regions is extremely limited, leading to an outflow of agricultural development funds, technology, and market resources.



The region of Heilongjiang, with its clear agricultural development advantages, exerts a strong attraction for agricultural resources in neighboring provinces such as Liaoning and Jilin, making these provinces part of the “Net spillover block”. Provinces like Hunan, Sichuan, and Yunnan have advantages in agricultural technology, information, and talent within their regions, spilling over agricultural green development resources to surrounding provinces, thus also categorized as “Net spillover block”. Western provinces such as Shaanxi, Guangxi, Sichuan, Yunnan, Tibet, Qinghai, Ningxia, and Guizhou, with their remote geographical locations and harsh ecological and climatic conditions, have weakened agricultural green development potential within their regions. This leads to an outflow of local agricultural resources, displaying a clear characteristic of resource outflow and categorizing them as “Net spillover block”.




4.4. Analysis of Driving Factors in China’s Spatially Correlated Network


To identify the driving factors for the development of the spatial network in China’s agricultural green development, this study selects variable data from the years 2003, 2006, 2011, 2014, 2017, and 2020, based on the criteria established earlier. The number of random permutations was set at 5000 (Table 6). The adjusted goodness of fit, R², ranged between 0.368 and 0.522, indicating an overall satisfactory fit.



From Table 6, it is discernible that: (1) The coefficient of geographical spatial proximity is significantly positive, indicating that neighboring regions are more likely to facilitate the exchange of elements, thereby forming spatial associations. Observing the changes in coefficients, the coefficient of geographical spatial proximity grew from 0.160 to 0.277, suggesting that as time progresses, the role of geographical spatial proximity in enhancing the spatial associations of agricultural green development becomes increasingly significant. (2) The coefficients for the difference in economic development levels across regions are significantly negative, indicating that the closer the economic development levels between regions, the stronger the spatial association in agricultural green development. This is because when economic development levels are similar, land use patterns and demands for technology and labor in the two regions are alike. Additionally, under the influence of market mechanisms, agricultural resource elements are more easily transferred between regions with similar levels of economic development. (3) The coefficients for the difference in informatization levels between regions were not significant initially, but became significantly negative later on, indicating an increasing significance of informatization levels on the spatial associations of agricultural green development. This is primarily due to the advancement of the digital economy, where similar levels of informatization between regions facilitate the easier spread and sharing of technology, knowledge, and information. (4) The coefficients indicating the difference in openness levels between regions are significantly negative, showing that the closer the openness levels between regions, the stronger the spatial association in agricultural green development. The reason is that similar levels of openness allow agricultural producers and related industries to introduce and share resources, information, and market opportunities, fostering a synergistic effect on agricultural green development and reflecting tighter economic ties and market integration between regions more easily. (5) The coefficient for the difference in agricultural science and technology investment levels between regions is significantly negative, suggesting that the closer the agricultural science and technology investment levels between regions, the easier it is for technology and knowledge to spread and be shared, strengthening the spatial association in agricultural green development. (6) The coefficient for the difference in fiscal support for agriculture between regions is significantly positive, indicating that the greater the gap in fiscal support for agriculture between regions, the stronger the spatial association in agricultural green development. This may be because regions with greater fiscal support for agriculture can effectively attract resources such as technology, talent, and research and development funds, enhancing the spatial association in agricultural green development. (7) The coefficients for the difference in levels of environmental regulation, human capital, industrial structure, and urbanization between regions are not significant and all negative, indicating that the closer the levels of human capital, industrial structure, and urbanization between regions, the stronger the spatial association in agricultural green development. However, their current role and impact are very limited.





5. Discussion


This paper analyzed the interprovincial panel data on agricultural green development of 31 provinces in China from 2003 to 2020, employing social network analysis and QAP regression methods to deeply explore the structure and evolution of the spatial association network in agricultural green development, as well as its driving factors. The findings not only reveal the spatial associations and network characteristics of China’s agricultural green development, but also identify the key factors influencing the formation and evolution of these spatial relationships.



Initially, unlike current academic achievements regarding the spillover effects of agricultural green development [18,19,20,21,22,39,40,41], this paper is the first to apply social network analysis to this field. It meticulously examines the structure and evolution of the interprovincial agricultural green development network in China. By constructing a spatial association network, it reveals dynamic changes in the network structure, offering a fresh perspective for understanding the spatial patterns of agricultural green development. It also highlights the changing roles of regions within the network, particularly noting the long-standing central positions of Jiangsu, Zhejiang, and Fujian, due to their natural conditions and market advantages. Thus, it underscores the importance of considering regional characteristics and the necessity of optimizing agricultural resource allocation when formulating related policies.



Furthermore, the study finds that the overall connectivity of China’s agricultural green development spatial association network is robust, with no isolated entities. This indicates that agricultural green development relationships are tightly interwoven and mutually dependent across the country, exhibiting a clear spatial spillover effect, consistent with findings from other researchers [11,14,60,61]. However, there is significant room to enhance the connectivity and stability of China’s agricultural green development network, suggesting a future need to further strengthen regional cooperation and resource sharing.



Additionally, this paper analyzes the internal structure of China’s agricultural green development network, classifying it into four distinct functional blocks, thereby deepening understanding of interactive patterns between regions in the process of agricultural green development. The identification of the Broker block, in particular, provides evidence of the key role in regional information flow and resource sharing, a topic seldom discussed in previous studies. Finally, the research on the drivers of the agricultural green development spatial association network reveals that geographic proximity and economic development levels significantly influence the formation of this network, aligning with conclusions from other scholars. These insights offer a foundation for devising targeted policies aimed at reinforcing regional cooperation and promoting coordinated development.



Although this study provides a deep understanding of the structure and evolution of China’s agricultural green development spatial association network, it has its limitations. Firstly, due to data availability constraints, this study could not incorporate data at the prefectural city level, which could enhance the precision of future analyses if included. Additionally, agricultural green development is influenced by a myriad of complex factors, and while this study focused on specific ones, future research should consider a broader array of potential influencing factors to gain a more comprehensive understanding. In summary, by systematically analyzing and discussing the spatial association network and its drivers in China’s agricultural green development, this study not only enriches existing research, but also offers valuable insights for formulating policies that promote agricultural green development. Future studies could delve deeper into the characteristics and changes in the spatial association network under different geographical and socio-economic backgrounds, providing more detailed strategies and recommendations for achieving sustainable development goals in Chinese agriculture.




