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Abstract: A numerical stochastic wave model was developed in this study based on the quasi-
coherent theoretical framework proposed by Smit and Janssen in 2013. Subsequently, the model
was implemented to reproduce and cross-confirm the findings of the quasi-coherent (QC) spectral
wave modeling approach. The process included simulations of experiments conducted by Vincent
and Briggs regarding waves propagating over a submerged shoal. The results of the simulations
agree with the expected results of the QC theory, which can account for the spatial coherence
of inhomogeneous wave fields and capture wave interference more accurately than conventional
spectral wave models. In addition, extra insight was gained about aspects of the overall numerical
implementation of the QC theory.

Keywords: ocean waves; spectral wave modeling; inhomogeneous wave fields; wave interference;
quasi-coherent theory; wave model

1. Introduction

Stochastic, spectral, or phase-averaged wave models are the most used terms that
describe a family of wave models that simulate the generation of random sea waves, as well
as the evolution of the generated wave fields in space and time, due to various processes
that occur as the waves propagate in a variable medium [1–3]. Regardless of their specific
differences, these models are built around the radiative transfer equation (RTE), which is
expressed as:

∂tE + ck∇kE + cx∇xE = 0 (1)

∂tE + cσ∇σE + cθ∇θE + cx∇xE = 0 (2)

Equations (1) and (2) describe the local change in a wave’s energy or action over time
and their transport in geographical and spectral space. E(k, x, t) or E(σ, θ, x, t) represents
the well-known wave energy or action variance density spectrum at a point (x = [x, y]) in
geographical space, expressed either in terms of the wavenumber (k = [kx, ky]) spectral
space or frequency–direction (σ, θ) spectral space. Respectively, cx = [cx, cy], ck = [ckx, cky]
and cσ, cθ are the matching geographical and spectral transport velocities.

Using the RTE as the basis of spectral wave models presupposes the assumption that
wave fields can be described as quasi-homogeneous and Gaussian random processes. This
hypothesis may be held in open sea waters, where wave statistics undergo slow variations
on a spatial scale of hundreds to thousands of wave lengths, but this is not the case as
waves approach the shore. There, the more intense effects of medium variations on the
wave propagation (e.g., topography) and the weaker dispersive behavior of the waves in
shallow waters can cause deviations from the above. These “deviations” are statistical
representations of wave interference patterns (e.g., in focal zones), the spatial coherency
and cross-correlations of the wave field, which are more evident in shallow waters. The
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RTE is not able to account for these deviations, as its derivation is based on the evolution of
the auto-covariance function of the sea surface, where the Fourier transform of the latter
yields the variance density spectrum.

Despite the drawbacks mentioned previously, RTE-based spectral wave models have
been successfully used to simulate the generation and propagation of random ocean waves
in stand-alone small- and large-scale applications [4–7] and as components of sea-state
forecast platforms [8–12]. The suitability of RTE spectral wave models for modeling sea
waves is based on the fact that the hypotheses of homogeneous wave fields and Gaussian
statistics hold for the greater part of the ocean and the open seas. Moreover, the isotropic
and advection-like formalism of the RTE equation make its numerical evaluation possible
with a variety of methods, implicit and explicit, on both structured and unstructured
computational grids [2,3]. Over the years, the operational use of RTE-based spectral wave
models has been extended by the inclusion of wave–current interactions, the development
and addition of various source terms on the RHS that mainly account for air–sea-surface
interactions and the generation of wind waves, non-conservative processes (e.g., white-
capping, depth-induced wave breaking, bottom friction, etc.) and the approximation of
non-linear wave–wave interactions (quadruplets and triads) [13–15].

The greater part of the continuous development of spectral wave models has remained
within the confines of the classic RTE physics and theoretical framework. The evaluation of
wave fields, while accounting for spatial coherency, cross-correlations and the interference
of wave components (shallow waters, interaction with coastal structures, etc.), is commonly
reserved for deterministic phase-resolving models, usually Boussinesque-type models or
those based on some form or solution of either the mild slope equation or the shallow water
equations, and lately, 3D or quasi-3D Navier–Stokes and non-hydrostatic models have been
proposed [16–26].

Alongside the development and operational extension of classic spectral wave models,
advances have also been made in modeling inhomogeneous ocean waves. However, almost
all the proposed models do not match the ability of classic RTE-based models when used as
almost general-purpose spectral wave models for simulating the evolution of wave fields
through a slowly varying medium, regardless of the width and directional distribution of
the wave variance density spectra. They are restricted to special cases due to restrictions
imposed by assumptions, mainly regarding the dimensionality of the bathymetry and its
variations or focusing on wave fields with a narrow bandwidth [27–34].

