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Abstract: Oceanographic parameters, such as sea surface temperature, surface chlorophyll-a con-
centration, sea surface ice concentration, sea surface height, etc., are listed as Essential Climate
Variables. Therefore, there is a crucial need for persistent and accurate measurements on a global
scale. While in situ methods tend to be accurate and continuous, these qualities are difficult to scale
spatially, leaving a significant portion of Earth’s oceans and seas unmonitored. To tackle this, various
remote sensing techniques have been developed. One of the more prominent ways to measure the
aforementioned parameters is via satellite spacecraft-mounted remote sensors. This way, spatial
coverage is considerably increased while retaining significant accuracy and resolution. Unfortunately,
due to the nature of electromagnetic signals, the atmosphere itself and its content (such as clouds,
rain, etc.) frequently obstruct the signals, preventing the satellite-mounted sensors from measuring,
resulting in gaps—missing data—in satellite recordings. One way to deal with these gaps is via
various reconstruction methods developed through the past two decades. However, there seems to
be a lack of review papers on reconstruction methods for satellite-derived oceanographic variables.
To rectify the lack, this paper surveyed more than 130 articles dealing with the issue of data recon-
struction. Articles were chosen according to two criteria: (a) the article has to feature satellite-derived
oceanographic data (b) gaps in satellite data have to be reconstructed. As an additional result of the
survey, a novel categorising system based on the type of input data and the usage of time series in
reconstruction efforts is proposed.

Keywords: data reconstruction; gap filling; missing data; gaps; satellite oceanography

1. Introduction

Oceanographic variables represent a significant subsection of Essential Climate Vari-
ables (ECV) [1–3]. Similar to all other ECVs, if oceanographic variables are to be used
for analysis and forecasting purposes, persistent measuring and monitoring is required,
both locally and globally. Generally, measuring methods can be divided into two distinct
categories: in situ methods and remote sensing methods [4]. Depending on the specific
measurement needs, one or the other method provides a better fit. For example, in situ
methods, despite being difficult to perform accurately, are vastly superior compared to re-
mote sensing methods when dealing with localised measurements, allowing for maximum
accuracy and significantly higher spatial and temporal resolution [4]. However, scaling the
in situ measurement coverage both spatially and temporally, in most cases, is exponentially
difficult in regard to financial costs and logistical planning. This issue becomes even more
prominent when one’s aim is to achieve global coverage. This issue can be rectified by im-
plementing remote sensing methods. Remote sensing encompasses measuring techniques
based on analysing the electromagnetic signal retrieved from a target location [5]. Remote
sensors are particularly useful when mounted on satellites [4,6], allowing for vast spatial
coverage with relatively high temporal resolution.
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As mentioned, the crux of remote sensing is the analysis of the detected electromag-
netic signal. Depending on the target variable, a certain range of the electromagnetic
spectrum is considered [4,6]. Furthermore, depending on the mentioned range, the mea-
surement is carried out either actively or passively. Active measurement implies emission
of the signal and detection of the subsequent reflected signal. Examples of active measure-
ment include sea surface height and sea roughness. When measuring the two, a signal
from the microwave range of the spectrum is emitted. The travel time and strength of
the backscattered are measured and used as a starting point for the derivation of the
aforementioned variables [4,6].

Not all oceanographic variables can be detected using the active measurement. Some
of them rely on passive measurements: meaning the detection of naturally emitted and/or
reflected signals (sunlight) from the sea. This infers that different parts of the electro-
magnetic spectrum are considered: visible light for ocean colour (and subsequently the
concentration of chlorophyll-a suspended particulate matter, organic and inorganic carbon,
coloured dissolved matter, etc.) [7,8] and infrared for sea surface temperature [9,10]. This,
however, poses a problem, especially when considering satellite-based remote sensing
because not all parts of the electromagnetic spectrum contain the same penetrative proper-
ties [11]. While the Earth’s atmosphere is generally transparent for some wavelengths (such
as microwaves), other parts of the spectrum can be significantly attenuated [11]. Due to
non-penetrative nature of visible and infrared light cloud cover significantly diminished the
area from which signals can be retrieved [12–15]. Other factors, such as unfavourable sun
glint and high aerosol loading [16–18], further diminish spatial coverage. Even successful
measurements are subject to removal in efforts of quality control [19–23]. All these negative
influences result in gaps in satellite data, which hinders its usefulness.

Reducing the occurrences of gaps in satellite data are the next natural step. While
improvements to the sensors [24,25] might reduce these gaps in future measurements, it
will not help remove the gaps in already obtained data. Therefore, in the past two decades,
significant efforts have been poured into various data-driven reconstruction techniques.
By analysing existing available data, these techniques aim to infer the values of missing
data in an effort to create complete, gap-free datasets. This paper provides a review of these
methods when applied to oceanographic data. Among the data, sea surface temperature
(SST) and surface chlorophyll-a concentration (chla) are significantly more prominent than
the rest. Because some reconstruction approaches may simultaneously utilise data at
various processing stages, next, Section 2 introduces the handling and derivation of satellite
data, from raw data to final product. Section 3 briefly summarises the most popular gap-
filling techniques used in satellite oceanography. Finally, Section 4 showcases examples of
those techniques being applied in literature throughout the years.

2. Satellite Data

This section will briefly guide the reader through the nuances of what satellite data
actually represents, how it is gathered and processed—from raw electromagnetic signals to
mapped geophysical variables. In order not to digress too far from the main idea of the
paper, only chla and SST products will be explored and explained.

2.1. Levels of Data

Obtaining measurements via satellites is an expensive and complex process—from
the initial measurements, through signal conversion to the final data acquisition. While
the exact nuances of this process may differ from one organisation to the other [26,27],
the backbone procedure is mostly the same. Specifically, this subsection will shed light on
the process implemented by NASA [26]. Depending on the process steps applied to the
satellite data, the data are separated into specific stages called levels.

The first stage, level 0, refers to the initial content and format of data retrieved from the
satellite after downloading the files to data cloud; this includes anything and everything
that the satellite generates. These data have not been altered in any way, shape or form.
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At this level, data are not usable for any scientific purposes, but the data are always saved
as it can be used for recreating any subsequent data level in case of data loss. Additionally,
the data are stored in specific packets, referred to as the Consultative Committee for Space
Data Systems (CCSDS) packets [28].

Level 1 is usually subdivided into two sub-levels. Level 1A combines the CCSDS
packets and restructures the data in units reflecting the way the sensor measures: for
example, if the sensor in question is a scanner, then the unit of storage/structure is the set
of pixels detected during that scan. Apart from measurement data, satellite navigation
and other telemetry data are acquired. The final step of level 1A separates data into
timed chunks (e.g., 5-min chunks), as a means of data size management [28]. Level 1B
calibrates and geolocates level 1A data. Level 1A data comes in the form of integer counts.
Calibration converts these counts into physical units, such as radiance/reflectance and
brightness temperature. During calibration, instrument corrections are applied—nonlinear
signal responses, temperature effects, sensor degradation and other instrument effects are
all taken into account when considering instrument correction [4]. After the correction has
been applied, navigation data of the spacecraft are combined with the geometry model
of the instrument to determine the origin location of each measurement. This way, the
data are geolocated [28]. Generally speaking, level 1 data are not an overly popular target
for gap-filling [29–32].

Up to this point, satellite data can be viewed as “engineering data”—information
on the spacecraft position and viewing angle, effects of instrument imperfections on data
and so on. Level 2 data are the first instance of data being formatted into “scientific
data”. Level 2 data are the output of various algorithms, some of which will be explored
in Sections 2.2 and 2.3, which take level 1B data as input. These algorithms may require
ancillary data—data regarding different parameters, such as atmospheric water vapour,
surface pressure, ozone layer thickness, etc., which are retrieved from sources outside the
satellite in question itself. Level 2 data also contain quality flags—various parameters put
in place to ensure data are within uncertainty standards set by the scientific community [28].
In the context of gap-filling, level 2 data are utilised for local/regional instances [33–57].

After level 2 data have been obtained, all instances of it from a single day can be
combined spatially to create composites, creating level 3 data. While these composites
usually contain a day’s worth of information, composition can be carried out along the
time axis, combining progressively longer time periods (8 days, month, season, year and
finally entire duration of the satellite mission) [28]. Naturally, since level 3 data do not
have spatial constrains, unlike level 2 data, it should be obvious that it is the most popular
choice when dealing with data reconstruction [58–158].

The final step in data processing is the optional level 4. Level 4 data are optional
in a sense that level 3 data are already well-suited and are used as-is by the scientific
community. This level represents either a new variable type of data that has been derived
from previously obtained satellite data (e.g., ocean primary productivity data are derived
from chla data [26]) or satellite data that have been augmented in some way [26]. This
augmentation can be achieved via an increase in spatial resolution [155,159–161], or, more
popularly as will be showcased in Section 4, via missing data reconstruction. Some of the
reviewed articles utilised level 4 data for gap-filling proof-of-concept purposes [162–164].

2.2. Surface Chlorophyll—A Concentration

Radiance and reflectance were mentioned in previous the subsection. In order to better
grasp the physical characteristics of these variables, they are best explained through the
design behind their respective sensors. chla is derived from ocean colour—visible light
being reflected from the sea towards the satellite. Measuring the intensity of this light can be
carried out via a Gershun tube radiometer [165]. The design of the radiometer is displayed
in Figure 1. On one end of the tube is a hole of a fixed size which allows light to enter the
device. Entering the hole, the light passes through the collection tube, which has internal
light baffles. By building the hole and the collection tube to be of specific proportions,
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along with the baffles, incoming light is filtered according to the incoming angle, denoted α.
This angle is usually 5◦ to 10◦. If any light enters from an angle ξ̂ greater than α, the light
is blocked and does not affect the measurement. Knowing α, the viewing solid angle of
the detector is given by ∆Ω = 2π(1− cos α) [165]. Passing through the collection tube,
light is filtered according to wavelength λ. This filter allows for a certain bandwidth ∆λ to
pass through. In most cases today, the bandwidth is around 10 nm, while hyperspectral
instruments may shrink this to just a few nanometers [24,25,165]. Before hitting the photo-
sensitive detector located at the end of the tube, light is diffused over an area ∆A. Knowing
the properties of the light that is landing on the detector, radiance L is defined as [165]:

L
(
t, ξ̂, λ

)
=

∆Q
∆t∆A∆Ω∆λ

(
W m−2 sr−1 nm−1

)
. (1)

Essentially radiance is the power of the light radiation at a specific wavelength per unit
solid angle per unit area. Remove the collection tube dependence on the viewing angle
and, instead of radiance, irradiance E is measured [165]:

E(t, λ) =
∆Q

∆t∆A∆λ

(
W m−2 nm−1

)
. (2)

Depending onthe orientation of the device, the irradiance measured is usually either
downwelling Ed or upwelling Eu [165].

α
ξ

ξ'

detector

diffusor filter
light baffles

ΔΩ

Figure 1. Cross-section of the Gershun tube radiometer.

Unfortunately, property of both radiance and irradiance is sensitive to receiving ra-
diation due to sea surface perturbations and, as such, they usually are not implemented
individually. However, since they exhibit a certain degree of correlation, their ratio at-
tenuates this sensitivity enough to be usable for scientific purposes [165]. This ratio can
be defined in multiple ways [165], but the most used one in ocean colour sciences is the
so-called remote-sensing reflectance Rrs [165]:

Rrs(θ, φ, λ) =
Lw,air(θ, φ, λ)

Ed,air(θ, φ, λ)

(
sr−1

)
, (3)

where the subscript air denotes evaluation just above the sea surface, and subscript w
denotes water-leaving (or upwelling) radiance. Angles θ and φ denote the upward di-
rection of the light exiting the water [165]. Combining this information with the level
division provided in the previous subsection, it is prudent to note how raw radiance and
raw irradiance are practically the only level 1 data available. Every variable derived hence-
forth, including water-leaving radiance Lw and normalised water-leaving radiance nL, is
considered to be at least level 2 data as some algorithms (e.g., the atmospheric correction)
need be applied [26,165].