6. Conclusions and Policy Implications


This study utilized provincial panel data from China spanning 2003–2020, employing social network analysis and QAP regression methods to systematically explore the spatial association network structure of China’s agricultural green development and its evolutionary process, as well as to analyze the factors driving these network changes. The main findings are as follows:



(1) From an overall network perspective, there is a significant spatial association effect in the interprovincial agricultural green development of China. No province is isolated within the network; each is connected directly or indirectly with others, showing good connectivity and accessibility. The network has a hierarchical nature, although this hierarchy is on a declining trend. The agricultural green development network in China experiences considerable overlapping, indicating that network stability needs further enhancement.



(2) From the perspective of individual network characteristics, as urbanization and industrialization progress in China, regions such as Beijing, Shanghai, and Tianjin have seen a declining trend in their status within the agricultural green development spatial association network. Provinces like Jiangsu, Zhejiang, and Fujian, with superior agricultural development conditions, advanced agricultural technologies, and large consumer markets, have a significant impact on the agricultural green development of other regions and maintain a core position in the network over the long term. Heilongjiang Province, leveraging its abundant arable land, water resources, and favorable climatic conditions, has rapidly developed its green agriculture, increasingly influencing other regions and rapidly rising in role and influence within the network. Some central and western provinces, such as Gansu, Shanxi, and Guizhou, also play vital roles in regional agricultural cooperation and resource flow.



(3) From the perspective of spatial clustering features, the network of China’s agricultural green development can be divided into four blocks. The first block, the “Bilateral spillover block”, consists of Beijing, Tianjin, Xinjiang, Chongqing, Inner Mongolia, and Shandong. These regions are characterized by a bidirectional flow of agricultural green resources. The second block, the “Net beneficiary block”, includes Jiangsu, Zhejiang, Heilongjiang, Fujian, Hainan, and Hubei, where there is a predominant inflow of agricultural green development resources. The third block, the “Broker block”, is made up of Shanxi, Jiangxi, Anhui, Hebei, Gansu, and Henan. Due to socio-economic development and geographical factors, these provinces play a pivotal “East-to-West gateway” role in China’s agricultural green development spatial association network. The fourth block, the “Net spillover block”, comprises Shanghai, Guangdong, Guangxi, Jilin, Sichuan, Hunan, Yunnan, Tibet, Shaanxi, Liaoning, Qinghai, Ningxia, and Guizhou. Influenced by socio-economic development and agricultural resource endowments, these regions function as a “Net spillover block” within the network.



(4) As for driving and influencing factors, geographical proximity, economic development level, level of informatization, openness, and agricultural technology investment significantly impact the formation of China’s agricultural green development spatial association network. This indicates that the closer these factors align, the stronger the spatial network association between regions.



Based on the conclusion of this study, the following policy recommendations can be extended:



(1) To optimize the top-level design of agricultural green development, it is imperative that the nation strengthen the regulation and formulation of macro policies to ensure that the overarching plans for agricultural green development align with their execution. This includes establishing and enhancing laws and regulations related to agricultural green development, providing policy guidance, and fiscal support to ensure the coherence and effectiveness of agricultural green development policies. Additionally, it is crucial to bolster interprovincial agricultural cooperation mechanisms to facilitate the cross-regional flow and sharing of technology, capital, and information. Finally, the government should promote dialogues and cooperation on agricultural green development between regions, establish win–win mechanisms, and address potential conflicts and barriers in cross-regional cooperation, thereby optimizing the allocation and flow of agricultural resources.



(2) To implement targeted agricultural green development policies, it is crucial to develop differentiated strategies based on the status and role of each province within the agricultural green development network. For instance, core provinces such as Jiangsu and Zhejiang could be governed by policies that encourage them to continue leading in technological innovation and resource allocation. For provinces serving as “brokers” like Gansu and Henan, their functions in regional coordination and resource distribution should be strengthened by providing specific incentives and resource support to enhance their intermediary roles. Furthermore, establishing support mechanisms that enable resource-rich provinces to assist less developed ones should be explored. This could include sharing and promoting funds, technology, and management expertise, thus fostering balanced green development across regional agriculture.



(3) To deeply implement a strategy of coordinated regional development, firstly, explore reforms in market systems and the market-oriented allocation of production factors to enhance the efficiency and effectiveness of agricultural resource allocation. This includes simplifying administrative procedures, reducing barriers to agricultural mobility across provinces and cities, enhancing market transparency and fairness, and facilitating the free flow of capital, technology, and labor nationwide. Secondly, strengthen inter-regional cooperation in agricultural science and technology, particularly in the fields of digital and smart agriculture. Utilize modern information technologies such as big data, cloud computing, and the Internet of Things to increase the precision and sustainability of agricultural production. Lastly, further enhance the openness of central and western regions by introducing advanced agricultural technology and production experience from developed countries and regions to promote green agricultural development in these areas. Simultaneously, increase fiscal support for agriculture in the central and western regions, optimize the agricultural investment environment, and strengthen agricultural production technology education and training. These measures aim to enhance the attractiveness of these regions for green agricultural development, promoting the inflow of capital, talent, and technology, and thus supporting the transformational goals of green agricultural development in the central and western regions.







Author Contributions


Conceptualization, F.Z.; Methodology, F.Z.; Software, F.Z.; Writing—original draft, F.Z.; Writing—review & editing, F.Z.; Visualization, C.W.; Supervision, C.W.; Project administration, F.Z.; Funding acquisition, C.W. All authors have read and agreed to the published version of the manuscript.




Funding


This research was funded by Suzhou University Quality Engineering Project (No. szxy2023hhkc07); Anhui Province Philosophy and Social Science Planning Youth Project (No. AHSKQ2021D178); Suzhou University’s 2021 Doctoral Research Launch Fund Project (No. 2021BSK027); Key Project of Humanities and Social Sciences Research in Anhui Province Universities (No. SK2021A0707); Suzhou University Key Scientific Research Project (No. 2021yzd11); Anhui Province Outstanding Young Teacher Training Project (No. YQYB2023049).