Building upon previous efforts and using mathematical tools and concepts from other
scientific disciplines, such as quantum optics, Smit and Janssen [35] presented a gener-
alization of the theoretical framework of spectral wave models such that modeling of
inhomogeneous wave fields can be achieved within the wider scope of the linear waves the-
ory, without the previous restrictions. Their approach is based on replacing the evolution of
the auto-covariance function of the sea surface with the evolution of the covariance function,
thus considering the contributions of the cross-correlations responsible for wave interfer-
ence. As a result, they also introduced the more general coupled-mode spectrum, which
can capture coherent interference effects, replacing the classic variance density spectrum.

The main result of Smit and Janssen [35] consists of the following two equations,
which can describe the evolution of the second-order wave statistics of inhomogeneous
wave fields, including spatial coherency and wave interference:

∂tW(k, x, t) = −i
∫

D Ω̂(N)
(

k− i
2∇x, q

)
W
(

k− 1
2 q, x

)
exp(iq·x)

+i
∫

D Ω̂(N)
(

k + i
2∇x, q

)
W
(

k + 1
2 q, x

)
exp(−iq·x)

(3)

Ω̂(N)

(
k− i

2
∇x, q

)
=

N

∑
|n|=0

1
n!

(
− i

2

)|n| ∂n σ̂
∂kn

∂n

∂xn (4)
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Equation (3) is an integrodifferential equation that describes the evolution of the
coupled-mode spectrum, W, in spectral space, geographical space and time while con-
sidering spatial coherence and wave interference over a domain, D. The variable q in
Equations (3) and (4) represents a lag in the wavenumber space and is the Fourier conju-

gate of x. Equation (4) yields the integral’s kernel, Ω̂(N), which is a pseudo-differential
operator associated with the linear wave theory dispersion relation. The derivation of the
above expressions includes the use of the Weyl association rule and pseudo-differential
operator algebra [36,37]. Specifically, Equation (4) gives the N-th-order approximation of
the kernel, referred to as its N-th-order quasi-coherent approximation. The specifics of the
derivation process are presented in [35], alongside the relation of Equation (3) with other
transport equations of wave statistics, which are proven to be special cases of the former,
including the RTE.

Smit et al. [38] presented how the first-order approximation of Equation (3) can be
cast in a form resembling the RTE, including an extra scattering term that accounts for the
generation and transport of spatial coherency, cross-correlations and wave interference in
the wave field. Subsequently, Smit et al. [39] presented a framework for developing wave
energy dissipation source terms, adding a suitable depth-induced wave breaking term.
Akrish et al. [40,41] extended the derived QC model with the inclusion of wave–current
interactions and have recently shown the application of the Weyl association rule to the
study of water wave propagation while also supplying a more formal derivation of the
RTE and its QC generalization.

In the present paper, we present our version of the first-order QC spectral wave
model based on the work of Smit and Janssen [35] and Smit et al. [38,39]. The paper
contains brief presentations of the core equations and the numerical scheme we employed.
We validated our model against data from the laboratory experiments of Vincent and
Briggs [42], obtained by observations of waves propagating over a submerged elliptic shoal.
The presented test cases included both the ones considered by Smit and Janssen [35] as well
as additional ones. The purpose of the former was to present that our version of the model
reproduced the key findings of the QC theory while also cross-validating our chosen set-up
of the model against the already published results of Smit and Janssen’s [35] simulations.
The comparisons of our model’s results against observational data from more test cases
from Vincent and Briggs [42] served the purpose further validating our QC model.

This work is part of a wider research project, which aims to explore the potential of
the QC theoretical framework in its current state and towards more operational use cases
while also creating an additional testing environment for the QC theory with the ambition
of contributing to its development in the future. Another goal of our research is to examine
various aspects of the overall behavior and performance of a numerical spectral wave
model based on the QC theory.

2. Materials and Methods
2.1. The Numerical Model
2.1.1. Model Equations

We implemented the QC theoretical framework in a numerical spectral wave model
built from the ground up and coded into a computer program using the Fortran program-
ming language. This was a more straightforward approach to implementing the core of
the theory, which was used instead of modifying existing open-source software of spectral
wave models, which would, at that time, have required addressing issues regarding their
code structure. The most recent versions of the SWAN wave model have gradually included
the option of QC wave modeling. However, to the best of our knowledge, there are no
published applications of QC modeling with SWAN, at least up to this paper’s submission.