With radiances and reflectances explained, chla algorithms become much more com-
prehensible. Depending on the data provider, a variety of algorithms may be used, on both
global and regional scales [156,166–174]. Most of these algorithms follow one of the two
general formula shapes, depending on if they estimate chla in oligotrophic [168] or eu-



J. Mar. Sci. Eng. 2023, 11, 340 5 of 38

trophic [166] waters. For example, NASA [26] offers a global weighted blend of both
algorithms. The oligotrophic algorithm [168] is given as:

CI = Rrs(λgreen)−
[

Rrs(λblue) +
λgreen − λblue

λred − λblue
(Rrs(λred)− Rrs(λblue))

]
, (4)

where CI is the so-called colour-index, and λred, λgreen and λblue are the sensor appropriate
wavelengths. CI is then used to estimate chla:

log10(chla) = a0 + a1CI. (5)

For higher concentrations, the eutrophic (or the standard) algorithm is used [166]:

log10(chla) = a0 +
4

∑
i=1

ai

(
log10

(
RMAX

rs
Rrs(λgreen)

))i

. (6)

Here, RMAX
rs denotes the maximum value of Rrs between several different wavelengths [166].

Exact values of ai depend on the scale and region where the algorithm is applied
[166,170–172,174].

chla has been targeted for gap-filling via various methods since the early 2000s [84,
131,137], but the popularity soared in the past several years [30,31,33–46,50–53,57–83,85–
93,132–136,138,148,155–157].

2.3. Sea Surface Temperature

Measurement devices developed for SST measurements are similar in design to the
ones developed for chla [4,6,175]. The only difference between the two is, whereas the first
measures visible light and derives radiance (and related variables), SST measuring devices
measure other parts of the electromagnetic spectrum and derive brightness temperature
Bλ. Measuring SST using remote sensing methods is based on Planck’s law: every body
emits a flux of energy, Bλ, proportional to the body’s temperature, T, at a given wavelength
λ. The flux is given by:

Bλ(T) =
2hc2λ−5

ehc/(λkT)−1
, (7)

where h is the Planck’s constant, c is the speed of light, and k is Boltzmann’s constant.
Naturally, the spectrum of the flux is continuous regarding λ; however, this does not mean
that measuring of sea’s temperature can be achieved at any given wavelength. Generally,
three conditions are considered when determining the target wavelength(s). Firstly, the sea
should emit a detectable amount of energy given the usual temperature. Next, since the
sensors are mounted on satellite flying above the atmosphere, the signal reaching the
sensor should be as unaffected by the atmosphere as possible. Finally, measuring the flux
at the given wavelength should be technologically possible, not to mention practical [4,175].
All things considered, SST can be measured in the infrared and microwave part of the
spectrum [4,175,176]. Both wavelength choices have their advantages and disadvantages:
while infrared measurements are more accurate and achieve higher resolution, microwave
measurements are more robust in terms of measuring through cloud cover [177,178]. Gen-
erally, infrared measurements are more prominent [179–186]. However, the entire infrared
spectrum not is used for SST measurement. Typically, infrared sensors are designed to
measure between 3–5 µm and 8–12 µm [4,187]. These spectra are usually called channels [4].
Assuming sensors are well-calibrated, the next step in SST retrieval is removal of effects of
the atmosphere and its contents have on the signal. Simplified, an assumption can be made
that the difference between the energy fluxes detected between two wavelengths is related
to the temperatures difference between them [4,175,187]:

SSTij − Ti = f (Ti − Tj), (8)
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where subscripts i and j refer to the sensor channels. Considering that the atmospheric
effects are small in these particular channels, SST can be estimated by a simple linear
function [4,180,182,184,185,187,188]:

SSTij = a0 + aiTi + ajTj, (9)

where ax are coefficients derived by regression analysis or in situ comparisons [4,189].
Expanding upon this linear estimation, higher accuracy can be achieved if sensor viewing
angle is considered [4,183,184,186,187]:

SSTij = b0 + b1Ti + b2(Ti − Tj)SSTr + b3(Ti − Tj)(sec θ − 1), (10)

where bx are the new coefficients, SSTr is the basic linear estimation of SST, and θ is the
sensor zenith angle. Further improvements of the algorithms are mostly derived from the
presented ideas. Depending on the specific sensors and product suite, different algorithms
may be utilised. For example, NASA’s ocean colour suite [190] offers a variety of SST
products obtained by different algorithms [183,186].

In comparison to chla, SST received slightly less reconstruction attention [43,44,46–49,
52,54–56,87–91,94,105–128,140–147,150–154,162,191–194]. However, examining the timeline
of the development of reconstruction methods, one can notice that, in some cases, SST is
the first variable to be targeted with novel methods, sort of as a proof-of-concept. This
should not necessarily be surprising, as SST is slightly more trivial to derive than chla, is
significantly less volatile than chla, and microwave SST is significantly more impervious to
atmospherically-induced gaps.

2.4. Other Satellite Derived Oceanographic Variables

While chla and SST are the most popular oceanographic variables, other types of
variables are also available and have also been targeted for reconstruction. These include,
but are not limited to: sea surface height/sea level anomaly (SSH/SLA)
[100–104,139,158] sea surface salinity (SSS) [29,33,54], total suspended matter/suspended
particulate matter concentration (TSM/SPM) [45,52,130,148,195], photosynthetically active
radiation (PAR) [86,87], diffuse attenuation coefficient (Kd) [30,40,148,149], phytoplankton
and particulate concentration (aph, bbp) [53,83,136] and so on [31,32,41,42,96,99,129,163,164].

3. Reconstruction Methods

Before delving into the details of various reconstruction methods, it is prudent to define
several categories of reconstruction approaches to better make sense of similarities and
dissimilarities between the approaches. Our findings show that it is possible and practical
to separate the methods (and the subsequent application of the respective methods in
literature) regarding two criteria: type of data used and time-instances of data used. Type
of data used refers to whether or not reconstruction of target data has been achieved
using additional, relevant, non-target type of data. The additional, non-target type data
are referred to as proxy data. Proxy data may improve reconstruction accuracy if there
is significant correlation between the target and proxy data. Mathematically, let x be the
target data. Then, in a single time-instance of satellite data (a single satellite image), let
ra represent areas of the image containing available data and rm areas of the image with
missing data, so that:

r = ra ⊕ rm (11)

represents the entire area of the image, where ⊕ denotes the operation of spatial compo-
sition. Let f be some reconstruction function that, for a given input, outputs the value of
the target data in missing areas. Finally, let y be a proxy data. Then, two approaches may
be defined:

x(rm) = f (x(ra)), (12)
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and
x(rm) = f (x(ra), y(rm ∨ r)) (13)

or
x(rm) = f (y(rm ∨ r)), (14)

where ∨ denotes the logic operation “or”. Equation (12) represents the non-proxy approach,
while both Equations (13) and (14) represent the proxy approach. These approaches may
also be called the univariate and multivariate approaches. An example of this distinction
between the two is illustrated in Figure 2. For clarity, these examples are limited to one
proxy data, but no such limit need exist in reality.

f

f(
(
,

Figure 2. Examples of univariate and multivariate reconstruction approaches. In both cases, chla is
the target data x. Missing data in this case were caused by rough sea surface. The top row exemplifies
the non-proxy approach. The bottom row exemplifies the proxy approach, where SST has been
taken as proxy data y. Both examples imply available data have been composited with reconstructed
missing data to obtain complete data, x(r) = x(ra)⊕ x(rm).

Similarly, data can be reconstructed with or without drawing resources from time
series. Let tn denote the targeted image time-instance. The single time-instance approach is
virtually identical to the univariate approach from Equation (12):

x(rm, tn) = f (x(ra, tn)). (15)

However, the approach with multiple time-instances is then given by:

x(rm, tn) = f (x(ra, tn−q1), x(ra, tn−(q1−1)),

. . . , x(ra, tn), . . . , x(ra, tn+(q2−1)), x(ra, tn+q2)),
(16)

where q1 and q2 denote the number of considered time-instances prior and after the targeted
time-instance. In practical terms, since most satellite data have a temporal resolution of a
single day, time-instances usually refer to day; if tn is 15 July 2014, then tn−1 denotes 14 July
2014, tn+1 denotes 16 July 2014 and so forth. Distinction between the two latter approaches
is depicted in Figure 3. If the reconstruction is completed using information from a time
series, the reconstruction is simply referred to as multitemporal, but if it draws resources
from only one time-instance, it is referred to as unitemporal.
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f

f(

(

...
tn

...
tn-q1 tn+q2 tn

tntn

Figure 3. Examples of unitemporal (top row) and multitemporal (bottom row) approaches being used
for chla reconstruction. The targeted time-instance is tn. Both examples imply available data have been
composited with reconstructed missing data to obtain complete data, x(r, tn) = x(ra, tn)⊕ x(rm, tn).

It is important to note how the two criteria are not mutually exclusive: a method may
be categorised as any one of the four possible combinations: e.g., simple spatial interpo-
lation of a single chla swath would be placed in the Univariate/Unitemporal category,
while spatio-temporal interpolation of combined chla and SST data would be played in the
Multivariate/Multitemporal category. It is also important to point out that these categories
are not always rigid. As will be seen in the following subsections, one method might be
originally developed for univariate reconstruction and subsequently minimally modified
to allow for multivariate reconstruction. Therefore, rather than putting emphasis on sorting
the methods themselves into these categories, it is more sensible to focus on sorting the
actual reconstruction approaches, meaning the combination of method and input data.
To put this categorisation system in place, Table 1 has been added.

Table 1. Reconstruction approaches sorted according to the novel variate-temporal categorisation system.

Unitemporal Multitemporal

Univariate [35,38,41,42,48,51,59–61,68,74–
76,79,80,84,97–99,105,108,113–
117,122,124,126,129,137,138,141,148,
152,153,156,158,163,192]

[30–32,34,37,39,40,43–45,47,50–52,54,
55,57–59,63,64,66,68,69,71–74,76–79,81–
83,85–87,91,93,100,101,104,105,107–
113,117,119–121,125,127,128,130,133,
135,139,140,142–144,147,148,150–
152,154,155,158,162–164,193,193–195]

Multivariate [29,36,46,49,53,56,61,62,65,67,94,106,
118,123,131,132,136,145]

[29,64,67,70,88–90,92,93,95,96,102,146,
157,195]

The remainder of this section briefly presents the main idea behind the most popular
reconstruction methods presented in literature. Naturally, explaining every detail and
modification of every existing variation would detract too much from the main idea of
this paper. Thus, should the reader wish to inquire more about a particular reconstruction
method, they should refer directly to source material.

