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Abstract: Seagrass ecosystems have been declining, and restorations are conducted in many parts
of the world to compensate for habitat loss and restore the ecosystem services seagrasses provide.
Assessment of transplantation success requires the monitoring of the level of biodiversity between
the donor and transplanted sites. In this study, we assessed a seagrass ecosystem after restoration in
terms of the diversity of marine organisms using environmental DNA (eDNA) to compare four sites:
(1) bare sand, (2) a natural meadow of Cymodocea serrulata, (3) a natural meadow of Halophila ovalis,
and (4) a transplanted seagrass meadow. The results showed the presence of 3 domains, 34 phyla,
59 classes, 92 orders, 155 families, 156 genera, and 121 species. Proteobacteria, Actinobacteria,
Cyanobacteria, and Bacteroidetes were the dominant bacterial phyla. Among eukaryotes, Phrag-
moplastophyta/Charophyta (epiphytes), Ascomycota (fungi), Cnidaria (jelly fish), and Arthropoda
(Crabs and bivalves) were the dominant phyla. Dugong tails and commercial species (sea cucumber,
dog conch, and swimming crab) have been observed in both the natural and transplanted meadows.
Relative abundance among the four sites was significantly different. There were no differences in
species richness and evenness between the four sites and no differences in species richness and
evenness between the natural meadows and the transplanted seagrass meadow. It is possible that
transplanted seagrass meadow can be successfully restored and established and can provide habitat
for fauna and microbes. Additionally, fauna are not limited in their capacity to move between the
natural and transplanted habitats. This study provides an assessment of biodiversity of restored
seagrass patches and a better understanding of a seagrass ecosystem after restoration. However, to
assess seagrass ecosystem services after restoration and the success of restoration actions, long-term
monitoring of marine organism diversity and additional assessments are needed.

Keywords: conservation; eDNA; ecosystem service; seagrass restoration; transplant

1. Introduction

Seagrasses provide ecosystem functions and processes such as food provision, pathogen
trapping, shoreline protection, climate regulation, carbon sequestration, sediment trap-
ping, global biogeochemical cycling, and nursery grounds, as well as shelters to diverse
communities of marine organisms [1–3]. However, the worldwide area of seagrass mead-
ows has shrunk by around 29% compared with the area first recorded in 1879 [4], and
some research has predicted that seagrass coverage will decrease by around 30–40% in
the next 100 years [5]. Destructive fishing practices, sediment loading, boating, shipping,
and coastal development are the main anthropogenic activities driving seagrass meadow
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degradation [6,7]. Climate change also plays a role in seagrass degradation. Higher tem-
peratures and carbon dioxide levels were reported to reduce growth rates and increase
the mortality of seagrass [8,9]. The reduced area of seagrass meadows has changed the
diversity and abundance of the seagrass benthic community because of habitat loss [10].
Fauna growth rates change [11], epifauna community structures shift [10], and in turn, the
benthic bacterial community adapts [12].

A number of experimental restorations have been implemented to regenerate declining
seagrass meadows [13,14]. Successful restorations have been demonstrated by studies of
Zostera marina in Virginia, USA [15] and of Z. muelleri at Whangarei, New Zealand [16].
Restored seagrass beds may attract mobile macrofauna and provide refuge and food for
other organisms [17,18]. As time passes, newly restored seagrass beds are expected to
improve ecosystem functions and services such as seawater quality, carbon sequestration,
nursery habitats, and coastal protection [19–21]. However, some studies have demonstrated
that success in restoring seagrass meadows can be patchy and that few have been successful
in the long term [22].

The restoration and rehabilitation of seagrass meadows is influenced by biotic and
abiotic factors such as predation, sediment resuspension, and sediment type [23,24]. Sea-
grass transplantation has been the most widely employed restoration technique but may be
impacted by the choice of donor site, transplant site, seagrass species, and transplantation
methods. The level of biodiversity may also play an important role in seagrass restora-
tion. Therefore, the success of seagrass transplantation requires an accurate assessment
that includes a comparison of diversity between the transplant area and the donor site.
Environmental DNA or eDNA has been used for detecting the DNA of organisms and
assessing biodiversity in seagrass ecosystems [25]. This approach can rapidly and efficiently
evaluate and monitor biodiversity. However, small segments and degradation of eDNA
limits the ability to detect species composition. eDNA in combination with traditional
monitoring methods such as field survey and underwater video have the potential to assess
and monitor the ecosystem services of restored seagrass meadows.