The model’s governing equation is the first-order quasi-coherent approximation of
Equation (3), cast in a form like the classic RTE [38]:

∂tW + ck∇kW + cx∇xW = Sqc (5)
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As mentioned earlier, W(k, x, t) is not the regular wave variance density spectrum,
but the more general coupled-mode spectrum. The definition of W(k, x, t) is given by the
following Fourier transform expression:

W(k, x, t) = Fξ,k[Γ(ξ, x, t)] =
1

(2π)2

∫
Γ(ξ, x, t) exp(−ikξ)dξ (6)

Γ(ξ, x, t) =
1
2

〈(
x +

ξ

2
, t
)
ζ∗
(

x− ξ

2
, t
)〉

(7)

Γ(ξ, x, t) is the covariance function of a complex, Gaussian and zero-mean variable,
ζ(x, t), which is associated with the real-valued surface elevation η(x, t) = Re [ζ(x, t)] between
two geographical space points x + ξ/2, x − ξ/2. The imaginary part of ζ(x, t) is the Hilbert
transform pair of its real part. The relationship between η(x, t) and ζ(x, t) is the equivalent
of the one between the real and its complex analytic signal, which was introduced in signal
processing by Gabor [43] and was later used in quantum pptics [44]. The vector ξ denotes
a spatial separation or lag distance within a decorrelation length scale ξc = 2π/∆k0 [38,39],
such that when |ξ| approaches ξc, the wave field components decorrelate and Γ(ξ, x, t)
vanishes. Here, ∆k0 denotes a representative width of the incident spectrum.

The above expressions show that the CM spectrum W(k, x, t) is, in essence, a Wigner–
Ville distribution [45,46]. It describes the complete second-order statistics of the wave field,
accounting for its coherence and providing a more accurate stochastic representation of
wave interference. The CM spectrum may reduce to the variance density spectrum, where
the wave field is quasi-homogeneous (e.g., ξc→ 0). W(k, x, t) cannot be directly interpreted
as a variance density spectrum, nor can it be related to the wave energy of a specific wave
component at a given point in geographical space, since the Wigner–Ville distribution can
take negative values. However, it is possible to obtain the local variance density by using
the marginal properties of the Wigner distribution:

E(x, t) =
∫

W(k, x, t)dk, E(k, t) =
∫

W(k, x, t)dx (8)

The transport velocities in Equation (5) are defined as ck = −∇xσ, cx = k
|k|∇kσ and

are derived from the linear wave theory dispersion relation σ =
√

g|k|tan h(|k|h).
The process of casting the QC transport equation in a form like the RTE results in

the introduction of the scattering source term Sqc to the RHS of Equation (5). Sqc accounts
for the generation of coherent structures in the wave field due to the interactions of wave
components with medium variations. These interactions are considered within the area
around x, where we consider that the generation of coherent structures occurs. When Sqc
is absent from Equation (1) or negligible, the governing equation reduces to the radiative
transfer equation and W to the variance density spectrum.

Sqc = −i ∑
q=qmax
q=−qmax

[
∆Ω̂q(k, x,−i∇x)W

(
k− q

2 , x, t
)]
+

+i ∑
q=qmax
q=−qmax

[
∆Ω̂q∗(k, x, i∇x)W

(
k + q

2 , x, t
)] (9)

∆Ω̂q(k, x,−i∇x) = ∆σ̂q − i
2

∂k

(
∆σ̂q

) k
|k|∇x, ∆Ω̂q∗ : complex conjugate of ∆Ω̂q (10)

∆σ̂q represents the Fourier transform ∆σ̂q = Fξ,q{∆σ}, where ∆σ is the difference be-
tween the local dispersion function value and its local plane approximation, following [39],
multiplied by a Tukey (tapered cosine) window function:

∆σ = TWF(ξ)
[
σ(k, x + ξ)− σ(k, x)− ξ∇xσ|k,x

]
(11)
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TWF(ξ) =


0.5(1 + cos(π

(
ξ
lγ − 1

)
, 0 ≤ ξ < lγ

1, lγ ≤ ξ < (1− γ)l
0.5(1 + cos(π

(
l−ξ
lγ − 1

)
, (1− γ)l ≤ ξ < l

(12)

with l = 0.5|ξc|.
Sqc and all its dependencies, like ∆σ, ∆σ̂q, and ∆Ω̂q, are evaluated in an area of length

|ξc| centered around x. The resemblance of ∆Ω̂q to the first-order QC approximation

of Equation (4) is not accidental. ∆Ω̂q is the remainder of Ω̂(1) that is not incorporated
inside the LHS of the model’s governing equation in the process of deriving it from
Equation (3). The multiplication of ∆σ by the Tukey window function is a measure for
handling discontinuities that may be encountered near the edges of the coherent footprint
area around x, wherein ∆σ is assumed to be a periodic function so that ∆σ̂q can be obtained
by the means of a Fourier transform.