3.1. EOF/DINEOF

Empirical orthogonal functions (EOF) have been hypothesised to be useful in data
interpolation [151]. EOF are calculated using singular value decomposition (SVD) [196].
A matrix X containing observations so that Xij represents the value of the field f (r, t) at
location ri at the moment tj, i.e.:

Xij = f (ri, tj), (17)

can be written as a succession of n column vectors xj size of m at moment tj:

X = (x1, x2, . . . , xn). (18)
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This matrix may represent a set of satellite images, among other types of data [151]. Then,
applying SVD, the u and v eigenvectors (sizes of m and n) are obtained:

Xv = ρu

X∗u = ρv,
(19)

where ρ is the singular value, and X∗ is the adjoint of X. The decomposition is equivalent to:

XX∗u = ρ2u

X∗Xv = ρ2v.
(20)

By decomposing this way, u and v can be thought of as the eigenvectors of time-averaged
covariance matrix XX∗ and the spatially-averaged covariance matrix X∗X [151]. Since the
eigenvectors are normalised, initial matrix X can be decomposed into:

X = UDV∗ =
q

∑
k=1

ρkukv∗k , (21)

where U and V are the matrices composed of columns of ui and vi, and D is the diagonal
matrix so that Dij = ρi∆ij, where ∆ij is the Kronecker symbol. SVD allows for accurate
approximation of X by using just the first k dominant eigenvectors instead of the complete
set of q eigenvectors [197]. SVD is only applicable on complete matrices—datasets that
have no missing values. This, as stated before, is not a given in the domain of satellite
oceanography. Since EOF aims to describe the signal, combinations of dominant EOF might
be used to estimate missing values [151]. In order to apply EOF for this purpose, a certain
setup is needed. Firstly, let I denote the set of missing data, containing n0 missing data. Xt
is the reconstructed dataset, Xo is the observed dataset with missing data, and Xa is the
dataset with missing data filled in. Xo is obtained by setting the missing values (i, j) of I to
0. After that, SVD is applied to Xo, so that [151]:

UDV∗ = Xo. (22)

Then, using the first N dominant eigenvectors, interpolated values of Xa can be ob-
tained [151]:

(Xa)ij = (UN DNV∗N)ij =
N

∑
k=1

ρk(uk)i(v∗k )j, (i, j) ∈ I. (23)

UN and V∗N consist of N first spatial and temporal EOF. Now, Xa can be written as:

Xa = X0 + ∆X, (24)

where ∆X is zero for all non-missing data points. This procedure can be repeated again:

UDV∗ = Xa

(Xa1) = (UN DNV∗N)i,j =
N

∑
k=1

ρk(uk)i(v∗k )j, (i, j) ∈ I,
(25)

where Xa1 denotes filled data that have been subjected to mentioned estimation twice.
Theoretically, this procedure can be repeated indefinitely. In practice, this procedure goes
on until convergence of estimation error based on a cross-validation technique [193]. This
method is more popularly known as Data INterpolating Empirical Orthogonal Functions
(DINEOF) [193].

DINEOF, its variations and other EOF-based reconstruction methods are arguably the
most popular reconstruction methods: its development sparked a boom in data reconstruc-
tion, and it has served in many instances as benchmark for reconstruction accuracy com-
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parison [29–31,33,34,37,39,40,43–45,50–52,55,58,59,63,66,69–74,77–79,81,82,85,87–93,95,101,
102,104,105,107,119,120,125,127,128,130,133,135,142–144,148,150,151,157,162,191,193–195].

3.2. Support Vector Regression

One of the older methods utilised for dealing with regression problems is Support
Vector Regression (SVR) [198]. Support Vectors, as the name suggest, represent data points
which serve as a basis for decisions implemented for the rest of the data: from classification
to regression, etc. [198,199]. To explain this approach, let xn be a set of independent
variables obtained during N measurements and let yn be a set of corresponding dependent
(or target) variables. SVR then primarily aims to determine the function f which combines
them. For a linear problem, this function is expressed as:

yi = f (xi), i ∈ 1, . . . , N, (26)

so that the error margin between the actual measurements and estimations is ε. Explicitly,
let f be:

f (x) = a� x + b, (27)

so that a, x and b represent vectors, and � represents scalar product. The secondary aim
of SVR is to minimise the slope a. This can be achieved through minimising the norm
‖a2‖ = a � a, so that the optimal hyperplane between the data can be achieved [200].
With these two conditions in place, SVR is essentially an optimisation problem:

• min 1
2‖a2‖ s. t.;

• |yi − (a� xi + b)| ≤ ε.

The formulation assumes both conditions can be fulfilled simultaneously, which may
or may not be possible for a given problem [198]. To rectify this, slack variables ξi and ξ∗i
are introduced, practically making the error margin ε flexible [201]. Visualisation of ε and
ξ is presented in Figure 4. Optimisation problem now becomes:

• min 1
2‖a2‖+ C ∑l

i=1(ξi + ξ∗i ) s. t.;
• yi − (a� xi)− b ≤ ε + ξi;
• (a� xi) + b− yi ≤ ε + ξ∗i and
• ξi, ξ∗i ≥ 0.

This is the backbone of SVR [201]. SVR can be applied to nonlinear problems; delineari-
sation is achieved via Lagrange multipliers [202] and by introducing kernels [198,203,204].

} εξ 2

Figure 4. Error margin ε in regard to a linear problem. The dotted box represents the slack variable ξ,
allowing data outside the grey error margin to influence the attributes of function f .

SVR has seldom been used in the context of satellite oceanographic data reconstruc-
tion [56,74,84], but it is worth noting in the context of machine-learning-based reconstructions.

3.3. Kriging/Optimal Interpolation

Let X represent a random geophysical variable and its realisation x1 at a random
location s1. The space A contains N such realisations X(s1), X(s2), . . . , X(sN). Furthermore,
let X(sm) represent the value at a location within A that is not available, effectively a
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missing data point. Even though these variables may be random, there is some underlying
geophysical correlation between them [205–207]. At this point, kriging (also known as
Optimal interpolation OI) functions if two assumptions can be made [205–207]: stationarity
and that the correlation between the two variables depends only on the distance between
them and not on their actual location. Stationarity implies that any two subspaces of A
contain the same statistics (i.e., mean and standard deviation). If those two assumptions
are reasonable, then kriging can be written as [205–207]:

X(sm) =
N

∑
i=1

wiX(si), (28)

where wi is a weight corresponding to variable X(si). To determine the wi, a function called
variogram (γ) is needed. One such variogram is depicted in Figure 5. Formally, variogram
can be written as [205,206]:

γ(si, sj) =
1
2
(xi − xj)

2. (29)

Effectively, variogram indicates that the closer two points si and sj are, the difference
between their respective variables should be lower and vice versa. Using the variogram,
weights wi can be determined by solving the matrix equation [207]:

Tw = R, (30)

or its transpose:
w = T−1R, (31)

where w is the vector comprised of wi, T is the matrix comprised of γ(si, sj) and R is the
matrix consisting of γ(sm, si) [207]. Naturally, the estimation may not only be carried out
spatially but also temporally [205,206]. Interpolation-based methods are amongst the oldest
methods to be utilised in gap-filling in satellite oceanography [100,109] and have remained
somewhat popular throughout the years [38,47,54,57,60,64,67,73,76,83,86,99,108,110–113,
117,120,121,132,140,152–154,157,158,162–164,191,193].

|si-sj|

γ

Figure 5. A theoretical variogram. The further two points are, their correlation becomes less and less
significant up until a final cutoff value.

3.4. K-Nearest Neighbours

K-nearest neighbours (KNN) is a machine learning regression-solving method [208].
Regression takes form based on the sum of the K closest available data points. The sum
can take many different forms, but it is most commonly expressed as a weighted function
or as uniform [208]. In case of a weighted sum, increased distance equates to diminished
influence. The distance is usually Euclidean, but if KNN is used in a geophysical do-
main, the distance may be the actual geographical distance [208]. Just like SVR, KNN is
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not overly popular [67,74,163,164], but as a part of machine-learning reconstruction, it is
also noteworthy.

3.5. Random Forest/Decision Tree

Random Forest (RF) stems from the Decision Tree (DT) algorithm. Although pri-
marily used for classification problems, RF exhibits a capacity for regression problems
as well [209]. Starting with DT, let x̄i = (x(1i ), x(2)i , . . . , x(m)

i be a vector or a single point

in data space. The vector components x(j)
i are then its features. DT functions by diving

the data space into arbitrary classes according to various conditions based on the data
features. With sufficiently enough conditions (so-called nodes), DT effectively divides the
data space into enough classes so that each and every outcome of the nodes (so-called
leaf ) corresponds to an individual data point [209,210]. A simplified DT is depicted in
Figure 6. RF is essentially made up of numerous DTs. Decisions made this way are the
result of majority of decisions obtained from individual DTs. This improves stability and
accuracy [209]. RF solves regression problems by first modelling a forest which accurately
connects independent and target variables. Once the RF has been sufficiently trained, RF is
provided with available independent variables and is tasked with determining the missing
dependent variables [211].

A<B
yes

ye
s

ye
s

no

nono

no ye
s no

ye
s

B<C

C<A<BA<C

B<C<AB<A<CC<A<B

B<C

A<C

A<C<B

A<B<C

Figure 6. A simple DT for sorting the numbers A, B and C, assuming no two are equal. Since the DT
is well defined, every leaf corresponds to possible sorting order.

RF-based (including DT) reconstructions have appeared consistently during the past
several years [56,62,67,74,75,106,157,163].

3.6. Self-Organising Maps

Self-Organising Maps (SOM) is an unsupervised learning method typically used in
classification problems [212]. However, it may be utilised for data reconstruction pur-
poses [64]. SOM operates on neuron mesh, of a predetermined shape and structure [212].
The idea of SOM is as follows: let M denote a data manifold containing vectors v. This
manifold can be described via the aforementioned mesh by moving the neurons (also
known as Best Matching Units BMU), so that the distance between the individual BMUs
and the vectors v d(v, BMUi) = |v− BMUi|2 is minimal [212]. Depending on the mesh,
there are N BMUs available. Should the data vectors v be distributed by the probability
distribution P(v) within the data manifold M, the reconstruction error L is given by:

L =
∫

P(v)d(v, BMUi)dv. (32)

Effectively, SOM functions by moving the BMUs through data space, reshaping the mesh
to fit the manifold as closely as possible. However, since the BMUs are located on a “fixed”
mesh, forming a strong correlation between individual BMUs, so that moving one BMU
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affects the neighbouring BMUs [212]. The mesh often comes in a form of two-dimensional
lattice [212]. Utilising this concept, SOM can be trained to describe typical oceanographic
(or any other type of data) data manifolds by learning on complete datasets. Similarly to
RF, once the model has been sufficiently trained, SOM can be used to predict the missing
values based on available data [64,96,157], but unlike RF, SOM’s popularity is more akin to
the popularity of SVR and KNN.

3.7. Neural Networks

Neural networks (NN) are a subsection of machine learning methods with wide
applicability. Traditionally, NN are introduced by examining the perceptron model [213].
Perceptron is a function which intakes input variable x and outputs the output variable
f (x). One of the simpler transformations is:

f (x) =

{
1 if a� x + b > 0
0 otherwise,

(33)

where a is the weight, and b is bias [213]. After transformation, the output f (x) is com-
pared to the desired output value y. Depending on this comparison, the weight is up-
dated, and the process repeats itself until the error between f (x) and y is acceptable [213].
By combining these transformative functions in succession, deep neural networks are
constructed [214,215]. The aforementioned functions now act as layers and can be grouped
into the input layer, the output layer and the convoluted layer. The way the layers are
ordered and organised is customisable, allowing for creation of various architectures of
NN, such as Feed-forward NN [216] and Long Short-Term Memory [217]. Among these
architectures are also the fairly new Generative Adversarial Networks (GAN) [218] and
AutoEncoders (AE) [219].

3.7.1. Generative Adversarial Networks

GAN actually consists of two separate networks: a generating network, or the genera-
tor (G), and a discriminating network, or the discriminator (D). The aim of the generator
is to generate a distribution pg to be as similar as possible to the distribution px of real
data x. For a given input z from distribution pz, the generator generates G(z) as output.
Discriminator, on the other hand, has to determine whether G(z) originated from px or
pz. This decision comes in the form of scalar D(G(z)). Therefore, the discriminator aims
to become as accurate as possible when discriminating between “real” and "generated"
data, while the generator aims to generate data as similar as possible to “real” data [218].
Mathematically, this is a min-max optimisation of the so-called loss function V(G, D) [218]:

min
G

max
D

V(D, G) = Ex∼px [log D(x)] +Ez∼pz [log(1− D(G(z)))]. (34)

3.7.2. AutoEncoders

AE function on the principle of information bottleneck [219,220]. AE consists of three
layers: the encoder, the bottleneck and the decoder. The idea behind AE is based on
dimensionality reduction: reducing the number of features required for data description.
The encoder e is tasked with determining the reduced dimensionality, so that [219,220]:

x ∈ Rn

x → e(x), e(x) ∈ Rm, s.t.(m < n).
(35)

This way, point data x from n-dimensional data space Rn is transcribed into m-dimensional
latent data space Rm. Effectively, the data are being encoded. Decoding of the data is
achieved by the decoder d [219,220]:

e(x) ∈ Rm

e(x)→ d(e(x)), d(e(x)) ∈ Rn,
(36)
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which is nothing more than returning the data back into the original n-dimensional data
space Rn. Finally, the bottleneck is tasked with further reducing the dimension m, so that
the final dimension of the latent data space is lower than needed for direct reconstruction.
AE aims to reduce the difference [219,220]:

loss = ||x− d(e(x))||2 (37)

utilising the noise variable ε:

loss = ||x− d(e(x + ε))||2. (38)

In terms of data reconstruction, ε takes shape of missing data. AutoEncoder is the basis
of a popular reconstruction method called DINCAE: Data INterpolating Convolutional
AutoEncoder [94,105]. Similarly to DINEOF, DINCAE effectively reduces dimensionality
in the input data, but whereas DINEOF relied on EOF decomposition, DINCAE relies on
the convolutional layers of the encoder and the bottleneck [105].