Data Availability Statement


All data used in this paper are collected from the China Statistical Yearbook, China Rural Statistical Yearbook, China Agricultural Statistical Yearbook, China Environmental Statistical Yearbook, China Energy Statistical Yearbook, China Agricultural Machinery Industry Yearbook, China Science and Technology Statistical Yearbook, China Population and Employment Statistical Yearbook, and Chinese provincial statistical yearbooks. “Not applicable” for studies not involving humans or animals. The data used to support the findings of this study are available from the corresponding author upon request.




Acknowledgments


Yajie Wang contributed to the revision of the manuscript.




Conflicts of Interest


The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as potential conflicts of interest.




References


	



Fang, G.; Yang, K.; Chen, G.; Tian, L. Environmental protection tax superseded pollution fees, does China effectively abate ecological footprints? J. Clean. Prod. 2023, 388, 135846. [Google Scholar] [CrossRef]

	



Xiong, W.; Guo, X.; Sun, Y.; Ou, J.-J. Green standard and green development: Theory and empirical evidence. J. Clean. Prod. 2023, 414, 137768. [Google Scholar] [CrossRef]

	



Hou, D.; Wang, X. Inhibition or Promotion?—The Effect of Agricultural Insurance on Agricultural Green Development. Front. Public Health 2022, 10, 910534. [Google Scholar] [CrossRef] [PubMed]

	



Kalinowska, B.; Borawski, P.; Beldycka-Borawska, A.; Klepacki, B.; Perkowska, A.; Rokicki, T. Sustainable Development of Agriculture in Member States of the European Union. Sustainability 2022, 14, 4184. [Google Scholar] [CrossRef]

	



Lamm, A.J.; Lamm, K.W.; Trojan, S.; Sanders, C.E.; Byrd, A.R. A Needs Assessment to Inform Research and Outreach Efforts for Sustainable Agricultural Practices and Food Production in the Western United States. Foods 2023, 12, 1630. [Google Scholar] [CrossRef]

	



Washizu, A.; Nakano, S. Exploring the characteristics of smart agricultural development in Japan: Analysis using a smart agricultural kaizen level technology map. Comput. Electron. Agric. 2022, 198, 107001. [Google Scholar] [CrossRef]

	



Chen, X. Review of China’s agricultural and rural development: Policy changes and current issues. China Agric. Econ. Rev. 2009, 1, 121–135. [Google Scholar] [CrossRef]

	



Wu, X.; Xie, M.; Xu, S.; Fei, R.; Pan, A. Does agricultural fiscal policy improve green development in China’s agriculture sector? Evidence from energy and environmental perspectives. Environ. Dev. Sustain. 2024, 30, 1–23. [Google Scholar] [CrossRef]

	



Huang, T.; Xiong, B. Space Comparison of Agricultural Green Growth in Agricultural Modernization: Scale and Quality. Agriculture 2022, 12, 1067. [Google Scholar] [CrossRef]

	



Liu, Y.; Wang, X. Promoting Competitiveness of Green Brand of Agricultural Products Based on Agricultural Industry Cluster. Wirel. Commun. Mob. Comput. 2022, 2022, 7824638. [Google Scholar] [CrossRef]

	



Zhou, F.; Wen, C. Research on the Level of Agricultural Green Development, Regional Disparities, and Dynamic Distribution Evolution in China from the Perspective of Sustainable Development. Agriculture 2023, 13, 1441. [Google Scholar] [CrossRef]

	



Chen, C.; Zhang, H. Evaluation of Green Development Level of Mianyang Agriculture, Based on the Entropy Weight Method. Sustainability 2023, 15, 7589. [Google Scholar] [CrossRef]

	



Hou, D.; Wang, X. Measurement of Agricultural Green Development Level in the Three Provinces of Northeast China under the Background of Rural Vitalization Strategy. Front. Public Health 2022, 10, 824202. [Google Scholar] [CrossRef]

	



Liu, Y.; Sun, D.; Wang, H.; Wang, X.; Yu, G.; Zhao, X. An evaluation of China’s agricultural green production: 1978–2017. J. Clean. Prod. 2020, 243, 118483. [Google Scholar] [CrossRef]

	



Deng, H.; Zheng, W.; Shen, Z.; Streimikiene, D. Does fiscal expenditure promote green agricultural productivity gains: An investigation on corn production. Appl. Energy 2023, 334, 120666. [Google Scholar] [CrossRef]

	



Sun, Y. Environmental regulation, agricultural green technology innovation, and agricultural green total factor productivity. Front. Environ. Sci. 2022, 10, 955954. [Google Scholar] [CrossRef]

	



Wang, F.; Du, L.; Tian, M. Does Agricultural Credit Input Promote Agricultural Green Total Factor Productivity? Evidence from Spatial Panel Data of 30 Provinces in China. Int. J. Environ. Res. Public Health 2023, 20, 529. [Google Scholar] [CrossRef]

	



Bao, H.; Liu, X.; Xu, X.; Shan, L.; Ma, Y.; Qu, X.; He, X. Spatial-temporal evolution and convergence analysis of agricultural green total factor productivity-evidence from the Yangtze River Delta Region of China. PLoS ONE 2023, 18, e0271642. [Google Scholar] [CrossRef] [PubMed]

	



Deng, Y.; Cui, Y.; Khan, S.U.; Zhao, M.; Lu, Q. The spatiotemporal dynamic and spatial spillover effect of agricultural green technological progress in China. Environ. Sci. Pollut. Res. 2022, 29, 27909–27923. [Google Scholar] [CrossRef]

	



Liu, Y.; Lu, C.; Chen, X. Dynamic analysis of agricultural green development efficiency in China: Spatiotemporal evolution and influencing factors. J. Arid Land 2023, 15, 127–144. [Google Scholar] [CrossRef]

	



Yu, Z.; Lin, Q.; Huang, C. Re-Measurement of Agriculture Green Total Factor Productivity in China from a Carbon Sink Perspective. Agriculture 2022, 12, 2025. [Google Scholar] [CrossRef]

	



Zhu, L.; Shi, R.; Mi, L.; Liu, P.; Wang, G. Spatial Distribution and Convergence of Agricultural Green Total Factor Productivity in China. Int. J. Environ. Res. Public Health 2022, 19, 8786. [Google Scholar] [CrossRef] [PubMed]

	