In Thailand, seagrass loss is around 20–30%, and it is driven by human activities such
as coastal development and sediment runoff [26,27]. To restore or rehabilitate seagrass
ecosystem and services, seagrass restoration is recommended. Restoration has become a
strategy to repopulate degraded seagrass meadows. However, there was no assessment
of biodiversity. Then, in this observational study, we assess the biodiversity of a restored
seagrass meadow and compare this with the biodiversity of donor seagrass meadows using
environmental DNA (eDNA) and field surveys.

2. Materials and Methods
2.1. Study Site and Sample Collections

We conducted our investigation on the intertidal seagrass meadow at Kham Bay
(7◦30.414′ N, 99◦18.406′ E), Trang Province, in the Andaman Sea, Thailand (Figure 1).
In this area, two main seasons are monsoon dominated. The rainy season from May to
October is dominated by the southwest monsoon, and the dry season from November
to April is dominated by the northeast monsoon. This study site has been dominated by
two seagrass species: Halophila ovalis and Cymodocea serrulata. However, the coverage of
seagrasses in Trang province and Libong Island, which are the largest seagrass meadows
in Thailand, have declined by 30% [26]. Coastal development and sedimentation from
human activities were suggested as the main threats to seagrass meadows [27]. Then, the
restoration and management activities in Trang province have been undertaken to enhance
seagrass recovery and promote ecosystem services and biodiversity [28]. At Kham Bay,
restoration was conducted in March 2021 by the Seaweed and Seagrass Research Unit
(SSRU) team, Prince of Songkla University (PSU), to enhance the recovery of seagrass and
compensate for seagrass habitat loss. This transplantation was attempted by using the plug
method (15 cm PVC core), which is suitable in soft substrates with small and thin-leaved
seagrass species. A 15 cm PVC core was used to extract the plants with the sediment, roots,
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and rhizomes intact from the donor site, and then, the shoots were extruded from the
plug and buried in the sediment at the transplanted site. For the transplant meadow, two
densities of each seagrass species, H. ovalis and C. serrulata in the planting unit (20% and
60%, respectively) and two conditions of planting unit (PU) densities/plot (2PU and 4PU)
were deployed with five replicates of each condition. So, the number of PVCs implanted
was 24 per replicate. Then, with five replicates, there were 120 PVCs in total. The initial
transplanted area of each species was around 1.06 m2. The transplanted sites of these two
species were close to each other, around 3–5 m apart, and were around 50–100 m away
from the donor sites (Figure 2). All transplantation experiments were carried out on the
intertidal flats with the same topography and had similar environmental conditions, such
as water depth, wave current, sediment type, and light intensity. In this study site, light
intensity was around 304–1090 µmol photons m−2 s−1, and the average temperature was
26–30 ◦C.
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Thailand.

To monitor the success of this transplantation, the seagrass ecosystem service in terms
of diversity of marine organisms was measured using environmental DNA (eDNA) and a
field survey. Degradation of eDNA and small segments of genetic material remaining in
the environment may limit the biodiversity assessment. Then, the combination of eDNA
and conventional methods such as a field survey have the potential to monitor and assess
biodiversity. In this study, we assessed the biodiversity using eDNA and compared this
with a transplanted meadow, donor seagrass meadows, and a bare sand seabed (Figure 2).
H. ovalis and C. serrulata samples and soil were collected from four different sites: (1) a bare
sand seabed, (2) a natural meadow of C. serrulata, (3) a natural meadow of H. ovalis, and
(4) a transplanted meadow.

For seagrass samples, around 50 g of each species (3 replicates) were collected and kept
in sterile microcentrifuge tubes. At each different site, three soil samples were collected
from the center of the site and stored in 50 mL sterile centrifuge tubes. Then, all seagrass
samples and soil were transported to the laboratory at the Division of Biological Science,
Faculty of Science, Prince of Songkla University for DNA extraction. All samples were
randomly collected from each condition every month from August to November 2021 to
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monitor the diversity and abundance of organisms. The environmental DNA methodology
(eDNA) was used [29].
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2.2. DNA Extraction and Sequencing