NN-based reconstructions have seen a recent rise in popularity [49,56,59,61,65,70,74,
94,105,106,115,120–124,134,137,139,147,163,192].

3.8. Data Merge and Other Reconstruction Methods

Apart from the listed methods, there are several other methods useful for recon-
struction. Out of these, the most prominent is data merging—merging data from various
sources [35,41,42,46,48,51,68,79,97,98,108,114,117,131,148,149,152,158]. Technically, this ap-
proach is better referred to as gap-filling, but for the purposes of this paper, data merging
was still taken into consideration. The remainder of these methods refers to various numer-
ical models, filters, composites, spatial scaling, etc. [29,32,36,53,80,103,116,118,126,129,136,
138,141,145,155–157,192].

4. Summary Review of Reconstruction Methods in Literature

Presented in this section are more than 130 articles surveyed in preparation of this
paper. During research, papers were selected by two criteria. The first criterion is that the
paper has to feature any oceanographical satellite data. As mentioned earlier, these data
mostly refer to chla and SST, but other types of oceanographic data are also considered. The
second criterion is that the gaps in the obtained satellite data have to be filled using any
viable method. This criterion includes articles that propose novel gap-filling methods—i.e.,
development articles, but also any article that fills gaps in the initially retrieved data before
further analysing and processing the data in ways that do not necessarily have to deal
with the issue of missing data reconstruction—i.e., application articles. Naturally, out of
all the surveyed articles, more are classified as application articles than as development
articles. The statistics of survey covering the source journals are presented in Appendix A.
Considering the number of articles reviewed, it is impractical to thoroughly display all
nuances of each and every one of them. Therefore, articles were surveyed in the most
concise manner possible, extracting parameters relevant to the majority of the articles. Due
to the sheer size of the findings, the resulting Table A1 is placed in Appendix B.

To illustrate the popularity of reconstruction methods throughout the years from
Table A1, Figure 7a,b have been added. Methods have been grouped as defined in Section 2.
While EOF-based methods are the most popular ones, during the past several years,
NN-based (and machine-learning-based in general) methods started to be utilised more
consistently and gained certain popularity.
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Figure 7. Visualisation of the popularity of the methods. While (a) showcases the aforementioned
trend in popularity, (b) displays the overall popularity of methods, with EOF-based methods being
the most popular.

Finally, to provide another useful point of view, surveyed articles have been cross-
referenced against the three groups of data (chla, SST and other) and the nine groups of
methods (EOF-based, SVR, interpolation-based, KNN, RF, SOM, NN, data merge and
other). This cross-referencing is displayed in Table 2.
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Table 2. Surveyed articles cross-referenced against the target data and utilised reconstruction method.

chla SST Other

EOF [30,34,37,39,43–45,50–
52,58,59,63,66,69–
74,77–79,81,82,85,87–
93,95,133,135,148,157]

[43,44,52,55,87–
93,95,105,107,119,
120,125,127,128,142–
144,150,151,162,191,
193–195]

[29–31,33,40,45,50,52,
85,87,93,101,102,104,
130,148,195]

SVR [74,84] [56] [84]

Interp. [38,47,57,60,64,67,68,
73,76,83,86,132,157]

[47,54,108–113,117,
120,121,140,152–
154,162,191,193,194]

[54,83,86,99,100,158,
163,164]

KNN [67,74] n/a [163,164]

RF [62,67,74,75,157] [56,106] [163]

SOM [64,157] n/a [96]

NN [59,61,65,70,74,134,
137]

[49,56,94,105,106,115,
120–124,147,192]

[94,137,139]

Data merge [35,46,51,68,79,131,148,
149]

[46,48,108,113,114,
117,152]

[41,42,97,98,148,149,
158]

other [36,53,76,80,92,136,138,
155–157]

[92,116,118,126,138,
141,145,146,162,192]

[29,32,53,100,103,129,
136,138]

5. Discussion and Conclusions

Presented in this paper are more than 130 articles dealing with reconstruction of
missing satellite oceanographic data. While this number of articles does not represent
the entire effort of the scientific community, it does provide a representative insight into
gap-filling methods. The survey provided several results. Firstly, chla seems to be the
lead targeted type of variable in papers considered, with SST following. Other variables
are of significantly lesser interest. From a data-level point of view, level 3 data are the
most prominent, with individual swaths of data receiving some attention. Reconstruction
at level 1 is significantly hindered as atmospheric correction plays a vital role in satellite
observations. Regarding method popularity, DINEOF is undoubtedly the most popular
reconstruction method: it is clear that reconstruction efforts in general started garnering
ever-increasing attention only after the advent of DINEOF. While DINEOF has proven
to be the gold standard, as demonstrated by the abundance in the univariate-time-series
box of the novel approach categorisation system, the nearer future might witness a shift
from EOF-based to machine-learning-based reconstructions. With the ever-growing and
diverging sea of reconstruction methods, the proposed categorisation system might become
an invaluable navigation tool amidst the chaos.
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Appendix A

For the survey to be valid, the survey itself needs to be bias-free. Since the target of
this survey are articles, it is prudent to verify two criteria: both publishing journals and
years of publication must be represented as equally as possible. The inclusion of journals
is represented in Figure A1, while the inclusion of publication years can be viewed in
Figure 7a. Both statistics show that, in general, there is no strong bias towards any single
journal or publication year; however, it can be noted that Remote Sensing and Remote
Sensing Environment are slightly more popular than the rest of the journals, which should
come as no surprise since they specialise in remote sensing and related issues. It is also
clear that gap-filling interest rose sometime after 2005, coinciding with the development
of DINEOF.
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Figure A1. Representation statistics regarding publishing journals of the surveyed articles. List of
abbrevations: O2014—2014 Oceans St. John’s, OCEANS 2014, ICPR—2018 24th International Confer-
ence on Pattern Recognition, AOS—Acta Oceanologica Sinica, ASR—Advances in Space Research,
AO—Applied Optics, AP—Aquatic Procedia, BAMS—Bulletin of the American Meteorological
Society, CORS—Coastal Ocean Remote Sensing, CIN—Computational Intelligence and Neuro-
science, CSR—Continental Shelf Research, DSRP2TSO—Deep Sea Research Part II: Topical Studies
in Oceanography, EI—Ecological Indicators, EL—Ecology Letters, EMA—Environmental Monitor-
ing and Assessment, ECSS—Estuarine, Coastal and Shelf Science, GRL—Geophysical Research Let-
ters, GDJ—Geoscience Data Journal, GDM—Geoscientific Model Development, IEEEGRSL—IEEE
Geoscience and Remote Sensing Letters, IEEEJSTAEORS—IEEE Journal of Selected Topics in Ap-
plied Earth Observations and Remote Sensing, IEEETGRS—Geoscience and Remote Sensing, IEEE
Transactions, IGARSS—IGARSS 2019—2019 IEEE International Geoscience and Remote Sensing
Symposium, IJAEOG—International Journal of Applied Earth Observation and Geoinformation,
IJRS—International Journal of Remote Sensing, ISPRSJPRS—ISPRS Journal of Photogrammetry
and Remote Sensing, JAOT—Journal of Atmospheric and Oceanic Technology, JC—Journal of
Climate, JGRO—Journal of Geophysical Research: Oceans, JMSE—Journal of Marine Science and
Engineering, JMSTT—Journal of Marine Science and Technology (Taiwan), JMS—Journal of Marine
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Systems, JO—Journal of Oceanography, JOO—Journal of Operational Oceanography, JPO—Journal
of Physical Oceanography, JSR—Journal of Sea Research, JISRS—Journal of the Indian Soci-
ety of Remote Sensing, MG—Marine Geodesy, MPB—Marine Pollution Bulletin, MMS—Mediter.
Mar. Sci., NPG—Nonlinear Processes in Geophysics, OD—Ocean Dynamics, OM—Ocean Mod-
elling, O2016—OCEANS 2016—Shanghai, OSJ—Ocean Science Journal, OSD—Ocean Science Dis-
cussions, OE—Opt. Express, ACPR2019—Pattern Recognition: 5th Asian Conference, ACPR
2019, FUSION2002—Proceedings of the Fifth International Conference on Information Fusion 2002,
PO—Progress in Oceanography, RS—Remote Sensing, RSE—Remote Sensing of Environment,
S—Science, SS—Spatial Statistics, C—The Cryosphere.

Appendix B

Presented in this Appendix is the Table A1 containing information obtained from over
130 surveyed articles. Information includes: reference, target data type, target data level,
spatial and temporal resolution, reconstruction method, proxy data, reported accuracy of
the reconstruction and the targeted region (If some information if not available or applicable
for a given article, it will be displayed as n/a). Information in Table A1 is taken directly
from the cite source. If the article provides multiple accuracies, the best accuracy has
been selected. Accuracy measures are displayed as-is, and the definitions can be found
in the cited article. Should the reader desire more details, they are referred directly to the
source material.

Table A1. Information obtained from the surveyed articles. 1 Names are taken from references where
applicable.

Target Data ResolutionRef. Type Level Spat. Temp. Method Proxy Data Reported Accuracy Area of Interest 1

[59] chla L3 n/a 1 d VConstruct
DINEOF n/a

VConstruct:
RMSE = 0.09/0.17
R2 = 0.44/0.79
DINEOF:
RMSE = 0.08/0.17
R2 = 0.54/0.81

Georgia Strait

[72] chla L3 1 km 8 d DINEOF n/a R2 = 0.99/0.93 seas around India

[73] chla L3 4 km 1 d DINEOF
spat.-temp. krig. n/a

DINEOF:
RMSE = 0.27
R2 = 0.99
MAD = 0.02
spatio-temporal kirging:
RMSE = 0.36
R2 = 0.88
MAD = 0.15

South China Sea

[74] chla L3 4 km 8 d

KNN
SVR
RF
NN
DINEOF

n/a

KNN:
RMSE = 0.91
R2 = 0.79
MAE = 0.45
SVR:
RMSE = 0.52
R2 = 0.92
MAE = 0.21
RF:
RMSE = 0.63
R2 = 0.89
MAE = 0.22
NN:
RMSE = 0.68
R2 = 0.88
MAE = 0.27
DINEOF:
RMSE = 0.73
R2 = 0.86
MAE = 0.36

Caspian Sea
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Table A1. Cont.

Target Data ResolutionRef. Type Level Spat. Temp. Method Proxy Data Reported Accuracy Area of Interest 1

[70] chla L3 4 km 1 d

DINCAE uni.
DICAE multi.
DINEOF uni.
DINEOF multi.