Kansanga, M.; Andersen, P.; Kpienbaareh, D.; Mason-Renton, S.; Atuoye, K.; Sano, Y.; Antabe, R.; Luginaah, I. Traditional agriculture in transition: Examining the impacts of agricultural modernization on smallholder farming in Ghana under the new Green Revolution. Int. J. Sustain. Dev. World Ecol. 2019, 26, 11–24. [Google Scholar] [CrossRef]

	



Jaung, W.; Putzel, L.; Bull, G.Q.; Kozak, R.; Markum. Certification of forest watershed services: A Q methodology analysis of opportunities and challenges in Lombok, Indonesia. Ecosyst. Serv. 2016, 22, 51–59. [Google Scholar] [CrossRef]

	



Alsanius, B.W.; Karlsson, M.; Rosberg, A.K.; Dorais, M.; Naznin, M.T.; Khalil, S.; Bergstrand, K.-J. Light and Microbial Lifestyle: The Impact of Light Quality on Plant-Microbe Interactions in Horticultural Production Systems—A Review. Horticulturae 2019, 5, 41. [Google Scholar] [CrossRef]

	



Gargano, G.; Licciardo, F.; Verrascina, M.; Zanetti, B. The Agroecological Approach as a Model for Multifunctional Agriculture and Farming towards the European Green Deal 2030—Some Evidence from the Italian Experience. Sustainability 2021, 13, 2215. [Google Scholar] [CrossRef]

	



Chen, Y.; Miao, J.; Zhu, Z. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar] [CrossRef]

	



Hu, J.; Zhang, X.; Wang, T. Spatial Spillover Effects of Resource Misallocation on the Green Total Factor Productivity in Chinese Agriculture. Int. J. Environ. Res. Public Health 2022, 19, 15718. [Google Scholar] [CrossRef]

	



Huang, X.; Feng, C.; Qin, J.; Wang, X.; Zhang, T. Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. Sci. Total Environ. 2022, 829, 154477. [Google Scholar] [CrossRef]

	



Liu, D.; Zhu, X.; Wang, Y. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]

	



Liu, S.; Lei, P.; Li, X.; Li, Y. A nonseparable undesirable output modified three-stage data envelopment analysis application for evaluation of agricultural green total factor productivity in China. Sci. Total Environ. 2022, 838, 155947. [Google Scholar] [CrossRef] [PubMed]

	



Zhong, S.; Li, Y.; Li, J.; Yang, H. Measurement of total factor productivity of green agriculture in China: Analysis of the regional differences based on China. PLoS ONE 2021, 16, e0257239. [Google Scholar] [CrossRef] [PubMed]

	



Guo, Z.; Zhang, X. Carbon reduction effect of agricultural green production technology: A new evidence from China. Sci. Total Environ. 2023, 874, 162483. [Google Scholar] [CrossRef]

	



Huang, X.; Xu, X.; Wang, Q.; Zhang, L.; Gao, X.; Chen, L. Assessment of Agricultural Carbon Emissions and Their Spatiotemporal Changes in China, 1997–2016. Int. J. Environ. Res. Public Health 2019, 16, 3105. [Google Scholar] [CrossRef] [PubMed]

	



Liu, Y.; Gao, Y. Measurement and impactor analysis of agricultural carbon emission performance in Changjiang economic corridor. Alex. Eng. J. 2022, 61, 873–881. [Google Scholar] [CrossRef]

	



Pang, J.; Li, H.; Lu, C.; Lu, C.; Chen, X. Regional Differences and Dynamic Evolution of Carbon Emission Intensity of Agriculture Production in China. Int. J. Environ. Res. Public Health 2020, 17, 7541. [Google Scholar] [CrossRef]

	



Wen, S.; Hu, Y.; Liu, H. Measurement and Spatial-Temporal Characteristics of Agricultural Carbon Emission in China: An Internal Structural Perspective. Agriculture 2022, 12, 1749. [Google Scholar] [CrossRef]

	



Wu, D.; Zhang, Z.; Liu, D.; Zhang, L.; Li, M.; Khan, M.I.; Li, T.; Cui, S. Calculation and analysis of agricultural carbon emission efficiency considering water-energy-food pressure: Modeling and application. Sci. Total Environ. 2024, 907, 167819. [Google Scholar] [CrossRef]

	



Chen, Z.; Li, X.; Xia, X. Measurement and spatial convergence analysis of China’s agricultural green development index. Environ. Sci. Pollut. Res. 2021, 28, 19694–19709. [Google Scholar] [CrossRef]

	



Guo, H.; Xu, S.; Pan, C. Measurement of the Spatial Complexity and Its Influencing Factors of Agricultural Green Development in China. Sustainability 2020, 12, 9259. [Google Scholar] [CrossRef]

	



Huang, X.; Wang, X.; Chen, B.; Li, F.; Su, S.; Zhang, T. Temporal Trend and Regional Disparity of Agricultural Green Total Factor Productivity in China: Data Envelopment Analysis with Biennial Environmental Technology. Discret. Dyn. Nat. Soc. 2022, 2022, 2219779. [Google Scholar] [CrossRef]

	



Wang, Z.; Zhang, X.; Lu, H.; Kang, X.; Liu, B. The Effect of Industrial Agglomeration on Agricultural Green Production Efficiency: Evidence from China. Sustainability 2023, 15, 12215. [Google Scholar] [CrossRef]

	



Ge, P.; Liu, T.; Wu, X.; Huang, X. Heterogenous Urbanization and Agricultural Green Development Efficiency: Evidence from China. Sustainability 2023, 15, 5682. [Google Scholar] [CrossRef]

	



Fang, L.; Hu, R.; Mao, H.; Chen, S. How crop insurance influences agricultural green total factor productivity: Evidence from Chinese farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar] [CrossRef]

	



Gao, Q.; Cheng, C.; Sun, G.; Li, J. The Impact of Digital Inclusive Finance on Agricultural Green Total Factor Productivity: Evidence from China. Front. Ecol. Evol. 2022, 10, 905644. [Google Scholar] [CrossRef]

	



Jiang, Q.; Li, J.; Si, H.; Su, Y. The Impact of the Digital Economy on Agricultural Green Development: Evidence from China. Agriculture 2022, 12, 1107. [Google Scholar] [CrossRef]

	



Bai, C.; Zhou, L.; Xia, M.; Feng, C. Analysis of the spatial association network structure of China’s transportation carbon emissions and its driving factors. J. Environ. Manag. 2020, 253, 109765. [Google Scholar] [CrossRef] [PubMed]