2.1.2. Model Implementation

For the simulations considered in this study, the steady state form of the governing
equation was evaluated (i.e., ∂W/∂t = 0) using regular, rectilinear spatial and spectral grids,
defined as:

(x, y) =
[
mx∆x, my∆y

]
, 0 6 mx 6 Mx, 0 6 my 6 My, mx, my ∈ N (13)

(
kx, ky

)
=
[
nx∆kx, ny∆ky

]
, 0 6 nx 6 Nx, 0 6 ny 6 Ny, nx, ny ∈ N (14)

The discrete form of Equation (3) is obtained by approximating the gradient differential
operators with second-order upwind finite differences.

∆x
+Wk,x =

3Wk,x − 4Wk,x−∆x + Wk,x−2∆x

2∆x
, ∆x

−Wk,x =
−3Wk,x + 4Wk,x+∆x −Wk,x+2∆x

2∆x
(15)

∆k
+Wk,x =

3Wk,x − 4Wk−∆k,x + Wk−2∆k,x

2∆k
, ∆k

−Wk,x =
−3Wk,x + 4Wk+∆k,x −Wk+2∆k,x

2∆k
(16)

where Equations (15) and (16) reference points outside the computational grid and the
finite-difference schemes revert to first-order accurate ones. The incoming spectrum is
applied on the southern geographical boundary, while the northern and lateral geographical
boundaries are allowed to be crossed only by outgoing waves that exit the computational
domain. The CM spectrum is considered zero outside the spectral computational grid.

The evaluation of Sqc requires at least second-order accurate spatial discretization,
as the accounted wave coherence introduces fast spatial scales into the calculations [38];
therefore, second- and fourth-order accurate finite differences were used. The Fourier
transforms in Equations (5) and (6) are calculated by a 2D discrete Fourier transform using
a fast Fourier transform algorithm [47,48]. Moreover, the evaluation of Equations (5)–(7)
requires the definition of an auxiliary spatial grid and its conjugate auxiliary spectral grid.
Both are centered around the evaluated geographical and spectral points x, k and are
defined as:

ξ = x +
[
mx′∆x′, my′∆y′

]
,

−0.5Mq 6 mx′ 6 0.5Mq,−0.5Mq 6 my′ 6 0.5Mq, mx′ , my′ ∈ N
(17)

q = k +
[
nqx

∆qx, nqy
∆qy

]
,

−0.5Mq 6 nqx
6 0.5Mq,−0.5Mq 6 nqy

6 0.5Mq, nqx
, nqy

∈ N
(18)

The length of the spatial auxiliary grid equals ξc, which is the length of the assigned
coherence radius of the wave field, with the assumption that ∆k ≤ 2π/ξc.
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To avoid the interpolation of W in spectral space, ∆qi is chosen such that ∆qx = ∆qy = 2∆k,
and ∆x’ is defined as ∆x’ = 2π/(Mq∆q), as per [38]. It is obvious that Mq is the number
of the discrete Fourier components along each direction. Mq is evaluated by ∆q and the
choice of an appropriate qmax, which can be defined as qmax ≤ a kmean, where kmean is the
mean wavenumber of the wave field and qmax = |qmax|.

Solving the discrete form of the governing equation requires O(MxMyNxNyMqMq)
operations. This is due to the operations needed for evaluating Sqc, as solving the LHS of
Equation (5) requires O(MxMyNxNy) operations. Therefore, the evaluation Sqc is the most
computationally intensive part of the governing equation. The choice of qmax affects the
computational time, as the number of MqMq Fourier components is directly affected by this
choice. As a result, qmax and Mq should be kept as small as possible while at the same time
ensuring that the coherent structures and wave interferences are accurately resolved. To that
end, we adopted the measures that Smit et al. [39] propose to reduce the factor of O(MqMq)
more computations that are needed for Sqc. Setting qmax/|k| ≤ 2 for each wavenumber, k,
of the spectral computational grid reduces the number of calculations, helps in preventing
erroneous backscattering when calculating Sqc at low wavenumbers and agrees with the
limit that the QC approximation sets in the aperture of coherent interactions [35]. In
addition, Sqc is computed only for |k|hmin ≤ 2.3, where hmin is the minimum water depth
inside the spatial auxiliary domain x’ that corresponds to the coherent footprint of Sqc.
Variations in depth cause small variations in σ =

√
g|k|tan h(|k|h) for large wavenumbers,

so that ∆σ→ 0 and Sqc becomes negligible.
Another measure of computational efficiency is the pre-computation of ∆σ for every

spatial grid point before the main part of the solution algorithm. Since the evaluation of σ
involves the magnitude |k| of wavenumber k, Smit et al. [39] proposed the evaluation of
∆σ at N = 100 equidistant points between the minimum and maximum |k| of the spectral
grid. The precalculated ∆σ values are then interpolated on the spectral grid defined by
Equation (14). Here, we took this approach a step further and took advantage of the shape
of σ =

√
g|k|tan h(|k|h), which is steeper for variations in small-wavenumber magnitudes.