SST

DINCAE uni.:
RMSE = 0.26/0.29
R2 = 0.95/0.91
Bias = −0.03/0.01
Slope = 0.89/0.77
Incpt. = −0.22/− 0.57
DINCEA multi.:
RMSE = 0.25/0.28
R2 = 0.96/0.91
Bias = −0.02/0.03
Slope = 0.90/0.78
Incpt. = −0.19/− 0.53
DINEOF uni.:
RMSE = 0.28/0.31
R2 = 0.94/0.89
Bias = −0.01/0.03
Slope = 0.88/0.82
Incpt. = −0.21/− 0.43
DINEOF multi.:
RMSE = 0.32/0.33
R2 = 0.92/0.88
Bias = −0.01/0.01
Slope = 0.92/0.81
Incpt. = −0.12/− 0.47

Luzon Strait seas

[75] chla L3 9 km 1 d RF

SST
SIC
T2M
PAR
U-V wind
bathymetry
coord.
time

RMSE = 0.16
R2 = 0.74
MSE = 0.16
MAE = 0.36

Ross Sea

[157] chla L3

4 km
4 km
9 km
9 km

8 d
8 d
8 d
3 d

lin. temp. int.
inv.-dist. weigh. int.
ord. krig.
spat.-temp. krig.
DINEOF
SOM
ridge reg.
(w/, w/o chla)
RF
(w/, w/o chla)

SIC
SST
SLA
cloud cover
U-V wind

n/a

Beaufort Sea
Chukchi Sea
Tropical Atlantic
Gulf of Mexico

[69] chla L3 4 km 8 d DINEOF n/a R2 = 0.96/0.94/0.95 Arabian Sea

[156] chla L3 n/a 1 d
coverage increase
through algorithm
refinement

Rrs(443)
Rrs(555)
Rrs(670)

n/a global

[79] chla L3 9 km 1 d DINEOF
data merge n/a

mean ratio
reconstructed/original:
1.012± 0.164
1.015± 0.182
0.997± 0.287
1.012± 0.200

gobal oligothropic ocean
global deep waters
coastal and inland waters
global ocean

[62] chla L3 1 km 1 d RF

CI
Rrs(469)
Rrs(555)
Rrs(645)
low-qlt chla

RMSD = 12.98%
R2 = 0.99
MR = 1.00
UPD = 6.16%
MRD = 0.63%

Yellow Sea
East China Sea
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[50] chla
Rrs(λ)

L2 1 km 1 d DINEOF
VE-DINEOF n/a

DINEOF log chla:
RMSE = 0.26
S-N = 7.1
DINEOF log Rrs(488):
RMSE = 0.008
S-N = 9.7
VE-DINEOF log chla:
RMSE = 8× 10−5

S-N = 1717
VE-DINEOF log Rrs(488):
RMSE = 4× 10−5

S-N = 137

Bohai Bay

[81] chla L3 n/a 1 d DINEOF n/a RE = 0.54% Arabian Sea

[68] chla L3 1 km
4 km 1 d data merge

OI in situ L

Atlantic merged:
R2 = 0.82
Slope = 0.79
Offset = 0.03
Bias = 0.05
σ = 0.27
Atlantic interpolated:
R2 = 0.80
Slope = 0.78
Offset = 0.05
Bias = 0.07
σ = 0.30
Global merged:
R2 = 0.84
Slope = 0.87
Offset = 0.01
Bias = 0.01
σ = 0.27
Global interpolated:
R2 = 0.82
Slope = 0.82
Offset = 0.02
Bias = 0.02
σ = 0.29

Atlantic
global

[46] SST
chla

L2 1 km 1 d data merge num. model

SST:
RMSE = 0.73
bias = −0.003
R2 = 0.99
chla:
RMSE = 1.80
bias = −0.46
R2 = 0.75

Baltic Sea

[67] chla L3 4 km 1 d

KNN
lin. reg.
log. reg.
DT
RF
ET

SST
SIC
PAR
T2M
U-V wind
bathymetry
coord.
time

poor acc.
for the first 4
RF:
R2 = 0.99
MAE = 0.02
RMSE = 0.06
ET:
R2 = 0.99
MAE = 0.01
RMSE = 0.04

Ross Sea

[134] chla L3 4 km 1 d NN

SST
atm. vapor
wind
rain rate
cloud liquid

full model:
R2 = 0.89
RMSE = 0.30

Korean Peninsula
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[30]
chla
Kd
nL(λ)

L1
L3 9 km 1 d DINEOF n/a

mean ratio
reconstructed/original:
daily: 1.022± 0.29
weekly: 0.983± 0.159
monthly: 0.985± 0.126

global

[71] chla L3 4 km 8 d DINEOF n/a RMSE = 0.41mg/m3 Arabian Sea

[135] chla L3 1 km 1 d
8 d DINEOF n/a

Year-to-year:
daily:
R2 = 0.87
RMSE = 1.35
Slope = 0.84
Incpt. = 0.09
weekly:
R2 = 0.63
RMSE = 1.56
Slope = 0.60
Incpt. = 0.26
Complete span:
daily:
R2 = 0.91
RMSE = 1.29
Slope = 0.88
Incpt. = 0.09
weekly:
R2 = 0.7
RMSE = 1.52
Slope = 0.67
Incpt. = 0.21

Georgia Strait

[85]
chla
Rrs(˘)

L3 4.6 km 8 d DINEOF n/a n/a SW Atlantic

[40] Kd L2 0.5 km 1 d DINEOF n/a

mean ratio
reconstructed/original:
Bohai Sea:
1.024± 0.267
East China Sea:
1.034± 0.377

Bohai Sea
East China Sea

[87]
chla
SST
PAR

L3 4 km 8 d DINEOF n/a

Error:
SST: < 1
PAR <2
chla < 0.2

Iceland

[90] chla
SST L3 4 km 1 d DINEOF multi. SST

chla
n/a Gulf of Mexico

[65] chla L3 9 km 1 d NN

SSH
SSS
SST
ARGO S (salinity)
ARGO T
time
coord.

RMSE = 0.091
R2 = 0.792 global

[44] chla
SST L2 n/a 1 d DINEOF n/a n/a Persian Gulf

[31] nL(λ) L1 4 km
(4 × 8 km) 15" DINEOF n/a n/a North Sea

[63] chla L3 9 km 1 w DINEOF n/a RMSE = 0.38 Red Sea

[43] chla
SST L2 1 km 1 d DINEOF n/a n/a Peru/Chile

[88] chla
SST L3 4 km 1 d DINEOF multi. SST

chla

RMSE = 1.57
R2 = 0.97/0.67
seasonal cycle on/off

Georges Bank

[34] chla L2 1 km 1 d DINEOF n/a n/a South China Sea
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[36] chla L2 4 km 1 d scale-changing
climatology low-qlt chla n/a N Atlantic

[82] chla L3 1 km 1 d DINEOF n/a n/a Sicily Channel

[66] chla L3 n/a 1 m DINEOF n/a
RMSE = 0.11
R2 = 0.88

Bohai Sea
Yellow Sea

[78] chla L3 9 km 8 d

O-DINEOF
S-DINEOF
C-DINEOF
D-DINEOF

n/a

O-DINEOF:
SNR = 3.72
R2 = 0.97
RMSE = 0.081
MAD = 0.059
S-DINEOF:
SNR = 4.23
R2 = 0.97
RMSE = 0.072
MAD = 0.052
C-DINEOF:
SNR = 3.76
R2 = 0.97
RMSE = 0.063
MAD = 0.050
D-DINEOF:
SNR = 5.40
R2 = 0.98
RMSE = 0.055
MAD = 0.043

Bohai Sea
Yellow Sea

[132] chla L3 9 km 8 d interpolation
padding climatology n/a N Atlantic

[91] chla
SST L3 9 km 8 d DINEOF n/a n/a Gulf of Alaska

[64] chla L3 9 km 1 d SOM
lin. interp.

SST
SSH

daily DINEOF:
RE = 0.25
Kull.dist. = 0.07
weekly DINEOF:
RE = 0.09
Kull.dist. = 0.008
daily lin. int.:
RE = 0.33
Kull.dist. = 0.13
weekly lin. int.:
RE = 0.03
Kull.dist. = 0.002

Mauritania

[39] chla L2 4.5 km 1 d
DINEOF
LSEOF
RSEOF

n/a n/a Galapagos

[92] chla
SST L3 4 km 1 d DINEOF

stat. model
SST
SSH

DINEOF SST:
R2 = 0.95/0.57
seasonal cycle on/off
DINEOF chla / model:
R2 > 0.92
RMSE < 2.5

Gulf of Mexico

[35] chla L2 1 km
4 km 1 d data merge n/a n/a California Coast

[77] chla L3 1 km 8 d DINEOF n/a
R2 = 0.82
RMSE = 0.23
BIAS = −0.04

Mediterranean Sea

[58] chla L3 9 km 1 d DINEOF n/a n/a Peru–Chile

[138]
chla
SST
MLD

L3 4.5 km 8 d

GSM01
semi-anal.
OC (Ocean Colour)
model

n/a n/a Gulf of Cadiz
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[86] chla
PAR L3 9 km 1 w spat.-temp. int. n/a n/a global

[52]
chla
TSM
SST

L2 1 km 1 d DINEOF n/a

TMS min-max:
R2 = 0.45− 0.95
S−N = 1− 2.7
chlamin-max:
R2 = 0.12− 0.70
S−N = 0.88− 1.27

English Channel

[195]

TSM
SST
TSM
wind

n/a n/a n/a DINEOF uni.
DINEOF multi.

wind
chla
SST

n/a

English Channel
Gulf of Mexico
Mediterranean Sea
Black Sea

[57] chla L2 1 km 1 d kriging n/a R2 = 0.72 (log)
Ireland
Biscay Bay
Iberia

[95] chla
SST L3 4 km 1 d DINEOF mulit. chla

SST

DINEOF SST:
R2 = 0.93/0.53
seasonal cycle on/off

S Atlantic Bight

[194] SST n/a 1 km 1 d
DINEOF
DINEOF Pruning
OI

n/a

DINEOF:
MSE = 0.086
DINEOF pruning:
MSE = 0.055
OI:
MSE = 0.627

Tanganyika Lake

[53]
chla
CDM
bbp

L2 1 km 1 d
GSM01
semi-anal.
OC model

nL(412)
nL(443)
nL(490)
nL(510)
nL(531)
nL(547)
nL(557)
nL(620)
nL(671)

chla :
R2 = 0.678
RMSE = 0.399
BIAS = −0.145
CDM:
R2 = 0.465
RMSE = 0.372
BIAS = 0.0128
bbp :
R2 = 0.503
RMSE = 0.197
BIAS = −0.053

global

[42] nL(λ) L2 2 km 1 d data merge n/a

nL(412):
R2 = 0.48
RMSD = 0.233
nL(440):
R2 = 0.72
RMSD = 0.210
nL(490/500):
R2 = 0.86
RMSD = 0.213
nL(551/555):
R2 = 0.84
RMSD = 0.207
nL(667/674):
R2 = 0.73
RMSD = 0.05

Mediterranean Sea

[80] chla L3 1/24◦ 1 d turbulent
cascading n/a n/a global

[89] chla
SST L3 4 km 1 d DINEOF multi. SST

chla

DINEOF SST:
R2 = 0.97/0.69
seasonal cycle on/off

S Atlantic Bight

[60] chla L3 n/a 1 m spat. int. n/a n/a N Atlantic

[37] chla L2 n/a 1 d DINEOF n/a R2 = 0.912
RMSE = 0.648 Adriatic Sea
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[83]
chla
aph
bbp

L3 1 km 1 d spat.-temp. int. n/a n/a Mississippi Bight

[41] nL(λ) L2 1 km 1 d data merge n/a

nL(412):
R2 = 0.77
RMSD = 0.203
nL(440):
R2 = 0.87
RMSD = 0.179
nL(500):
R2 = 0.93
RMSD = 0.157
nL(555):
R2 = 0.93
RMSD = 0.132
nL(675):
R2 = 0.89
RMSD = 0.026

Adriatic Sea

[38] chla L2 1.5 km 1 d ord. krig. n/a n/a North Sea

[93]
chla
SST
wind

L3 1 km 1 d DINEOF uni.
DINEOF multi.

chla
SST
wind

chla:
SST:
RMSE = 0.76
R2 = 0.59
SST + wind:
RMSE = 0.75
R2 = 0.60
SST + chla:
RMSE = 0.62
R2 = 0.71
SST + day lag SST + chla:
RMSE = 0.6
R2 = 0.69
wind RMSE = 2.8