For 16S and 18S rRNA sequencing, genomics DNA was extracted from the soil us-
ing a DNeasy Power Soil Kit (Qiagen, Hilden, Germany), following the manufacturer’s
instructions. Seagrass DNA was extracted using a DNeasy Plant Mini Kit (Qiagen, USA),
following the manufacturer’s protocol. DNA products were preserved at −20 ◦C be-
fore PCR amplification. The V7 region of 18S rRNA was amplified. The forward and
reverse primers (Euka02 from Guardiola et al. [30]) were F-TTTGTCTGSTTAATTSCG and
R-CACAGACCTGTTATTGC, respectively [31]. We amplified an 18S rRNA sequence of
vertebrate mitochondrial 12S rRNA using the primers F-GTCGGTAAAACTCGTGCCAGC
and R-CATAGTGGGGTATCTAATCCCAGTTTG [32]. For the 16S rRNA, we amplified the
V3-V4 variable region of the 16S rRNA bacteria and archaea genes. The sequences of for-
ward and reverse primers were 5′-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG-3′

and 5′ GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG-3′, respectively. The ampli-
fication protocol consisted of an initial denaturing step at 95 ◦C for 5 min, followed by
10 cycles of 94 ◦C for 30 s, 57 ◦C for 45 s, 72 ◦C for 1 min, and subsequently, 15 cycles of
94 ◦C for 30 s, 47 ◦C for 45 s, and 72 ◦C for 1 min, concluding with an extension step at 72 ◦C
for 10 min. The size of the library was verified through analysis on an Agilent Technologies
2100 Bioanalyzer using a DNA 1000 chip (Agilent, Santa Clara, CA, USA). Library quan-
tification was performed using qPCR, following the procedures outlined in the Illumina
qPCR quantification protocol guide. The Illumina platform (specifically, the Illumina MiSeq,
AZENTA, Suzhou, China) was employed for a paired-end read configuration.

2.3. Data Processing and Statistics

All sequencing of each 16S rRNA and 18S rRNA from three replicates of each sea-
grass and soil sample are pooled and used as a representative sequencing dataset for each
sampling site, (1) a bare sand seabed, (2) a natural meadow of C. serrulata, (3) a natural
meadow of H. ovalis, and (4) a transplanted meadow, and then the biodiversity between
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sampling sites was compared. The Quantitative Insights Into Microbial Ecology 2 (QIIME2)
pipeline v2021.4 was used to process the specimen sequencing [33]. Quality filtering and
denoising of reads were undertaken in DADA2 [34] to construct a feature table and a
dataset of representative sequences. Taxonomic assignment was classified at 95% similarity
using a Naive Bayes classifier trained on the SILVA database [35]. Faith’s phylogenetic
diversity [36] and Pielou’s evenness index [37] were used to calculate species richness
and species evenness, respectively. Alpha diversity (Chao-1, ACE, and Simpson indices)
were calculated. Species richness and species evenness among sites were analyzed and
compared using a pairwise Kruskal–Wallis test. Species diversity was calculated using
Shannon–Wiener’s diversity index. Community dissimilarity was visualized on principal
coordinates analysis (PCoA) using a weighted UniFrac distance matrix. Non-metric mul-
tidimensional scaling (nMDS) was calculated with the Bray–Curtis similarity matrix of
relative abundance of the phylum level of 16S rRNA and 18S rRNA and visualized using
Past software, version 4.03. To quantify and test for the differences revealed in the 16S and
18S rRNA communities among samples, we computed with permutational multivariate
analysis of variance (PERMANOVA) [38].

3. Results

In this study, for the sequencing dataset of 16S rRNA, we extracted samples from the
four sites and four sampling times: (1) a bare sand seabed, (2) a natural meadow of C.
serrulata, (3) a natural meadow of H. ovalis, and (4) a transplanted meadow of these two
species. After demultiplexing, sequencing returned a total of 1,980,636 reads. Sequencing
depth ranged from a low of 129,246 to a high of 218,946 reads per sample. The mean
and median depths were 153,965 and 140,176 reads per sample, respectively. Taxonomic
classification by QIIME identified 2 domains, 23 phyla, 41 classes, 69 orders, 89 families,
124 genera, and 97 species.

For the sequencing dataset of 18S rRNA, samples from the four sites and four sampling
times were extracted. After demultiplexing, sequencing yielded a total of 14,298,451 reads.
Sequencing depth ranged from a low of 100,360 to a high of 429,968 reads per sample.
The mean and median depths were 201,386 and 213,892 reads per sample, respectively. In
total, 1 domain, 12 phyla, 18 classes, 23 orders, 66 families, 32 genera, and 24 species were
identified by QIIME.