To that end, instead of equidistant points, we used logarithmically spaced points between
the minimum and maximum |k|, thus reducing N.

The described discretization yields a linear equations system that is iteratively solved
in a semi-implicit manner, like the one employed in the SWAN wave model [2]. Spectral
space is divided in 4 quadrants, where Q1 = {kx ≥ 0, ky ≥ 0}, Q2 = {kx ≤ 0, ky ≥ 0},
Q3 = {kx ≥ 0, ky ≤ 0} and Q4 = {kx ≤ 0, ky ≤ 0}. In each iteration, every point x is visited
in a marching fashion 4 times, 1 time per sweep of the geographical domain. Each sweep
is aligned with the propagation directions implied by the wavenumber subset of each
quadrant (e.g., from the lower left corner to the upper right corner for quadrant 1). Spatial
information is propagated from the downwind points in a Gauss–Seidel manner. This
technique breaks down the linear equations system into 4 smaller ones for every point of
the spatial grid.

The inclusion of the Sqc term makes the LHS diagonal matrix denser by adding Mq
2

diagonals. The resulting systems are solved using the ILU preconditioned BiCGStab
method [49]. The simulations end after n iterations when the following criterion is met for
99% of the geographical points, following [39]:

∑k (W n
k,x −Wn−1

k,x)2

∑k (W n
k,x
)2 6 a2,α = 0.01 (19)

Smit et al., in their earlier work [38], propose α = 10−4. We have also used this criterion
when conducting earlier simulations of the present study. However, we found that the less
strict and more economical criterion, from a computational time viewpoint, α = 0.01, as
in [39], was more than adequate, as the differences in the model results, in terms of the
significant wave height Hs, were unnoticeable.
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2.2. Test Cases: Waves Propagating over Elliptic Shoal

The resulting model was used for simulating test cases from the well-known exper-
iments of random waves propagating over a submerged shoal presented in Vincent and
Briggs [42]. These included the test cases M2, U3, U4, N3 and N4 from the non-breaking
waves series of experiments. Smit and Janssen [35] compared their model results with the
observational data of experiments M2 and N4. They additionally considered a modified
N4 case with narrower directional spreading of the incident spectrum, which they named
N4′. The test cases considered in the present paper are presented in Table 1.

Table 1. Incident spectra for model simulations.

Test
Number Case ID Type Period (Tp)

(sec)
Height (Hs)

(cm) A
γ

(Peakedness
Factor)

σm
(Directional
Spreading)

(deg)

1 M2 Monochromatic 1.30 2.54 --- --- ---
2 U3 TMA Spectrum 1.30 2.54 0.00155 2 0
3 U4 TMA Spectrum 1.30 2.54 0.00047 20 0
4 N3 TMA Spectrum 1.30 2.54 0.00155 2 30
5 N4 TMA Spectrum 1.30 2.54 0.00047 20 10
6 N4‘ TMA Spectrum 1.30 2.54 0.00047 20 3

The incident spectra of cases U3, U4, N3, N4 and N4′ are of the TMA shallow-water
spectral form (Bouws et al. [50]). Following Vincent and Briggs [42], the TMA frequency
spectra were multiplied by the wrapped normal spreading function D(θ) expressed in its
Fourier series form so that the directional spectra could be obtained. Since our model is
formulated in terms of wavenumber k (kx, ky), the spectral space, STMA(f,θ), was converted
to STMA(k).

STMA(f, h) = αg2f−5(2π)−4Φ(2πf, h)e−5/4( f
fm

)
−4

γ
exp [−( f

fm
−1)

2
/2σ2] (20)

With

Φ(σ, h) =

[
k−3(σ, h) ∂k(σ,h)

∂σ

k−3(σ, ∞)
∂k(σ,∞)

∂σ

]
(21)

D(θ) =
1

2π
+

1
π

L

∑
l=1

exp(− (lσm)2

2
) cos l(θ− θm) (22)

S(f, θ) = S(f)D(θ) (23)

S(k) =
S(f, θ)

J
, J = 2πk

∂σ

∂k
(24)

where θm = mean wave direction at frequency f, L = arbitrary number of Fourier harmonics,
σm = directional spreading in degrees, fm = peak frequency, α = parameter controlling the
total variance density, γ = peakedness factor, and h = local depth.