	



Lee, C.-Y.; Chong, H.-Y.; Liao, P.-C.; Wang, X. Critical Review of Social Network Analysis Applications in Complex Project Management. J. Manag. Eng. 2018, 34, 04017061. [Google Scholar] [CrossRef]

	



Sun, L.; Qin, L.; Taghizadeh-Hesary, F.; Zhang, J.; Mohsin, M.; Chaudhry, I.S. Analyzing carbon emission transfer network structure among provinces in China: New evidence from social network analysis. Environ. Sci. Pollut. Res. 2020, 27, 23281–23300. [Google Scholar] [CrossRef]

	



Lin, Z.; Zhang, Y.; Gong, Q.; Chen, Y.; Oksanen, A.; Ding, A.Y. Structural Hole Theory in Social Network Analysis: A Review. IEEE Trans. Comput. Soc. Syst. 2022, 9, 724–739. [Google Scholar] [CrossRef]

	



Dong, S.; Ren, G.; Xue, Y.; Liu, K. Urban green innovation’s spatial association networks in China and their mechanisms. Sustain. Cities Soc. 2023, 93, 104536. [Google Scholar] [CrossRef]

	



Liu, P.; Qin, Y.; Luo, Y.; Wang, X.; Guo, X. Structure of low-carbon economy spatial correlation network in urban agglomeration. J. Clean. Prod. 2023, 394, 136359. [Google Scholar] [CrossRef]

	



Sun, Y.; Hou, G. Analysis on the Spatial-Temporal Evolution Characteristics and Spatial Network Structure of Tourism Eco-Efficiency in the Yangtze River Delta Urban Agglomeration. Int. J. Environ. Res. Public Health 2021, 18, 2577. [Google Scholar] [CrossRef] [PubMed]

	



Zhong, W.; An, H.; Fang, W.; Gao, X.; Dong, D. Features and evolution of international fossil fuel trade network based on value of emergy. Appl. Energy 2016, 165, 868–877. [Google Scholar] [CrossRef]

	



Yu, G.; Xiong, C.; Xiao, J.; He, D.; Peng, G. Evolutionary analysis of the global rare earth trade networks. Appl. Math. Comput. 2022, 430, 127249. [Google Scholar] [CrossRef]

	



Wang, Y.; Lei, Y.; Fan, F.; Li, L.; Liu, L.; Wang, H. Inter-provincial sectoral embodied CO2 net-transfer analysis in China based on hypothetical extraction method and complex network analysis. Sci. Total Environ. 2021, 786, 147211. [Google Scholar] [CrossRef] [PubMed]

	



Moghadam, H.E.; Mohammadi, T.; Kashani, M.F.; Shakeri, A. Complex networks analysis in Iran stock market: The application of centrality. Phys. A-Stat. Mech. Appl. 2019, 531, 121800. [Google Scholar] [CrossRef]

	



Wang, H.; Ge, Q. Analysis of the Spatial Association Network of PM2.5 and Its Influencing Factors in China. Int. J. Environ. Res. Public Health 2022, 19, 12753. [Google Scholar] [CrossRef] [PubMed]

	



Su, Y.; Yu, Y.-Q. Spatial association effect of regional pollution control. J. Clean. Prod. 2019, 213, 540–552. [Google Scholar] [CrossRef]

	



Cheng, L.; Gao, Y.; Dai, X. Spatio-temporal comprehensive measurement of China’s agricultural green development level and associated influencing factors. PLoS ONE 2023, 18, e0288599. [Google Scholar] [CrossRef]

	



Li, E.; Zhang, M.; Li, R.; Deng, Q. Influencing Factors and Improvement Suggestions for Agricultural Green Development Performance: Empirical Insights from China. Chin. Geogr. Sci. 2023, 33, 917–933. [Google Scholar] [CrossRef]








[image: Agriculture 14 00683 g001] 





Figure 1. Trends in overall characteristic indicator changes in the Spatial Connectivity Network. 
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Figure 2. Evolution of degree centrality in the spatial association network. 
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Figure 3. Evolution of closeness centrality in the spatial association network. 






Figure 3. Evolution of closeness centrality in the spatial association network.



[image: Agriculture 14 00683 g003]







[image: Agriculture 14 00683 g004] 





Figure 4. Evolution of betweenness centrality in the spatial association network. 
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Figure 5. Interrelationships among the four major clusters in spatial association network. 
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Table 1. Comprehensive evaluation index system for agricultural green development.
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Primary Indicator

	
Secondary

Indicator

	
Tertiary Indicator

	
Measurement Method

	
Weight Value






	
Resource Conservation

	
Conservation of cultivated land resources

	
Cultivated land retention rate (%)

	
(The current year’s arable land area divided by the arable land area of the previous year) × 100%

	
0.0370




	
Per capita cultivated area (hm2)

	
(The arable land area divided by the rural population) × 100%

	
0.0391




	
Conservation of water resources

	
Proportion of water-saving irrigation area (%)

	
(The area under water-efficient irrigation divided by the total irrigated area) × 100%

	
0.0382




	
Agricultural water accounted for the proportion of total water use (%)

	
(The agricultural water consumption divided by the total water usage) × 100%

	
0.0397




	
Ecological Stability

	
Ecological conservation

	
The proportion of forest in the land area (%)

	
(The forested area in proportion to the total land area) × 100%

	
0.0417




	
Proportion of wetland in land area (%)

	
(The wetland area relative to the national land area) × 100%

	
0.0394




	
Ecological restoration

	
Ecological afforestation country area proportion (%)

	
(The afforested area for ecological purposes in relation to the national land area) × 100%

	
0.0371




	
Annual growth rate of soil erosion control area (%)

	
(The difference between the current year’s soil and water conservation area and the previous year’s soil and water conservation area, divided by the soil and water conservation area of the previous year) × 100%

	
0.0386




	
Clean Production

	
Energy factor consumption

	
Diesel oil application rate (kg/CNY 10,000)

	
The agricultural diesel consumption in relation to the total agricultural output value

	
0.0377




	
Electricity efficiency (kW·h/CNY 10,000)

	
The rural electricity consumption relative to the total agricultural output value

	
0.0405




	
Chemical factor consumption

	
Fertilizer application rate (kg/CNY 10,000)

	
The fertilizer application rate in relation to the total agricultural output value

	
0.0395




	
Agricultural film application rate (kg/CNY 10,000)

	
The quantity of agricultural film usage in proportion to the total agricultural output value

	
0.0410




	
Rate of pesticide application (kg/CNY 10,000)

	
he amount of pesticide application in relation to the total agricultural output value

	
0.0408




	
Supply Security

	
Numerical security

	
Per capita grain production (kg)

	
Statistical yearbook data.