For the community structure of 16S rRNA, the domains Archaea and Bacteria were found
from seagrass and soil samples of four sites and four sampling times (Figures 3A and 4A).
The abundance of Archaea was high in samples from bare sand, while the abundance of
Bacteria was equal in all sites. Our results indicated that Proteobacteria was the most domi-
nant bacterial phyla at 52.24 ± 1.22% (44–65%), followed by Bacteroidetes at 16.39 ± 0.97%
(8–31%), Cyanobacteria at 12.12 ± 1.11% (3–28%), and Actinobacteria at 6.08 ± 0.40%
(2–10%) (Figures 3A and 4A). Additionally, we found a low relative abundance of Firmi-
cutes, Campilobacterota, Deferribacterota, Desulfobacterota, Acidobacteria, and Myxococ-
cota (<1%). In the bare sand seabed, Proteobacteria and Cyanobacteria dominated in soil
samples with 50.22% ± 1.78% and 16.86% ± 1.25%, respectively. For a natural meadow of
C. serrulata, Proteobacteria and Bacteroidetes were prevalent across all samples, including
soil and seagrasses. The relative abundance of Proteobacteria was 60.61% ± 2.53% and
60.49% ± 2.44% in soil and seagrass samples, respectively. Meanwhile, Bacteroidetes ac-
counted for 15.32% ± 1.52% and 18.82% ± 3.31% in the corresponding sample types. For
a natural meadow of H. ovalis, Proteobacteria and Bacteroidetes were abundant across
all sample types; the relative abundances of Proteobacteria in soil and seagrass were
53.11% ± 1.28% and 57.59% ± 4.69%, respectively. The relative abundance of Bacteroidetes
was around 16.02% ± 1.77% and 18.79% ± 4.27% in soil and seagrasses, respectively. For a
transplanted meadow, the relative abundance of Proteobacteria in soil and seagrass was
51.60% ± 3.07% and 55.11% ± 2.73%, respectively. Meanwhile, the relative abundance
of Bacteroidetes was around 19.38% ± 1.62% and 17.87% ± 4.70% in soil and seagrass,
respectively (Figures 3A and 4A). Species richness, diversity, and evenness are shown in
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Figure 5A–E. Species richness and species evenness were not significantly different among
these four sites (p > 0.05) (Figure 5A–E; Table 1). Species diversity in the natural meadow
of C. serrulata (H’ = 6.89) and H. ovalis (H’ = 6.83) and the transplanted meadow (H’ = 6.90)
were higher than the bare sand seabed (H’ = 6.90). However, there was no significant
difference in species diversity between study sites and months (p > 0.05). The dominant
classes were Alphaproteobacteria, Gammaproteobacteria, and Flavobacteriia in all sites.
Many classes of bacteria were present only in the H. ovalis site, including Pedosphaerae,
3BR-5F, TM7–3m, and Leptospirae. Solibacteres, MCG, Dehalococcoidetes, and 5bavB12
were highly abundant in the bare sand site. The class Parvarchaea was present only in the
transplanted site, while the class Thermoleophilia was present only in the C. serrulata site.
Dominant bacterial species included Actibacter sediminis, Ilumatobacter fluminis, Flavobac-
terium frigidarium, and Lishizhenia caseinilytica. Coccinistipes vermicola, Filomicrobium fusiforme,
Desulfobulbus rhabdoformis, Pseudoalteromonas luteoviolacea, and Roseicyclus mahoneyensis were
dominant bacterial species in all sites. However, bacterial species composition between
sites was not significantly different (p > 0.05) (Figure 6).