The spatial computational grid had the same size as the wave basin used in the
experiments (30 m × 25 m) with a spatial step of ∆x = 0.125 m. The spectral grid extents
were (−0.5 kp, 3.5 kp) in the mean wave direction and (−1.5 kp, 1.5 kp) in the lateral
direction, with kp being the peak wavenumber and with a resolution of ∆k = 0.2 rad/m.

Since ∆q = 2∆k, to avoid interpolation on the values of W(k, x) while computing
Sqc, the selection of ∆k directly affects how accurately the coherent effects of the wave
filed will be resolved by the model. The interdependence of ∆k, ∆q and ξc ≤ 2π/∆k, as
well as the fact that ξc = 2π/∆k0, indicates the connection between ∆k and the consider-
ation of the characteristic width of the spectrum ∆k0. Although Smit and Janssen and
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Smit et al. [35,38,39] thoroughly examine the relationships between the scales involved the
QC approximation, they do not directly quantify what should be an acceptable value for
∆k0, implying that ∆k0 could be accepted as equal to ∆k. Akrish et al. [40] propose that
∆k = ∆k0/s = sd/s, and s ≥ 1, where sd is the standard deviation of the spectrum. This is a
very reasonable and solid suggestion and is consistent with the QC theory. However, it
can lead to a very high resolution in the spectral space when very narrow-banded wave
spectra are considered, resulting in very high demands in terms of computational time and
resources. On the other hand, the approach of Smit and Janssen and Smit et al. [35,38,39]
is more economical at the expense of possibly defining a smaller coherence radius. In the
present work, we chose the latter for computational efficiency reasons.

The rationale supporting this decision was that computational speed and efficiency is
an important factor in many operational use cases. For example, timely forecasts of wave
fields are of the essence when using wave models as components of larger sea-state forecast
platforms. Very high grid resolutions could result in simulations that may not be complete
in time. In such conditions, it would be mandatory to set a lower threshold to ∆k while
bearing in mind that it could be larger than the standard deviation of the incident spectrum,
if the latter happened to be so narrow-banded that sd < ∆k. Our choice of ∆k = 0.2 rad/m
was larger than the spectrum sd of case M2, as is presented in Table 2. Therefore, by using
this spectral grid configuration, it would be possible to evaluate the effectiveness and
accuracy of our QC model implementation under conditions where ∆k = sd/s and s ≥ 1
cannot be satisfied.

Table 2. Standard deviation of STMA(k) for test cases M2, U3, U4, N3, N4 and N4′. The presented
values were calculated considering STMA(k) on a k equidistant grid and after converting STMA(f) to a
wavenumber spectrum.

Test Number Case ID Standard Deviation sd (m/(rad/m))

1 M2 0.0517
2 U3 1.3019
3 U4 0.7482
4 N3 1.3019
5 N4 0.7482
6 N4‘ 0.7482

As far as the other parameterizations of our QC model are concerned, l = 0.2 (parameter
in the Tukey window function in Equation (12)), qmax = kmean, with kmean being the mean
wavenumber of the incident spectrum, and N = 50 (the number of logarithmically spaced
points of the wavenumber magnitude for the pre-calculation of ∆σ).

3. Results

Apart from the simulations with the QC model, two additional series of simulations
were performed for each test case considered. The first one was with our model reduced to
its RTE form (i.e., Sqc = 0). The second was with the SWAN wave model in the RTE mode,
excluding the dissipation of the wave energy (e.g., whitecapping, surf breaking) and any
additional processes such as approximations of non-linear wave–wave interactions, the
phase-decoupled diffraction approximation, etc. The results of each model (RTE, SWAN)
were plotted together and compared with the results of the QC model.