	
0.0377




	
Meat production per capita (kg)

	
Statistical yearbook data.

	
0.0387




	
Total grain production (10,000 t)

	
Statistical yearbook data.

	
0.0388




	
Total meat production (10,000 t)

	
Statistical yearbook data.

	
0.0393




	
Quality assurance

	
Number of certified green food products

	
Statistical yearbook data.

	
0.0381




	
Number of green food enterprises

	
Statistical yearbook data.

	
0.0371




	
Quality and safety of agricultural products routine inspection pass rate (%)

	
Data from the Market Supervision Administration.

	
0.0371




	
Efficiency Enhancement

	
Economic benefits

	
Labor productivity (CNY 10,000)

	
The total agricultural output value divided by the number of people employed in the primary sector

	
0.0372




	
Land yield rate (CNY 10,000/hm2)

	
The total agricultural output value divided by the cultivated crop area

	
0.0370




	
Disposable income of rural residents (CNY)

	
Data from the National Bureau of Statistics.

	
0.0373




	
Social benefits

	
Urban-rural income gap

	
Urban residents’ disposable income divided by rural residents’ disposable income

	
0.0371




	
Engel coefficient of rural household (%)

	
Statistical yearbook data.

	
0.0372




	
Agricultural carbon emission intensity (t/CNY 10,000)

	
Agricultural carbon emissions divided by the total agricultural output value

	
0.0370











 





Table 2. Overall characteristic indicator values of the Spatial Connectivity Network.
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	Year
	Density
	Connectedness
	Hierarchy
	Efficiency





	2003
	0.3215
	1
	0.3307
	0.5540



	2004
	0.3183
	1
	0.2921
	0.5678



	2005
	0.3366
	1
	0.2921
	0.5402



	2006
	0.3366
	1
	0.2921
	0.5425



	2007
	0.3366
	1
	0.2876
	0.5609



	2008
	0.3366
	1
	0.2876
	0.5540



	2009
	0.3452
	1
	0.2876
	0.5425



	2010
	0.3473
	1
	0.2861
	0.5356



	2011
	0.3366
	1
	0.2861
	0.5517



	2012
	0.3312
	1
	0.2407
	0.5609



	2013
	0.3290
	1
	0.2407
	0.5701



	2014
	0.3376
	1
	0.2401
	0.5609



	2015
	0.3269
	1
	0.2401
	0.5701



	2016
	0.3129
	1
	0.2381
	0.5908



	2017
	0.3000
	1
	0.2381
	0.6092



	2018
	0.2978
	1
	0.1806
	0.6115



	2019
	0.3011
	1
	0.1806
	0.6092



	2020
	0.3032
	1
	0.1250
	0.6069










 





Table 3. Degree centrality of the spatial association network.
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2003