For the community structure of 18S rRNA, Phragmoplastophyta and Cnidaria were
the dominant phyla in all conditions with high relative abundances (42.58 ± 5.66% and
34.44 ± 3.40%, respectively) (Figures 3B and 4B). In the bare sand seabed, the domi-
nant phylum in soil samples was Cnidaria at 59.04% ± 2.53% and other Eukaryotes at
19.97% ± 0.07%. For a natural meadow of C. serrulata, soil samples showed a high abun-
dance of Cnidaria at 50.55% ± 3.55% and other Eukaryotes at 18.56% ± 1.95%. Seagrass
samples, on the other hand, were dominated by Phragmoplastophyta at 95.95% ± 1.63%
and Cnidaria at 3.98% ± 1.63%. For a natural meadow of H. ovalis, soil samples displayed a
high abundance of Cnidaria at 50.55% ± 3.55% and other Eukaryotes at 18.56% ± 1.95%.
Seagrass samples were dominated by Phragmoplastophyta at 98.60%± 0.52% and Cnidaria
at 0.98% ± 0.46%. For a transplanted meadow, soil samples exhibited high abundances of
Cnidaria at 57.54% ± 2.17% and other Eukaryotes at 21.90% ± 2.12%. Seagrass samples
were characterized by a high abundance of Phragmoplastophyta at 97.02% ± 1.75% and
Cnidaria at 2.82% ± 1.72% (Figures 3B and 4B). Species richness, diversity, and evenness
were shown in Figure 7A–E. Our results showed that there was no significant difference in
species richness and species evenness among the sites (p = 0.108, 0.068) (Figure 7A,E). There
was no significant difference in species richness and evenness between months (p > 0.05).
There was, however, a significant difference in species evenness between the bare sand site
and the C. serrulata and H. ovalis sites (p = 0.020, 0.039) (Figure 7E). Moreover, the pairwise
test showed that there was a significant difference in species diversity between the bare
sand site and the transplanted site (p = 0.016) (Table 2). On the H. ovalis, C. serrulata, and
transplanted seagrass site, only eight phyla were represented: Phragmoplastophyta, As-
comycota, Cnidaria, Arthropoda, Platyhelminthes, Nematozoa, Ciliophora, Scalidophora,
Mollusca, and Tunicata. On the bare sand site, 31 phyla were represented, but the phylum
Scalidophora was not among them. Phragmoplastophyta showed a higher relative abun-
dance in all three seagrass sites than in the bare sand site, while Ascomycota and Cnidaria
showed a higher relative abundance on bare sand. At the class level, Sordariomycetes
was dominant in all conditions, whereas Zygnematophyceae, Intramacronucleata, Trema-
toda, Arachnida, and Trematoda showed their highest abundances in the bare sand site.
Moreover, several classes were represented only in bare sand, including Cryptophyceae,
Chrysophyceae, Monogenea, and Perkinsidae. Embryophyta showed the highest abun-
dance in the H. ovalis site, while Hydrozoa showed its highest abundance in the C. serrulata
site. Gastropoda and Malacostraca were highly abundant in the transplanted seagrass site.

PCoA illustrated that there was significant difference in species composition of the
18S rRNA community among the four sites (p = 0.0289) (Figure 8). Xylariaceae spp. were
dominant in all sites. However, many species showed similar abundances in the natural
and transplanted seagrass sites. These species included Priapulus caudatus, Obelia dichotoma,
Leptothecata, Phyllidiella pustulosa, Stauridiosarsia ophiogaster, Paraberrapex manifestus, Pla-
giopyla plagiopylid, and Trichostomatia. Meanwhile, some species were present only in bare
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sand. These species included Cosmarium protractum, Cryptomonas, Lacinularia flosculosa, and
Pterocystis tropica.
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Figure 4. Relative abundances at the dominant phylum level of (A) 16S rRNA and (B) 18S rRNA of
four conditions, two sampling sources, and four sampling times. BS = bare sand; CS = Cymodocea
serrulata; HO = Halophila ovalis; TRAN = transplanted seagrass patch. Read counts were trans-
formed to percent relative abundance. For 16s rRNA, blue = Proteobacteria, orange = Actinobacteria,
gray = Cyanobacteria, and yellow = Bacteroidetes. For 18s rRNA, blue = Phragmoplastophyta, or-
ange = Ascomycota, gray = Cnidaria, and yellow = Arthropoda. The fewest are organisms detected
at less than 1% relative abundance.



J. Mar. Sci. Eng. 2023, 11, 1928 9 of 18J. Mar. Sci. Eng. 2023, 11, 1928 9 of 20 
 

 

 
Figure 5. Species richness (A), species diversity (B–D), and species evenness (E) of 16S rRNA com-
munities in four sites. BS = bare sand; CS = Cymodocea serrulata; HO = Halophila ovalis; TRAN = trans-
planted seagrass patch. Whiskers indicate the 10th and 90th percentiles.  

Table 1. Output of the pairwise analysis for testing differences in species richness and species even-
ness of 16S rRNA in four sites. Bare sand; Cymodocea serrulata; Halophila ovalis; transplanted seagrass 
patch. 