West Florida Shelf

[76] chla L3 1 km 1 d weigh. avg.
OI n/a

Weighted averaging:
R2 = 0.47
RMS = 4.62
BIAS = 0.68
Optimal interpolation:
R2 = 0.47
RMS = 4.62
BIAS = 0.68

Atlantic Ocean

[136]

chla
aph
acdm
bbp

L3 4.5 km
1 km 1 d

GSM01
semi-anal.
OC model

nL(443) R2 = 0.943
RMSE = 0.178 global

[131] chla L3 n/a 1 m data merge in situ n/a global

[61] chla L3 1 km 1 d CCGAN
SST
SSH
low- res. chla

SSIM = 0.9462
MSE = 0.004
RE = 0.039

Adriatic Sea

[51] chla L2 1 km 1 d data merge
DINEOF n/a

Data merge:
RMSE = 0.408
DINEOF:
RMSE = 0.38

Mexico

[109] SST L3 1 ◦ 1 d OI n/a Data-to-guess-error: 1.25 global

[193] SST n/a 1.3 km 1 d DINEOF
OI n/a

DINEOF:
cloud coverage:
40% RMSE = 0.89
60%
OI:
similar RMSE = 0.78
80% RMSE = 1.25

Adriatic Sea
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[107] SST L3 18 km 8 d DINEOF n/a n/a Japan East Sea

[191] SST n/a 4 km 1 d DINEOF
OI n/a DINEOF:

RMSE = 0.42 Corsica

[111] SST L3 1.2 km
2 km 1 d OI n/a RMSE = 0.69–0.82 Baltic Sea

North Sea

[140] SST L3 1.2 km
1.5 km 1 d OI n/a RMSE = 0.78 Baltic Sea

North Sea

[123] SST L3 4 km 1 m NN

MSLP
T2M
wind
CC
dewpoint T

RMSE = 0.1–0.7 Mediterranean Sea

[108] SST L3 4.5 km 1 d OI
data merge SIC N-S ratio:

0.5-0.35 global

[119] SST L3 1 km 1 d DINEOF n/a R2 = 0.98
mean diff: 0.243 Gulf of Trieste

[128] SST L3 4.8 km 1 d DINEOF n/a RMSE = 0.46 Black Sea

[47] SST
chla

L2 1 km n/a OI n/a

SST:
RE = 1.2%
ABS = 0.29
chla:
RE = 23%
ABS = 0.56

Black Sea

[127] SST L3 1◦ 5 d DINEOF
EOF n/a

DINEOF:
RMSE = 0.91
EOF:
RMSE = 0.82

Yangtze River estuary

[110] SST L3 5 km 1 d kriging n/a BIAS = -0.285
STD = 0.68 English Channel

[130] TSM L3 n/a 1 d DINEOF n/a
RE = 40%
RMSE = 7.36
R2 = 0.75

English Channel

[55] SST L2 1 km 1 d DINEOF n/a
RMSE = 0.265
MAD = 0.396
R2 = 0.635

Bay of Biscay

[158] SSH L3 2 " 1 d OI
data merge n/a RMSE = 2 global

[104] SSH L3 0.25◦ 1 w EOF in situ

Pacific:
mean R2 = 0.42
median R2 = 0.44
Global:
mean R2 = 0.48
median R2 = 0.49

Pacific Ocean
global

[54] SST
SSS L2 1 km 1 d kriging n/a

SST:
ME = 0.3
MAE = 0.65
RMSE = 0.84
R2 = 0.99
SSS:
ME = 0.85
MAE = 2.08
RMSE = 2.76
R2 = 0.82

Chesapeake Bay

[144] SST L3 n/a 1 d DINEOF n/a MAD ≤ 1 Mediterranean Sea

[101] SSH L3 n/a n/a EOF in situ n/a global
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[125] SST L3 4 km 1 m DINEOF
I-DINEOF n/a

DINEOF:
R2 = 0.9925
S-N = 9.7743
RMSE = 0.3144
MAD = 0.1680
I-DINEOF:
R2 = 0.9983
S-N = 25.4548
RMSE = 0.1526
MAD = 0.1140

South China Sea

[142] SST L3 4 km 1 d
DINEOF
I-DINEOF
VE-DINEOF

n/a

DINEOF:
R2 = 0.9943
S-N = 11.0682
RMSE = 0.2773
MAD = 0.1515
I-DINEOF:
R2 = 0.9964
S-N = 17.1149
RMSE = 0.2215
MAD = 0.1631
VE-DINEOF:
R2 = 0.9987
S-N = 19.9641
RMSE = 0.1303
MAD = 0.0155

South China Sea

[143] SST L3 4 km 1 d DINEOF n/a
BIAS = −0.34
RMSE = 0.37
R2 = 0.95

South China Sea

[33] SSS L2 0.15◦ 1 d DINEOF n/a

RMSE = 0.66
CMSE = 0.63
BIAS = 0.19
R2 = 0.73

N-E Atlantic Ocean
Mediterranean Sea

[147] SST L3 0.25◦ 1 d NN n/a

1 day:
R2 = 0.85
RMSE = 0.62
MAE = 0.53
2 days:
R2 = 0.84
RMSE = 0.63
MAE = 0.54
3 days:
R2 = 0.84
RMSE = 0.65
MAE = 0.55
4 days:
R2 = 0.82
RMSE = 0.67
MAE = 0.56
5 days:
R2 = 0.81
RMSE = 0.69
MAE = 0.58

Indian Ocean

[96] sub.
vel. L3 0.25◦ 1 d SOM

SSH
SST
ARGO vel.

R2 = 0.956
RMSE = 2.8
MAE = 18◦

Antarctic Ocean

[133] chla L3 4 km 1 d DINEOF n/a

MOIDS:
RMSE = 0.38
R2 = 0.74
VIIRS:
RMSE = 0.13
R2 = 0.83

Laizhou Bay
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[192] SST n/a n/a n/a
GAN
Telea TV
Patch-Match

n/a

GAN-1:
PNAR = 0.1310
GAN-2:
PNAR = 0.0862
Telea:
PNAR = 0.0333
TV:
PNAR = 0.166
Patch-Match:
PNAR = 0.1085

n/a

[122] SST L3 2 km 1 d GAN n/a

avg. occlusion MSE:
Loss1 = 0.222
Loss2 = 0.121
Loss3 = 0.166
Loss4 = 0.121
Loss5 = 0.107
Loss6 = 0.193
Loss7 = 0.112

Pacific Ocean

[115] SST L3 2 km 1 d GAN n/a

avg. occlusion MSE:
Loss1 = 0.120
Loss2 = 0.136
Loss3 = 0.132
Loss4 = 0.169

N Pacific

[102] SSH L3 0.25◦ 1 w CSEOF SST
SLP R2 = 0.79 Indian Ocean

[105] SST L3 4 km 1 d DINCAE
DINEOF n/a

DINCAE:
RMSE = 1.1362
CRMSE = 1.0879
BIAS = -0.3278
DINEOF:
RMSE = 1.1676
CRMSE = 1.1102
BIAS = −0.3616

Provencal basin

[155] chla L3 4 km 8 d gridfill n/a R2 = 0.968
RMSE = 0.0586 Yellow Sea

[56] SST L2 1 km 1 d
NN
SVR
RF

in situ
coord.
time
cloud cover

NN:
R2 = 0.77
RMSE = 0.91
MAE = 0.69
SVR:
R2 = 0.80
RMSE = 0.79
MAE = 0.59
RF:
R2 = 0.78
RMSE = 0.85
MAE = 0.64

Arabian Sea
Bay of Bengal

[124] SST L3 1 km 1 d GAN n/a

AVG = 0.35
SVD = 0.67
MAE = 0.80
RMSPE = 10.36

Yellow Sea

[163] wind L4 0.125◦ 6 h

lin. reg.
KNN
DT
NN

n/a

lin. reg.:
Amp = 0.30 ± 0.39
Ang = 0.40 ± 8.74
KNN:
Amp = 0.78 ± 0.67
Ang = 10.10 ± 17.54
DT:
Amp = 0.85 ± 0.82
Ang = 11.12 ± 18.79
NN:
Amp = 0.41 ± 0.46
Ang = 5.22 ± 10.58

Adriatic Sea
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[164] wind L4 0.5◦ 6 h lin. reg.
KNN n/a

lin. reg.:
Amp =2.16 ± 1.55
Ang = 24.49 ± 30.75
KNN:
Amp = 2.19 ± 1.59
Ang = 24.70 ± 31.98

Mediterranean Sea

[148]
chla
Kd
SPM

L3 750 m
300 m 1 d data merge

DINEOF n/a

chla:
Mean ratio = 1.016 ± 0.222
Mean diff = -0.013 ± 0.543
Kd:
Mean ratio = 1.012 ± 0.154
Mean diff = −0.008 ± 0.165
SPM:
Mean ratio = 1.020 ± 0.205
Mean diff = −0.17 ± 0.485

global

[106] SST L3 4 km
10 km 1 d DINCAE

RF merge
coord.
time

DINCAE:
R2 = 0.99
BIAS = 0.02
RMSE = 0.75
rRMSE = 4.23
MAE = 0.55
RF:
R2 = 0.99
BIAS = 0.02
RMSE = 0.87
rRMSE = 4.41
MAE = 0.61

NW Pacific

[94] SST
SSH L3

4 km
n/a
(non-
gridded)

1 d DINCAE
SST
wind
chla

SST:
RMSE = 0.54
10th–90th = 0.05–0.82
SSH:
n/a

Adriatic Sea
Mediterranean Sea

[126] SST L3 1/20◦ 1 d
Hidden
Markov
Model

n/a n/a China coastal waters

[129]
TIT
(thin-ice
thickness)

L3 1 km 1 d weig. feat. recon. n/a R2 = 0.81
RMSE = 2140 Brunt Ice Shelf

[48] SST L2 n/a 1 m data merge n/a
R2 = 0.97
RMSE = 0.91
BIAS = -0.14

Gulf of Mexico

[154] SST L3 1 km
1/4◦ 1 d OI n/a

seas. cycle:
R2 = 0.98/0.81
RMSE = 0.69/0.61

Florida Bay

[151] SST L3 n/a 1 d DINEOF n/a n/a Adriatic Sea

[84] chla
nL(λ) L3 4.5 km

9 km 1 d SVR merge n/a n/a global

[137]
chla
nL(λ)
Kd(λ)

L3 4.5 km
9 km 1 d NN merge n/a n/a global

[97] OC L3 n/a 1 d data merge n/a 58% coverage
increase global

[98] OC L3 n/a 1 d data merge n/a 44% coverage
increase global

[153] SST L3 2.3 km 1 d interpolation n/a n/a NW Atlantic

[100] SLA L3 6 km 10 d interpolation
multiscale est. n/a RMSE = 4.90± 3.11 Mediterranean Sea
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[45] chla
TSM L2 1 km 1 d DINEOF n/a

chla:
R2 = 0.94
RMSE = 0.13
TSM:
R2 = 0.93
RMSE = 0.05

Ariake Sea

[162] SST L4 0.05 ◦

0.25 ◦ 1 d

OI
DINEOF
analog data
ass.

n/a

OI:
RMSE = 0.45 ± 0.08
R2 = 0.76 ± 0.07
DINEOF:
RMSE = 0.40 ± 0.07
R2 = 0.83 ± 0.05
data ass.:
RMSE = 0.31 ± 0.05
R2 = 0.88 ± 0.02

South Africa

[120] SST L3 1/20◦ 1 d

OI
analog data
ass.
DINEOF
NN

n/a

OI:
RMSE = 0.75
analog data ass.:
RMSE = 0.45
DINEOF:
RMSE = 0.54
NN:
RMSE = 0.43

South Africa

[139] SSH L3 0.2◦ 10 d NN n/a
RMSE = 10–45
R2 = 0.99–0.45 Mediterranean Sea

[112] SST L3 1.4 km 1 d OI n/a n/a Gulf of Maine

[103] SSH L3 2.5◦ 1 d weigh. filter n/a n/a global

[113] SST L3

6 km
2 km
1.6 km
25 km

1 d OI
data merge in situ BIAS = 0.17

RMSE = 0.81 California

[150] SST L3 1.1 km 1 m EOF forecast n/a n/a Alboran Sea

[121] SST L3 9 km 1 d NN
interpolation n/a

NN:
BIAS = −0.28
RMSE = 0.87
R2 = 0.86
interpolation:
BIAS = −0.49
RMSE = 1.24
R2 = 0.78

W Mediterranean

[117] SST L3

0.088◦

0.125◦

0.167◦

0.25◦
1 d OI

data merge n/a n/a global

[146] SST L3 0.5◦ 1 d corr. formula SIC
climat. S n/a N Atlantic

[116] SST L3 0.2◦ 1 d Kalman filter n/a n/a N Atlantic

[114] SST L3 0.01◦

0.25◦ 1 d data merge n/a BIAS = −0.01
STD = 0.95 Pacific Ocean

[32]
LSI
(landfast
sea-ice)

L1 1 km 1 d temp. comp. n/a n/a Mertz Glacier Tongue

[152] SST L3

1 km
5 km
9 km
25 km

1 d data merge
interpolation SIC RMSE = 0.3

BIAS = −0.2 global
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Table A1. Cont.