For cases M2, N4 and N4′, we also compared our model with the results of Smit
and Janssen [35], who used a different model configuration, which will be referred to as
QC-SJ13. They solved the first-order QC approximation of Equation (3), not Equation (5),
which they approximated with slope-limited second-order accurate finite differences in
the spatial and spectral grids combined with an explicit scheme of the first-order finite
difference in time. They used periodic boundary conditions for the lateral boundaries and
a radiation-type boundary for the northern boundary opposite to the wave-maker. Last,
they selected qmax ≤ 2kp, with kp being the peak wavenumber.
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The results of our simulations are graphically presented in Figures 1–12, where the
different model results and laboratory data are intercompared. In addition to the figures
produced based on the model results, the differences in the models are presented in a
quantitative manner by the calculated Willmott skill scores (WS) presented in Tables 3–5.
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The results showed that our implementation of the QC model could approximate
the higher significant wave height values detected in the shadow zone behind the shoal,
as opposed to the RTE model and SWAN model operating in the RTE mode. The QC
results were closer to the available observational data than those of the RTE model. Our
version of the QC model confirmed the capability of the quasi-coherent theory to resolve
coherent wave interference patterns, unlike the RTE approach. The RTE and SWAN models



J. Mar. Sci. Eng. 2023, 11, 2066 11 of 17

tended to predict much stronger focusing over the shoal, especially in the more narrow-
banded cases. On the contrary, the QC model could scatter wave components behind the
shoal and capture their interference when they crossed, as is evidenced by the alternating
lobes of the attenuated and increased wave height. Despite the different configuration,
our implementation of the QC theory was in good agreement with the results of Smit
and Janssen [35]. The bigger differences between the two sets of results were detected in
transect 5. These concerned the magnitude and exact position of the alternating lobes of
the simulated normalized waved height and are further discussed in the following section
of the present paper.
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In test cases N3 and N4, the QC and RTE models produced similar results, as the
broader and more dispersive wave field quickly decorrelated, resulting in smoother wave
statistics and no persistent wave interference patterns. Still, the QC model predicted higher
wave heights in the shadow zone behind the shoal, which were closer to the observations.
Our RTE model and the SWAN model yielded very similar results without capturing
interference patterns, as expected.
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Table 3. Willmott skill score of all models versus laboratory data from Vincent and Briggs for test
cases M2, U3, U4, N3 and N4 along transect 4.

Case ID QC Model of
Present Study

Smit and Janssen QC
Implementation RTE Model SWAN

M2 0.901 0.961 0.395 0.67
U3 0.935 N/A 0.789 0.848
U4 0.851 N/A 0.573 0.756
N3 0.984 N/A 0.966 0.962
N4 0.921 0.964 0.903 0.903

Table 4. Willmott skill score of QC model of present study versus Smit and Janssen’s [35] implemen-
tation model results for test cases M2, N4 and N4′.

Case ID Transect 7–9 Transect 4 Transect 5

M2 N/A 0.769 0.658
N4 0.998 0.956 0.373
N4′ 0.976 0.922 0.526

Table 5. Willmott skill score of RTE model versus SWAN results for test cases M2, N4 and N4′.

Case ID Transect 7–9 Transect 4 Transect 5

M2 0.972 0.904 0.85
N4 0.997 0.998 0.994
N4′ 0.981 0.96 0.908

The findings mentioned above are also supported by the calculated WS scores pre-
sented in Tables 3–5.

Small local undershoots of unnatural negative variance density and subsequently
significant wave heights were detected in case M2, where the wave height attained the
lowest values to the left and right of the shoal. These were probably caused by very large
gradients due to the very narrow incident CM spectrum in combination with the selected
numerical scheme. The problem was ameliorated by slightly increasing the smoothing
effect of the TWF (Equation (16)) in Sqc (γ = 0.3 instead of γ = 0.1, as per [31,32]) and using
a hybrid scheme of second-order accurate central and first-order upwind finite differences
in spectral space.

4. Discussion

The results show that our model can reproduce the findings of the QC theory and
modeling framework. Along with the results of [35,38–40], they prove that the QC theory
and modeling framework can be valuable tools, allowing a more accurate prediction of
the evolution of inhomogeneous wave fields near the coast, where incident waves can be
weakly dispersive, as in the case of swells approaching the shore.

Small differences were detected between our results and the results of Smit and
Janssen [35], with the latter performing slightly better when compared with the measured
laboratory data. The differences mainly consisted of the slightly different magnitudes and
exact positions of the alternating lobes of the increased and attenuated wave height, which
were evident in transects 4 and 5, perpendicular to the mean direction of the incident waves.

As far as the magnitude of the alternating lobes of the wave height is concerned,
our model yielded smaller differences in the wave height between the alternating peaks
and troughs in case M2 than those presented in [35]. This can be specifically attributed
to the fact that in case M2, we used a TWF formulation with γ = 0.3, which essentially
smoothed the effect of Sqc, as a measure of mitigating the emergence of the local numerical
undershoots stated in the “Results” section. The opposite occurred in cases N4 and N4′,
where we used γ = 0.1.
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A more comprehensive explanation about the differences detected between the results
of the present study and the ones in [35] should be based on considering the different
implementations of the QC theory and the resulting numerical models, both in the terms of
the form of their governing equation as well as from the aspect of its numerical solution.