	
2010

	
2015

	
2020




	
Province

	
Centrality

	
Ranking

	
Centrality

	
Ranking

	
Centrality

	
Ranking

	
Centrality

	
Ranking






	
Beijing

	
62.5000

	
1

	
38.7931

	
6

	
27.6498

	
20

	
19.9005

	
26




	
Tianjin

	
49.1071

	
3

	
21.5517

	
29

	
27.6498

	
21

	
17.4129

	
28




	
Hebei

	
33.4821

	
11

	
38.7931

	
7

	
29.9539

	
17

	
29.8507

	
11




	
Shanxi

	
17.8571

	
29

	
25.8621

	
22

	
32.2581

	
11

	
49.7512

	
5




	
Inner Mongolia

	
20.0893

	
27

	
34.4828

	
11

	
27.6498

	
22

	
19.9005

	
27




	
Liaoning

	
44.6429

	
4

	
43.1034

	
3

	
48.3871

	
3

	
22.3881

	
23




	
Jilin

	
15.6250

	
30

	
25.8621

	
23

	
16.1290

	
31

	
22.3881

	
24




	
Heilongjiang

	
11.1607

	
31

	
28.0172

	
20

	
39.1705

	
6

	
59.7015

	
2




	
Shanghai

	
58.0357

	
2

	
53.8793

	
1

	
23.0415

	
27

	
14.9254

	
31




	
Jiangsu

	
40.1786

	
5

	
45.2586

	
2

	
57.6037

	
1

	
62.1891

	
1




	
Zhejiang

	
40.1786

	
6

	
36.6379

	
9

	
43.7788

	
4

	
54.7264

	
3




	
Anhui

	
29.0179

	
18

	
30.1724

	
19

	
32.2581

	
12

	
44.7761

	
7




	
Fujian

	
40.1786

	
7

	
32.3276

	
14

	
39.1705

	
7

	
52.2388

	
4




	
Jiangxi

	
20.0893

	
28

	
15.0862

	
31

	
18.4332

	
29

	
17.4129

	
29




	
Shandong

	
33.4821

	
12

	
40.9483

	
5

	
50.6912

	
2

	
29.8507

	
12




	
Henan

	
31.2500

	
14

	
36.6379

	
10

	
36.8664

	
8

	
42.2886

	
8




	
Hubei

	
24.5536

	
25

	
32.3276

	
15

	
36.8664

	
9

	
37.3134

	
9




	
Hunan

	
26.7857

	
21

	
23.7069

	
26

	
27.6498

	
23

	
29.8507

	
13




	
Guangdong

	
37.9464

	
9

	
21.5517

	
30

	
20.7373

	
28

	
27.3632

	
17




	
Guangxi

	
22.3214

	
26

	
23.7069

	
27

	
18.4332

	
30

	
24.8756

	
21




	
Hainan

	
26.7857

	
22

	
25.8621

	
24

	
25.3456

	
26

	
27.3632

	
18




	
Chongqing

	
31.2500

	
15

	
32.3276

	
16

	
29.9539

	
18

	
29.8507

	
14




	
Sichuan

	
33.4821

	
13

	
38.7931

	
8

	
32.2581

	
13

	
29.8507

	
15




	
Guizhou

	
40.1786

	
8

	
43.1034

	
4

	
34.5622

	
10

	
27.3632

	
19




	
Yunnan

	
31.2500

	
16

	
34.4828

	
12

	
32.2581

	
14

	
27.3632

	
20




	
Tibet

	
29.0179

	
19

	
28.0172

	
21

	
29.9539

	
19

	
29.8507

	
16




	
Shaanxi

	
26.7857

	
23

	
32.3276

	
17

	
32.2581

	
15

	
24.8756

	
22




	
Gansu

	
31.2500

	
17

	
34.4828

	
13

	
41.4747

	
5

	
49.7512

	
6




	
Qinghai

	
29.0179

	
20

	
25.8621

	
25

	
27.6498

	
24

	
17.4129

	
30




	
Ningxia

	
26.7857

	
24

	
23.7069

	
28

	
27.6498

	
25

	
22.3881

	
25




	
Xinjiang

	
35.7143

	
10

	
32.3276

	
18

	
32.2581

	
16

	
34.8259

	
10











 





Table 4. Closeness centrality in the spatial association network.
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2003

	
2010

	
2015

	
2020




	
Province

	
Closeness

	
Ranking

	
Closeness

	
Ranking

	
Closeness

	
Ranking

	
Closeness

	
Ranking






	
Beijing

	
93.7500

	
1

	
69.7674

	
8

	
61.2245

	
22

	
57.6923

	
26




	
Tianjin

	
78.9474

	
3

	
57.6923

	
30

	
61.2245

	
23

	
53.5714

	
31




	
Hebei

	
66.6667

	
11

	
71.4286

	
6

	
63.8298

	
16

	
61.2245

	
16




	
Shanxi

	
56.6038

	
29

	
62.5000

	
22

	
63.8298

	
17

	
75.0000

	
5




	
Inner Mongolia

	
58.8235

	
26

	
68.1818

	
11

	
62.5000

	
20

	
57.6923

	
27




	
Liaoning

	
75.0000

	
4

	
75.0000

	
3

	
76.9231

	
3

	
58.8235

	
22




	
Jilin

	
56.6038

	
30

	
62.5000

	
23

	
56.6038

	
30

	
58.8235

	
23




	
Heilongjiang

	
53.5714

	
31

	
63.8298

	
20

	
69.7674

	
6

	
83.3333

	
2




	
Shanghai

	
88.2353

	
2

	
85.7143

	
1

	
60.0000

	
26

	
55.5556

	
30




	
Jiangsu

	
71.4286

	
5

	
76.9231

	
2

	
85.7143

	
1

	
85.7143

	
1




	
Zhejiang

	
71.4286

	
6

	
69.7674

	
9

	
73.1707

	
4

	
78.9474

	
3




	
Anhui

	
63.8298

	
18

	
65.2174

	
19

	
65.2174

	
11

	
71.4286

	
7




	
Fujian

	
71.4286

	
7

	
66.6667

	
14

	
69.7674

	
7

	
76.9231

	
4




	
Jiangxi

	
58.8235

	
27

	
54.5455

	
31

	
57.6923

	
27

	
56.6038

	
28




	
Shandong

	
66.6667

	
12

	
73.1707

	
5

	
78.9474

	
2

	
62.5000

	
11




	
Henan

	
65.2174

	
14

	
69.7674

	
10

	
68.1818

	
8

	
69.7674

	
8




	
Hubei

	
61.2245

	
23

	
66.6667

	
15

	
68.1818

	
9

	
66.6667

	
9




	
Hunan

	
62.5000

	
21

	
61.2245

	
24

	
62.5000

	
21

	
62.5000

	
12




	
Guangdong

	
69.7674

	
9

	
58.8235

	
29

	
56.6038

	
31

	
61.2245

	
17




	
Guangxi

	
60.0000

	
25

	
61.2245

	
25

	
57.6923

	
28

	
58.8235

	
24




	
Hainan

	
58.8235

	
28

	
60.0000

	
27

	
57.6923

	
29

	
60.0000

	
18




	
Chongqing

	
65.2174

	
15

	
66.6667

	
16

	
63.8298

	
18

	
62.5000

	
13




	
Sichuan

	
66.6667

	
13

	
71.4286

	
7

	
65.2174

	
12

	
62.5000

	
14




	
Guizhou

	
71.4286

	
8

	
75.0000

	
4

	
66.6667

	
10

	
60.0000

	
19




	
Yunnan

	
65.2174

	
16

	
68.1818

	
12

	
65.2174

	
13

	
60.0000

	
20




	
Tibet

	
63.8298

	
19

	
63.8298

	
21

	
63.8298

	
19

	
62.5000

	
15




	
Shaanxi

	
62.5000

	
22

	
66.6667

	
17

	
65.2174

	
14

	
60.0000

	
21




	
Gansu

	
65.2174

	
17

	
68.1818

	
13

	
71.4286

	
5

	
75.0000

	
6




	
Qinghai

	
63.8298

	
20

	
61.2245

	
26

	
61.2245

	
24

	
56.6038

	
29




	
Ningxia

	
61.2245

	
24

	
60.0000

	
28

	
61.2245

	
25

	
58.8235

	
25




	
Xinjiang

	
68.1818

	
10

	
66.6667

	
18

	
65.2174

	
15

	
65.2174

	
10











 





Table 5. Betweenness centrality in the spatial association network.
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2003