Kruskal-Wallis Group 1 Group 2 H p-Value 
Species richness     
Faith’s phylogenetic diversity All  0.408 0.817 
 Bare sand Cymodocea serrulata 0.045 0.831 
  Halophila ovalis 0.461 0.497 
  Transplant 0.182 0.670 
 Cymodocea serrulata Halophila ovalis 0.067 0.796 
  Transplant 0.026 0.872 
 Halophila ovalis Transplant 0.067 0.796 
Chao1 All  2.034 0.565 
 Bare sand Cymodocea serrulata 1.038 0.308 
  Halophila ovalis 0.007 0.932 
  Transplant 0.892 0.345 
 Cymodocea serrulata Halophila ovalis 0.893 0.344 
  Transplant 0.120 0.728 
 Halophila ovalis Transplant 1.085 0.517 
ACE All  1.832 0.607 

Figure 5. Species richness (A), species diversity (B–D), and species evenness (E) of 16S rRNA
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Table 1. Output of the pairwise analysis for testing differences in species richness and species
evenness of 16S rRNA in four sites. Bare sand; Cymodocea serrulata; Halophila ovalis; transplanted
seagrass patch.

Kruskal-Wallis Group 1 Group 2 H p-Value

Species richness

Faith’s phylogenetic diversity All 0.408 0.817
Bare sand Cymodocea serrulata 0.045 0.831

Halophila ovalis 0.461 0.497
Transplant 0.182 0.670

Cymodocea serrulata Halophila ovalis 0.067 0.796
Transplant 0.026 0.872

Halophila ovalis Transplant 0.067 0.796
Chao1 All 2.034 0.565

Bare sand Cymodocea serrulata 1.038 0.308
Halophila ovalis 0.007 0.932
Transplant 0.892 0.345

Cymodocea serrulata Halophila ovalis 0.893 0.344
Transplant 0.120 0.728

Halophila ovalis Transplant 1.085 0.517
ACE All 1.832 0.607

Bare sand Cymodocea serrulata 1.038 0.308
Halophila ovalis 0.003 0.865
Transplant 1.286 0.257

Cymodocea serrulata Halophila ovalis 0.706 0.400
Transplant 0.013 0.908
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Table 1. Cont.

Kruskal-Wallis Group 1 Group 2 H p-Value

Halophila ovalis Transplant 0.656 0.418
Simpson All 0.866 0.834

Bare sand Cymodocea serrulata 0.721 0.396
Halophila ovalis 0.029 0.865
Transplant 0.574 0.449

Cymodocea serrulata Halophila ovalis 0.397 0.529
Transplant 0.054 0.817

Halophila ovalis Transplant 0.054 0.817
Species evenness
Pielou’s evenness All 0.039 0.998

Bare sand Cymodocea serrulata 0.045 0.831
Halophila ovalis 0.029 0.865
Transplant 0.000 1.000

Cymodocea serrulata Halophila ovalis 0.017 0.897
Transplant 0.025 0.873

Halophila ovalis Transplant 0.017 0.897

Figure 6. The PCoA (A) and nMDS (B) of 16S rRNA communities in four sites based on weighted
UniFrac distance matrix and Bray–Curtis matrix. BS = bare sand; CS = Cymodocea serrulata;
HO = Halophila ovalis; TRAN = transplanted seagrass patch.
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Figure 7. Species richness (A), species diversity (B–D), and species evenness (E) of 18S rDNA
communities in four sites. BS = bare sand; CS = Cymodocea serrulata; HO = Halophila ovalis;
TRAN = transplanted seagrass patch. Whiskers indicate the 10th and 90th percentiles. * = p < 0.05.

Table 2. Output of the pairwise analysis for testing differences in species richness and species
evenness of 18S rRNA in four sites. Bare sand; Cymodocea serrulata; Halophila ovalis; transplanted
seagrass patch.

Kruskal–Wallis Group 1 Group 2 H p-Value

Species richness

Faith’s phylogenetic diversity All 6.060 0.108
Bare sand Cymodocea serrulata 3.579 0.058

Halophila ovalis 3.414 0.065
Transplant 5.802 0.016

Cymodocea serrulata Halophila ovalis 0.124 0.725
Transplant 0.360 0.548

Halophila ovalis Transplant 0.392 0.531
Chao1 All 5.041 0.169

Bare sand Cymodocea serrulata 1.982 0.159
Halophila ovalis 3.256 0.071
Transplant 3.782 0.052

Cymodocea serrulata Halophila ovalis 0.534 0.465
Transplant 1.144 0.285

Halophila ovalis Transplant 0.300 0.583
ACE All 5.057 0.168

Bare sand Cymodocea serrulata 1.982 0.159
Halophila ovalis 3.256 0.071
Transplant 3.781 0.052
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Table 2. Cont.