Target Data ResolutionRef. Type Level Spat. Temp. Method Proxy Data Reported Accuracy Area of Interest 1

[149] chla
Kd

L3 n/a 1 d data merge Rrs
nL

chla ratio:
1 ± 0.22
Kd ratio:
1.05 ± 0.15

global

[29] SSS L1
L3

0.05◦

0.25◦
1 d
9 d

Non-Bayesian
retrieval
DINEOF
multifractal fusion

SST
Bλ

N.B.R.:
RMSE = 0.35
DINEOF:
RMSE = 0.54
M.F.:
RMSE = 0.32

N Atlantic
Mediterranean Sea

[49] SST L2 1 km 1 d NN nR
RMSE = 4.46
R2 = 0.94 seas around USA

[141] SST L3 0.25◦ 1 d
Hidden
Markov
Model

n/a n/a South Africa

[118] SST L3 0.05◦

0.25◦ 1 d Kelman filter low. res. SST n/a Malvinas

[99] SIC L3 1 km 1 d spat. scaling n/a n/a Svalbard archipelago

[145] SST L3 0.05◦

0.25◦ 1 d semivariogram
model low. res. SST n/a Malvinas
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satellite derived chlorophyll-a concentration gap reconstruction. 2023, manuscript submitted for publication.

62. Chen, S.; Hu, C.; Barnes, B.B.; Xie, Y.; Lin, G.; Qiu, Z. Improving ocean color data coverage through machine learning. Remote
Sens. Environ. 2019, 222, 286–302. [CrossRef]

63. Dreano, D.; Mallick, B.; Hoteit, I. Filtering remotely sensed chlorophyll concentrations in the Red Sea using a space–time
covariance model and a Kalman filter. Spat. Stat. 2015, 13, 1–20. [CrossRef]

64. Jouini, M.; Levy, M.; Crépon, M.; Thiria, S. Reconstruction of satellite chlorophyll images under heavy cloud coverage using a
neural classification method. Remote Sens. Environ. 2013, 131, 232–246. [CrossRef]

65. Krasnopolsky, V.; Nadiga, S.; Mehra, A.; Bayler, E.; Behringer, D. Neural networks technique for filling gaps in satellite
measurements: Application to ocean color observations. Comput. Intell. Neurosci. 2016, 2016, 1–9. [CrossRef] [PubMed]

66. Liu, D.; Wang, Y. Trends of satellite derived chlorophyll-a (1997–2011) in the Bohai and Yellow Seas, China: Effects of bathymetry
on seasonal and inter-annual patterns. Prog. Oceanogr. 2013, 116, 154–166. [CrossRef]

67. Park, J.; Kim, J.H.; Kim, H.C.; Kim, B.K.; Bae, D.; Jo, Y.H.; Jo, N.; Lee, S.H. Reconstruction of Ocean Color Data Using Machine
Learning Techniques in Polar Regions: Focusing on Off Cape Hallett, Ross Sea. Remote Sens. 2019, 11, 1366. [CrossRef]

68. Saulquin, B.; Gohin, F.; d’Andon, O.F. Interpolated fields of satellite-derived multi-algorithm chlorophyll-a estimates at global
and European scales in the frame of the European Copernicus-Marine Environment Monitoring Service. J. Oper. Oceanogr. 2019,
12, 47–57.

69. Shunmugapandi, R.; Inamdar, A.B.; Gedam, S.K. Long-time-scale investigation of phytoplankton communities based on their
size in the Arabian Sea. Int. J. Remote Sens. 2020, 41, 5992–6009.

70. Han, Z.; He, Y.; Liu, G.; Perrie, W. Application of DINCAE to Reconstruct the Gaps in Chlorophyll-a Satellite Observations in the
South China Sea and West Philippine Sea. Remote Sens. 2020, 12, 480. [CrossRef]

71. Jayaram, C.; Priyadarshi, N.; Kumar, J.P.; Bhaskar, T.V.S.U.; Raju, D.; Kochuparampil, A.J. Analysis of gap-free chlorophyll-a data
from MODIS in Arabian Sea, reconstructed using DINEOF. Int. J. Remote Sens. 2018, 39, 7506–7522.

72. Jayaram, C.; Jonnakuti, P.; Udaya Bhaskar, T.; Bhavani, I.; Rao, T.; Nagamani, P. Reconstruction of Gap-Free OCM-2 Chlorophyll-a
Concentration Using DINEOF. J. Indian Soc. Remote Sens. 2021, 49, 1419–1425. [CrossRef]

73. Mohamed Yussof, F.N. Reconstruction of chlorophyll-a data by using DINEOF approach in Sepanggar Bay, Malaysia. Comput.
Sci. 2021, 16, 345–356.

74. Mohebzadeh, H.; Mokari, E.; Daggupati, P.; Biswas, A. A machine learning approach for spatiotemporal imputation of MODIS
chlorophyll-a. Int. J. Remote Sens. 2021, 42, 7381–7404.

75. Park, J.; Kim, H.C.; Bae, D.; Jo, Y.H. Data Reconstruction for Remotely Sensed Chlorophyll-a Concentration in the Ross Sea Using
Ensemble-Based Machine Learning. Remote Sens. 2020, 12, 11898. [CrossRef]

http://dx.doi.org/10.1007/s10661-017-6010-7
http://dx.doi.org/10.1109/IGARSS.2019.8900452
http://dx.doi.org/10.7717/peerj-cs.979
http://dx.doi.org/10.1016/j.seares.2010.08.002
http://dx.doi.org/10.1016/j.rse.2010.04.002
http://dx.doi.org/10.1016/j.rse.2013.03.034
http://dx.doi.org/10.1080/01431160903491420
http://dx.doi.org/10.1016/j.isprsjprs.2020.06.008
http://dx.doi.org/10.1109/TGRS.2010.2052813
http://dx.doi.org/10.1016/j.pocean.2011.07.008
http://dx.doi.org/10.1111/j.1461-0248.2008.01218.x
http://dx.doi.org/10.1016/j.rse.2018.12.023
http://dx.doi.org/10.1016/j.spasta.2015.04.002
http://dx.doi.org/10.1016/j.rse.2012.11.025
http://dx.doi.org/10.1155/2016/6156513
http://www.ncbi.nlm.nih.gov/pubmed/26819586
http://dx.doi.org/10.1016/j.pocean.2013.07.003
http://dx.doi.org/10.3390/rs11111366
http://dx.doi.org/10.3390/rs12030480
http://dx.doi.org/10.1007/s12524-021-01317-6
http://dx.doi.org/10.3390/rs12111898


J. Mar. Sci. Eng. 2023, 11, 340 33 of 38

76. Pottier, C.; Garçon, V.; Larnicol, G.; Sudre, J.; Schaeffer, P.; Le Traon, P.-Y. Merging SeaWiFS and MODIS/Aqua Ocean Color Data
in North and Equatorial Atlantic Using Weighted Averaging and Objective Analysis. IEEE Trans. Geosci. Remote. Sens. 2006, 44,
3436–3451. [CrossRef]

77. Volpe, G.; Nardelli, B.B.; Cipollini, P.; Santoleri, R.; Robinson, I.S. Seasonal to interannual phytoplankton response to physical
processes in the Mediterranean Sea from satellite observations. Remote Sens. Environ. 2012, 117, 223–235. [CrossRef]

78. Wang, Y.; Liu, D. Reconstruction of satellite chlorophyll-a data using a modified DINEOF method: A case study in the Bohai and
Yellow seas, China. Int. J. Remote Sens. 2014, 35, 204–217. [CrossRef]

79. Liu, X.; Wang, M. Filling the Gaps of Missing Data in the Merged VIIRS SNPP/NOAA-20 Ocean Color Product Using the
DINEOF Method. Remote Sens. 2019, 11, 178. [CrossRef]

80. Pottier, C.; Turiel, A.; Garçon, V. Inferring missing data in satellite chlorophyll maps using turbulent cascading. Remote Sens.
Environ. 2008, 112, 4242–4260. [CrossRef]

81. Rebekah, S.; Inamdar, A.; Gedam, S.S. Long-Time-Scale Investigation of Phytoplankton Biomass Through Reconstructed
Chlorophyll-A Data Using DINEOF Method. In Proceedings of the IGARSS 2019—2019 IEEE International Geoscience and
Remote Sensing Symposium, Yokohama, Japan, 28 July–2 August 2019; pp. 7995–7998. [CrossRef]

82. Rinaldi, E.; Buongiorno Nardelli, B.; Volpe, G.; Santoleri, R. Chlorophyll distribution and variability in the Sicily Channel
(Mediterranean Sea) as seen by remote sensing data. Cont. Shelf Res. 2014, 77, 61–68. [CrossRef]

83. Casey, B.; Arnone, R.; Flynn, P. Simple and efficient technique for spatial/temporal composite imagery. In Proceedings of the
Coastal Ocean Remote Sensing; Frouin, R.J., Lee, Z., Eds.; International Society for Optics and Photonics—SPIE: Bellingham, WA,
USA, 2007; Volume 6680, p. 668014. [CrossRef]

84. Kwiatkowska, E.; Fargion, G. Application of machine-learning techniques toward the creation of a consistent and calibrated
global chlorophyll concentration baseline dataset using remotely sensed ocean color data. Geosci. Remote Sens. IEEE Trans. 2004,
41, 2844–2860. [CrossRef]

85. Andreo, V.C.; Dogliotti, A.I.; Tauro, C.B. Remote Sensing of Phytoplankton Blooms in the Continental Shelf and Shelf-Break of
Argentina: Spatio-Temporal Changes and Phenology. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5315–5324. [CrossRef]

86. Racault, M.F.; Le Quéré, C.; Buitenhuis, E.; Sathyendranath, S.; Platt, T. Phytoplankton phenology in the global ocean. Ecol. Indic.
2012, 14, 152–163. [CrossRef]

87. McGinty, N.; Guðmundsson, K.; Ágústsdóttir, K.; Marteinsdóttir, G. Environmental and climactic effects of chlorophyll-a
variability around Iceland using reconstructed satellite data fields. J. Mar. Syst. 2016, 163, 31–42. [CrossRef]

88. Li, Y.; He, R. Spatial and temporal variability of SST and ocean color in the Gulf of Maine based on cloud-free SST and chlorophyll
reconstructions in 2003–2012. Remote Sens. Environ. 2014, 144, 98–108. [CrossRef]

89. Miles, T.N.; He, R.; Li, M. Characterizing the South Atlantic Bight seasonal variability and cold-water event in 2003 using a daily
cloud-free SST and chlorophyll analysis. Geophys. Res. Lett. 2009, 36.

90. Shropshire, T.; Li, Y.; He, R. Storm impact on sea surface temperature and chlorophyll a in the Gulf of Mexico and Sargasso Sea
based on daily cloud-free satellite data reconstructions. Geophys. Res. Lett. 2016, 43, 12199–12207.