	
2010

	
2015

	
2020




	
Province

	
Betweenness

	
Ranking

	
Betweenness

	
Ranking

	
Betweenness

	
Ranking

	
Betweenness

	
Ranking






	
Beijing

	
8.8756

	
1

	
2.6894

	
7

	
0.9087

	
20

	
0.2492

	
24




	
Tianjin

	
6.0172

	
3

	
0.4269

	
29

	
0.9087

	
21

	
0.1731

	
29




	
Hebei

	
1.1923

	
15

	
2.0951

	
9

	
0.8860

	
22

	
1.2212

	
11




	
Shanxi

	
0.2311

	
28

	
0.6956

	
23

	
1.6602

	
11

	
4.2152

	
7




	
Inner Mongolia

	
0.3505

	
27

	
1.5141

	
16

	
0.7623

	
26

	
0.2443

	
25




	
Liaoning

	
3.6892

	
4

	
3.8827

	
3

	
5.7401

	
3

	
0.1983

	
26




	
Jilin

	
0.1411

	
30

	
0.6355

	
25

	
0.1484

	
31

	
0.1983

	
27




	
Heilongjiang

	
0.0198

	
31

	
0.6662

	
24

	
2.6393

	
7

	
8.5752

	
2




	
Shanghai

	
8.2618

	
2

	
5.7491

	
1

	
0.3921

	
28

	
0.0692

	
31




	
Jiangsu

	
2.1939

	
7

	
4.1152

	
2

	
7.4408

	
1

	
8.6693

	
1




	
Zhejiang

	
2.1939

	
8

	
2.8035

	
6

	
3.9756

	
4

	
5.9466

	
3




	
Anhui

	
1.4630

	
12

	
1.6413

	
15

	
2.2278

	
9

	
4.9243

	
6




	
Fujian

	
2.2919

	
6

	
1.9650

	
11

	
2.9042

	
5

	
5.8058

	
4




	
Jiangxi

	
0.1576

	
29

	
0.2422

	
31

	
0.3826

	
29

	
0.1753

	
28




	
Shandong

	
1.2826

	
13

	
2.9000

	
5

	
5.9753

	
2

	
1.0745

	
13




	
Henan

	
1.7636

	
11

	
2.4623

	
8

	
2.7954

	
6

	
3.6522

	
8




	
Hubei

	
0.5843

	
25

	
1.7385

	
14

	
1.6142

	
13

	
1.3684

	
10




	
Hunan

	
0.8027

	
22

	
0.6032

	
27

	
0.7647

	
25

	
0.6123

	
17




	
Guangdong

	
1.9100

	
9

	
0.2763

	
30

	
0.3089

	
30

	
0.4960

	
21




	
Guangxi

	
0.4419

	
26

	
0.5913

	
28

	
0.4218

	
27

	
0.5319

	
19




	
Hainan

	
0.9786

	
16

	
1.2706

	
19

	
1.2778

	
18

	
1.1619

	
12




	
Chongqing

	
0.9011

	
19

	
1.3865

	
17

	
1.3042

	
17

	
0.7819

	
15




	
Sichuan

	
0.9150

	
18

	
1.8101

	
13

	
1.5298

	
14

	
0.6239

	
16




	
Guizhou

	
1.7830

	
10

	
3.4390

	
4

	
1.6491

	
12

	
0.6085

	
18




	
Yunnan

	
0.9011

	
20

	
1.9282

	
12

	
1.3491

	
16

	
0.5287

	
20




	
Tibet

	
0.8724

	
21

	
1.1916

	
20

	
1.4691

	
15

	
0.8442

	
14




	
Shaanxi

	
0.7753

	
23

	
1.3834

	
18

	
1.0919

	
19

	
0.2537

	
23




	
Gansu

	
0.9463

	
17

	
1.0367

	
21

	
2.2575

	
8

	
5.6451

	
5




	
Qinghai

	
1.1952

	
14

	
0.8766

	
22

	
0.8061

	
23

	
0.1324

	
30




	
Ningxia

	
0.6128

	
24

	
0.6165

	
26

	
0.8061

	
24

	
0.3280

	
22




	
Xinjiang

	
2.3468

	
5

	
2.0802

	
10

	
1.7633

	
10

	
2.3005

	
9











 





Table 6. QAP regression results for driving factors.
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	2003
	2006
	2009
	2011
	2014
	2017
	2020





	Distance
	0.160 ***

(0.000)
	0.170 ***

(0.000)
	0.200 ***

(0.000)
	0.190 ***

(0.000)
	0.207 ***

(0.000)
	0.268 ***

(0.000)
	0.277 ***

(0.000)



	Pgdp
	−0.020 **

(0.036)
	−0.070 ***

(0.010)
	−0.096 **

(0.028)
	−0.088 **

(0.047)
	−0.054 *

(0.088)
	−0.011 **

(0.043)
	−0.036 **

(0.026)



	Infor
	−0.006

(0.452)
	−0.006

(0.461)
	−0.018

(0.361)
	−0.024 **

(0.029)
	−0.057 **

(0.036)
	−0.009 **

(0.043)
	−0.105 **

(0.039)



	Open
	−0.106 **

(0.016)
	−0.003 **

(0.047)
	−0.081 **

(0.032)
	−0.070 **

(0.048)
	−0.132 ***

(0.001)
	−0.100 **

(0.015)
	−0.007 **

(0.043)



	AgriS
	−0.050

(0.184)
	−0.124 ***

(0.003)
	−0.060 **

(0.089)
	−0.049 **

(0.012)
	−0.031 **

(0.021)
	−0.164 ***

(0.000)
	−0.126 ***

(0.005)



	Envi
	−0.001

(0.482)
	−0.052

(0.128)
	−0.055

(0.108)
	−0.032

(0.248)
	−0.027

(0.244)
	−0.089 **

(0.034)
	−0.050

(0.156)



	Fin
	0.078 **

(0.035)
	0.061 *

(0.082)
	0.109 **

(0.013)
	0.118 ***

(0.006)
	0.063 *

(0.072)
	0.009 **

(0.042)
	0.035 **

(0.028)



	Human
	−0.081 **

(0.045)
	−0.071 *

(0.075)
	−0.059

(0.109)
	−0.009

(0.451)
	−0.019

(0.324)
	−0.019

(0.354)
	−0.013

(0.385)



	Indus
	−0.009

(0.423)
	−0.037

(0.216)
	−0.088 **

(0.028)
	−0.082 **

(0.034)
	−0.035

(0.171)
	−0.036

(0.240)
	−0.054

(0.159)



	Urban
	−0.111 **

(0.022)
	−0.011

(0.121)
	−0.086 *

(0.053)
	−0.050

(0.176)
	−0.074 *

(0.058)
	−0.061

(0.115)
	−0.044

(0.211)



	Adj-R2
	0.522
	0.498
	0.401
	0.368
	0.506
	0.454
	0.374



	Number
	5000
	5000
	5000
	5000
	5000
	5000
	5000







Note: ***, ** and * indicate that coefficients are statistically significant at 1%, 5% and 10%, respectively.
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