Kruskal–Wallis Group 1 Group 2 H p-Value

Cymodocea serrulata Halophila ovalis 0.534 0.465
Transplant 1.172 0.279

Halophila ovalis Transplant 0.300 0.584
Simpson All 6.184 0.103

Bare sand Cymodocea serrulata 3.414 0.064
Halophila ovalis 3.097 0.078
Transplant 4.464 0.035

Cymodocea serrulata Halophila ovalis 2.055 0.152
Transplant 0.882 0.348

Halophila ovalis Transplant 0.010 0.917
Species evenness
Pielou’s evenness All 7.109 0.068

Bare sand Cymodocea serrulata 5.436 0.020
Halophila ovalis 4.278 0.039
Transplant 3.457 0.063

Cymodocea serrulata Halophila ovalis 0.073 0.787
Transplant 1.503 0.220

Halophila ovalis Transplant 0.931 0.334

Figure 8. The PCoA (A) and nMDS (B) of 18S rRNA communities in four sites based on weighted
UniFrac distance matrix and Bray–Curtis matrix. BS = bare sand; CS = Cymodocea serrulata;
HO = Halophila ovalis; TRAN = transplanted seagrass patch.
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In this study, dugong trails and commercially valuable species such as sea cucumber,
Holuthuria (Metriatyla) scabra Jaejer, 1833, Dog conch, Laevistrombus canarium (Linnaeus,
1758), and swimming crab, Portunus sp. have been observed in the natural and transplanted
seagrass sites.

4. Discussion

Using eDNA, we assessed and compared the diversity of marine organisms among
four sites: (1) a bare sand seabed, (2) a natural meadow of Cymodocea serrulata, (3) a natural
meadow of Halophila ovalis, and (4) a patch of transplanted seagrass.

For the community structure of 16S rRNA, Proteobacteria, Bacteroidetes, Actinobac-
teria, and Cyanobacteria were dominant bacterial groups at all sites and months. Similar
results have been reported in that they are widespread across marine habitats such as man-
grove forests, coral reefs, seawater, and seagrass meadows [39–46]. In addition, these phyla
are common and associated with epilithic algae or turf algae [47]. Moreover, many studies
reported that these four dominant phyla were also important groups in other seagrass
and seaweed habitats, protecting the host from pathogens and inhibiting fungal infection
by facilitating immune responses [48–52]. Additionally, microbes can supply hosts with
nitrogen sources and protect host from herbivory by secreting chemical defenses against
herbivores [44–49]. In this study, we found that the domain Archaea, which is normally
absent or present with low abundance in marine environments [53,54], was present with
high abundance in bare sand. Our results were similar to the study of Zheng et al. [55], who
found that Archaea is dominant in the seagrass system and bare sediments. Their work
showed that the different dominant phyla of Archaea prefer different environments. Some
phylum of Archaea such as phylum Bathyarchaeota was enriched in seagrass-colonized
sediments, while Woesearchaeota showed similar relative proportions in colonized seagrass
and bare sediments. Additionally, it has been reported that Archaea can be detected in
shallow or anaerobic sediments. It has been suggested that Archaea contribute to carbon
and anaerobic nitrogen cycling [55].

The dominant bacterial classes in our study were Gammaproteobacteria and Alphapro-
teobacteria. These two classes were recently reported to be well represented in the sediment
of bare sand, in seagrass-colonized areas, and on healthy seagrass leaves [56,57]. Moreover,
these classes of bacteria were common in all parts of seagrass from root to leaf, fruit, and
flower [58]. They were widely distributed and abundant because of their high abundance in
seawater and their resistance to environmental changes [59]. These two classes can enhance
seagrass growth by providing nutrients and play a role in nutrient cycling. At the species
level, Haliea mediterranea, Desulfopila aestuarii, Thioalkalivibrio, and Spongiibacter tropicus were
dominant in all sites. These four dominant organic-matter cycling bacterial groups have
been reported as common bacteria distributed in the marine environment [60–63]. Rabbani
et al. [64] reported that bacterial genera can be an indicator of healthy and stressed seagrass
meadows, observing that nutrient-cycling bacteria are frequently found and are abundant
in healthy seagrass meadows, while sulfur-cycling bacteria are more detected in stressed
seagrass meadows.