The most apparent difference between the two models, and possibly the most impor-
tant, is the different form of the governing equation. Equation (3), which is the equation
used in [35] and is closer to the analytic mathematical derivation of the evolution of the
coupled-mode spectrum W(k, x, t) presented in the same paper, implies that the coherent
radius of the wave field covers the entire spatial domain. This means that the evolution
of W(k, x, t) depends on medium variations that exist across the entire spatial domain.
On the contrary, Equation (5), which is derived from Equation (3) in [38], assumes a finite
coherent radius, outside of which the medium variations do not affect the local evolution
of W(k, x, t). The latter is expected in actual sea wave fields from a physical point of view.
Moreover, the form of Equation (5) is more practical in terms of numerical evaluation and
expansion and has source terms that consider additional physical processes. However, it is
possible that Equation (3) might be better suited for approximating the idealized conditions
of the series of experiments for non-breaking waves presented in [35].

Drawing definite conclusions regarding the importance of the different numerical
approaches is difficult, as [35] leans more heavily on the derivation and presentation of the
new theory and less on providing details about its numerical implementation. Regarding
the latter, both [35] and the present study use the same spatial grid extent and discretization
and the same spectral grid extend. However, the rest of the model configurations are
different. Smit and Janssen [35] solved the governing equation (Equation (3)) with an
explicit first-order time stepping until a steady state is reached, whereas the present study
was based on the stationary equation, i.e., Equation (5).

In [35], Smit and Janssen use periodic boundary conditions on the open lateral bound-
aries of the geographical computational domain, whereas we chose to use boundaries that
were crossed only by outgoing waves leaving the domain. The latter type of conditions is
also used in operational spectral wave models, when measured data along the boundaries
are insufficient or completely missing. Simulations with the QC model of the present
study, albeit with periodic lateral boundary conditions, produced results almost identi-
cal to the ones presented in the previous section. Specifically, the wave heights differed
only on the lateral boundaries and in zones with a width of a few cells adjacent to the
lateral boundaries.

Smit and Janssen [35] mention the use of slope-limited second-order finite differences
without describing the formulation of the slope limiter or the exact type of finite differences.
Additionally, [35] mentions that ∆k/kp = [16,18] instead of explicitly stating the spectral
grid discretization of their simulations. The simulations of the present study were carried
out by employing Dk = 0.2 rad/m and SORDUP finite differences, except for test case
M2, where a hybrid scheme of SORDUP and second-order central finite differences were
used. The lack of a more detailed description of the numerical scheme and the spectral
grid resolution in [35] hinders a safe further analysis about the impact of these apparent
differences on the results of both models that implement the QC theory.

However, the differences in the results of the present QC model and the one in [35] are
not contradictory, as both solutions support the predictions of the theory they implement.
After all, similar differences were also detected between our RTE model and SWAN,
which differ in terms of the governing equation formulation, as the former is based on
Equation (1) and the latter on Equation (2). Both cases demonstrate the greater importance
of the theoretical framework supporting each modelling approach rather than the specific
implementation of each separate numerical model. This could be further investigated in
the future by trying to reproduce the results from Smit et al. in [38] and [39], as the same
governing equation is used, and our solution algorithm was more based on the works
presented in those papers.
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Choosing a spectral resolution with ∆ k being relatively larger than the standard
deviation of a very narrow incident spectrum, but simultaneously not too coarse, did
not inhibit the model from resolving the coherent interference patterns, as the results
demonstrated for test case M2. Therefore, using somewhat less strict criteria for defining
the spectral grid resolution in favor of computational speed and resource efficiency, when
necessary for operational use cases, did not cancel the QC model’s advantages over the
classic RTE models, nor did it produce results contradicting the QC theory. On another
note, possible local undershoots that lead to unnatural results due to very narrow spectra
can be prevented, without sacrificing accuracy, by selecting appropriate and numerical
schemes and TWF formulation. However, research for future improvements may also
include further study about numerical schemes, diminishing the possibility of undershoots
without resorting to ad hoc measures like increasing the smoothing effect of TWF on Sqc.

5. Conclusions

Overall, the model implementation in the present work forms a sound basis for using
the QC theory to simulate the evolution of inhomogeneous wave fields that interact with
a variable topography. As such, it can be used as a means for future research on aspects
regarding further advances in the QC modeling framework and theory. In addition, it
can also serve as a starting point for investigating the benefits of its potential use in more
operational use cases by incorporating existing extensions (surf breaking, wave–current
interaction) and providing the means for testing new ones.
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