There were no significant differences in bacterial species evenness and diversity among
all three seagrass patches and the bare sand site. This might be because of the suitable
site and technique used. In our selected seagrass transplantation site, seagrass species had
previously been present. Additionally, this site was close to the donor site, which had
similar environmental conditions such as water depth, wave current, sediment type, and
light intensity. For the transplantation technique, we used the plug method that can extract
seagrasses with sediment and rhizomes intact. This attempt can help seagrasses, benthic
fauna, and microbial communities adapt to the new environments of the transplantation
site. So, their communities did not differ between the donor and the transplanted sites.
However, it has been reported that microbial communities are complex and vary over
spatial and temporal scales. Rabbani et al. [64] mentioned that the microbial community
structures can differ among sampling sites, with living seagrass parts showing that below-
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ground parts (rhizome and root) and sediment had more similar bacterial diversity than
those above ground. It has been recommended that microbial community structure and
dynamics in seagrass restoration should be considered as important keys for seagrass
restoration and management success. However, caution must be applied since relic DNA
from dead microorganisms that can persist in the environment [65] could be responsible
for mis-estimations of up to 40%.

For the community structure of 18S rRNA, Ascomycota, Cnidaria, Phragmoplasto-
phyta/Charophyta, and Arthropoda were the dominant eukaryotic phyla. Ascomycota
was found in seagrass roots and marine sediment [66–68]. Several studies reported that
Ascomycota was an important fungal phylum that plays a key role in the biogeochemical
cycles and the decomposition of organic substrates in the ecosystem [66,69]. The phylum
Cnidaria was also well represented in all sites. However, there was a higher abundance of
Cnidaria in bare sand compared with the seagrass sites. This finding was different from that
of Wesselmann et al. [70] that there was a high abundance of Cnidaria in seagrass meadows
because of the complex structural habitat that seagrass provides. Barnes [71] also showed
that abundance and richness of macrofauna were higher in seagrass meadows than in bare
sand. Phragmoplastophyta or Charophyta were the dominant phyla in the seagrass sites in
the present study. Since Phragmoplastophyta are green epiphytic algae that normally attach
to seagrasses [72,73], there was a high abundance of Phragmoplastophyta in the seagrass
samples that we collected. Malacostraca in phylum Arthropoda had high abundance in the
transplanted seagrass site, which was an important habitat, nursery ground, and refuge for
marine fauna.

Our results revealed that relative abundance among the four sites was significantly
different. Species richness and evenness of fauna between the natural and transplantation
meadows were not different. Their abundance, richness, and evenness in transplantation
meadows might recover and become level with the natural meadows. It seems that fauna
are not limited in their capacity to move between the natural and transplanted habitats.
From our observation, the transplanted meadows could expand the area from around
2.12 m2 of total transplanted meadows to around 55.33 m2 after 9 months of restoration.
We found that these transplanted meadows might attract and provide ecosystem services
(such as food, habitat, and refuge) for marine organisms similar to those of natural seagrass
meadows, increasing diversity [17,18]. These results are similar to the results of Gagnon
et al. [74], showing that faunal density and biodiversity of planted eelgrass (Zostera marina)
plots were similar to the reference meadow after 15 months of restoration. Restored seagrass
meadows rapidly become habitat and can provide important services such as provisioning,
regulating, and supporting services to diverse fauna.

In this study, dugong trails and commercially valuable species such as sea cucumber,
Holuthuria (Metriatyla) scabra Jaejer, 1833, dog conch, Laevistrombus canarium (Linnaeus,
1758), and swimming crab, Portunus sp. have been observed in the natural and transplanted
seagrass sites. Unfortunately, the DNA of these fauna were not detected. The diversity
we reported in this study might be underestimated. It could be because DNA samples
were easily degraded or the DNA of these fauna was not detectable because they may not
frequently visit these sites. Additionally, the successful identification of eDNA is limited.
The classification relies on reference databases, some of which may not be in reference
libraries [70]. So, complete and comprehensive reference databases are important and
needed. In addition, the combination of eDNA, underwater video, and visual site survey
during low tide for biodiversity assessment may provide a more holistic view of marine
fauna and flora.

This study provides an overall assessment of the biodiversity of a restored seagrass
area compared with donor areas and a bare sand area. Restored seagrass meadow can be
successfully established, create habitat, and provide food for fauna after restoration. The
plug method was a successful method for our restoration. It is easy in soft substrates with
small and thin-leaved seagrass species. The plug method seems suitable for a small area
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where the donor site is close to the transplanted site. For larger transplantations, other
methods could be considered.

To get a better understanding of seagrass ecosystem services after restoration, long-
term monitoring and more comprehensive data from combining eDNA and traditional
assessments such as visual survey and underwater video are carefully considered to
assess the local diversity of marine organisms and the success of restoration programs.
Additionally, carbon sequestration and organic matter cycling by the restored seagrass
meadow are needed to evaluate comparisons with the donor meadows and the bare
sand area.
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