91. Waite, J.N.; Mueter, F.J. Spatial and temporal variability of chlorophyll-a concentrations in the coastal Gulf of Alaska, 1998–2011.
using cloud-free reconstructions of SeaWiFS and MODIS-Aqua data. Prog. Oceanogr. 2013, 116, 179–192. [CrossRef]

92. Zhao, Y.; He, R. Cloud-free sea surface temperature and colour reconstruction for the Gulf of Mexico: 2003–2009. Remote Sens.
Lett. 2012, 3, 697–706. [CrossRef]

93. Alvera-Azcárate, A.; Barth, A.; Beckers, J.M.; Weisberg, R.H. Multivariate reconstruction of missing data in sea surface
temperature, chlorophyll, and wind satellite fields. J. Geophys. Res. Ocean. 2007, 112 [CrossRef]

94. Barth, A.; Alvera-Azcárate, A.; Troupin, C.; Beckers, J.M. DINCAE 2.0: Multivariate convolutional neural network with error
estimates to reconstruct sea surface temperature satellite and altimetry observations. Geosci. Model Dev. 2022, 15, 2183–2196.
[CrossRef]

95. Miles, T.N.; He, R. Temporal and spatial variability of Chl-a and SST on the South Atlantic Bight: Revisiting with cloud-free
reconstructions of MODIS satellite imagery. Cont. Shelf Res. 2010, 30, 1951–1962. [CrossRef]

96. Chapman, C.; Charantonis, A.A. Reconstruction of Subsurface Velocities From Satellite Observations Using Iterative Self-
Organizing Maps. IEEE Geosci. Remote Sens. Lett. 2017, 14, 617–620. [CrossRef]

97. Gregg, W.; Esaias, W.; Feldman, G.; Frouin, R.; Hooker, S.; McClain, C.; Woodward, R. Coverage opportunities for global ocean
color in a multimission era. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1620–1627. [CrossRef]

98. Gregg, W.; Woodward, R. Improvements in coverage frequency of ocean color: Combining data from SeaWiFS and MODIS. IEEE
Trans. Geosci. Remote Sens. 1998, 36, 1350–1353. [CrossRef]

99. Preußer, A.; Willmes, S.; Heinemann, G.; Paul, S. Thin-ice dynamics and ice production in the Storfjorden polynya for winter
seasons 2002/2003–2013/2014 using MODIS thermal infrared imagery. Cryosphere 2015, 9, 1063–1073. [CrossRef]

100. Fieguth, P.; Menemenlis, D.; Ho, T.; Willsky, A.; Wunsch, C. Mapping Mediterranean Altimeter Data with a Multiresolution
Optimal Interpolation Algorithm. J. Atmos. Ocean. Technol. 1998, 15, 535–546. [CrossRef]

101. Hamlington, B.; Leben, R.; Strassburg, M.; Kim, K.Y. Cyclostationary empirical orthogonal function sea-level reconstruction.
Geosci. Data J. 2014, 1, 13–19 [CrossRef]

102. Kumar, P.; Hamlington, B.; Cheon, S.H.; Han, W.; Thompson, P. 20th Century Multivariate Indian Ocean Regional Sea Level
Reconstruction. J. Geophys. Res. Ocean. 2020, 125. [CrossRef]

http://dx.doi.org/10.1109/TGRS.2006.878441
http://dx.doi.org/10.1016/j.rse.2011.09.020
http://dx.doi.org/10.1080/01431161.2013.866290
http://dx.doi.org/10.3390/rs11020178
http://dx.doi.org/10.1016/j.rse.2008.07.010
http://dx.doi.org/10.1109/IGARSS.2019.8900061
http://dx.doi.org/10.1016/j.csr.2014.01.010
http://dx.doi.org/10.1117/12.737329
http://dx.doi.org/10.1109/TGRS.2003.818016
http://dx.doi.org/10.1109/JSTARS.2016.2585142
http://dx.doi.org/10.1016/j.ecolind.2011.07.010
http://dx.doi.org/10.1016/j.jmarsys.2016.06.005
http://dx.doi.org/10.1016/j.rse.2014.01.019
http://dx.doi.org/10.1016/j.pocean.2013.07.006
http://dx.doi.org/10.1080/01431161.2012.666638
http://dx.doi.org/10.1029/2006JC003660
http://dx.doi.org/10.5194/gmd-15-2183-2022
http://dx.doi.org/10.1016/j.csr.2010.08.016
http://dx.doi.org/10.1109/LGRS.2017.2665603
http://dx.doi.org/10.1109/36.718865
http://dx.doi.org/10.1109/36.701084
http://dx.doi.org/10.5194/tc-9-1063-2015
http://dx.doi.org/10.1175/1520-0426(1998)015<0535:MMADWA>2.0.CO;2
http://dx.doi.org/10.1002/gdj3.6
http://dx.doi.org/10.1029/2020JC016270


J. Mar. Sci. Eng. 2023, 11, 340 34 of 38

103. Chambers, D.P.; Mehlhaff, C.A.; Urban, T.J.; Fujii, D.; Nerem, R.S. Low-frequency variations in global mean sea level: 1950–2000.
J. Geophys. Res. Ocean. 2002, 107, 1-1–1-10. [CrossRef]

104. Hamlington, B.D.; Leben, R.R.; Wright, L.A.; Kim, K.Y. Regional Sea Level Reconstruction in the Pacific Ocean. Mar. Geod. 2012,
35, 98–117. [CrossRef]

105. Barth, A.; Alvera-Azcárate, A.; Licer, M.; Beckers, J.M. DINCAE 1.0: A convolutional neural network with error estimates to
reconstruct sea surface temperature satellite observations. Geosci. Model Dev. 2020, 13, 1609–1622. [CrossRef]

106. Jung, S.; Yoo, C.; Im, J. High-Resolution Seamless Daily Sea Surface Temperature Based on Satellite Data Fusion and Machine
Learning over Kuroshio Extension. Remote Sens. 2022, 14, 575. [CrossRef]

107. Park, S.; Chu, P. Interannual SST variability in the Japan/East Sea and relationship with environmental variables. J. Oceanogr.
2006, 62, 115–132. [CrossRef]

108. Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea
Surface Temperature. J. Clim. 2007, 20, 5473–5496. [CrossRef]

109. Reynolds, R.W.; Smith, T.M. Improved Global Sea Surface Temperature Analyses Using Optimum Interpolation. J. Clim. 1994,
7, 929–948. [CrossRef]

110. Saulquin, B.; Gohin, F. Mean seasonal cycle and evolution of the sea surface temperature from satellite and in situ data in the
English Channel for the period 1986–2006. Int. J. Remote Sens. 2010, 31, 4069–4093. [CrossRef]

111. She, J.; Høyer, J.L.; Larsen, J. Assessment of sea surface temperature observational networks in the Baltic Sea and North Sea. J.
Mar. Syst. 2007, 65, 314–335. [CrossRef]

112. Bisagni, J.; Seemann, K.; Mavor, T. High-resolution satellite-derived sea-surface temperature variability over the Gulf of Maine
and Georges Bank region, 1993–1996. Deep Sea Res. Part II Top. Stud. Oceanogr. 2001, 48, 71–94. [CrossRef]

113. Chao, Y.; Li, Z.; Farrara, J.D.; Hung, P. Blending Sea Surface Temperatures from Multiple Satellites and In Situ Observations for
Coastal Oceans. J. Atmos. Ocean. Technol. 2009, 26, 1415–1426. [CrossRef]

114. Guan, L.; Kawamura, H. Merging Satellite Infrared and Microwave SSTs: Methodology and Evaluation of the New SST. J.
Oceanogr. 2004, 60, 905–912. [CrossRef]

115. Hirahara, N.; Sonogashira, M.; Kasahara, H.; Iiyama, M. Denoising and Inpainting of Sea Surface Temperature Image with
Adversarial Physical Model Loss. In Proceedings of the Pattern Recognition: 5th Asian Conference, ACPR 2019, Auckland,
New Zealand, 26–29 November 2019; Revised Selected Papers, Part I; Springer: Berlin/Heidelberg, Germany, 2019; pp. 339–352.
[CrossRef]

116. Houseago-Stokes, R.E.; Challenor, P.G. Using PPCA to Estimate EOFs in the Presence of Missing Values. J. Atmos. Ocean. Technol.
2004, 21, 1471–1480. [CrossRef]

117. Kawai, Y.; Kawamura, H.; Takahashi, S.; Hosoda, K.; Murakami, H.; Kachi, M.; Guan, L. Satellite-based high-resolution global
optimum interpolation sea surface temperature data. J. Geophys. Res. Ocean. 2006, 111. [CrossRef]

118. Lguensat, R.; Tandeo, P.; Fablet, R.; Garello, R. Spatio-temporal interpolation of Sea Surface Temperature using high resolution
remote sensing data. In Proceedings of the 2014 Oceans, St. John’s, NL, Canada, 14–19 September 2014. [CrossRef]

119. Mauri, E.; Poulain, P.M.; Notarstefano, G. Spatial and temporal variability of the sea surface temperature in the Gulf of Trieste
between January 2000 and December 2006. J. Geophys. Res. Ocean. 2008, 113. [CrossRef]

120. Ouala, S.; Fablet, R.; Herzet, C.; Chapron, B.; Pascual, A.; Collard, F.; Gaultier, L. Neural Network Based Kalman Filters for the
Spatio-Temporal Interpolation of Satellite-Derived Sea Surface Temperature. Remote Sens. 2018, 10, 1864. [CrossRef]

121. Pisoni, E.; Pastor, F.; Volta, M. Artificial Neural Networks to reconstruct incomplete satellite data: Application to the Mediterranean
Sea Surface Temperature. Nonlinear Process. Geophys. 2008, 15, 61–70. [CrossRef]

122. Shibata, S.; Iiyama, M.; Hashimoto, A.; Minoh, M. Restoration of Sea Surface Temperature Satellite Images Using a Partially
Occluded Training Set. In Proceedings of the 2018 24th International Conference on Pattern Recognition (ICPR), Beijing, China,
20–24 August 2018; pp. 2771–2776. [CrossRef]

123. Garcia-Gorriz, E.; Garcia-Sanchez, J. Prediction of sea surface temperatures in the western Mediterranean Sea by neural networks
using satellite observations. Geophys. Res. Lett. 2007, 34. [CrossRef]

124. Kang, S.H.; Choi, Y.; Choi, J.Y. Restoration of Missing Patterns on Satellite Infrared Sea Surface Temperature Images Due to Cloud
Coverage Using Deep Generative Inpainting Network. J. Mar. Sci. Eng. 2021, 9, 310. [CrossRef]

125. Ping, B.; Su, F.; Meng, Y. Reconstruction of Satellite-Derived Sea Surface Temperature Data Based on an Improved DINEOF
Algorithm. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 4181–4188. [CrossRef]

126. Yang, Y.; Dong, J.; Sun, X.; Lguensat, R.; Jian, M.; Wang, X. Ocean Front Detection From Instant Remote Sensing SST Images.
IEEE Geosci. Remote Sens. Lett. 2016, 13, 1960–1964. [CrossRef]

127. Youzhuan, D.; Wei, Z.; Zhihua, M.; Xiaofei, W.; Delu, P. Reconstruction of incomplete satellite SST data sets based on EOF method.
Acta Oceanol. Sin. 2009, 28, 36–44.

128. Alvera-Azcárate, A.; Barth, A.; Sirjacobs, D.; Beckers, J.M. Enhancing temporal correlations in EOF expansions for the reconstruc-
tion of missing data using DINEOF. Ocean Sci. 2009, 5, 475–485. [CrossRef]

129. Paul, S.; Willmes, S.; Gutjahr, O.; Preußer, A.; Heinemann, G. Spatial Feature Reconstruction of Cloud-Covered Areas in Daily
MODIS Composites. Remote Sens. 2015, 7, 5042–5056. [CrossRef]

130. Nechad, B.; Alvera-Azcaràte, A.; Ruddick, K.; Greenwood, N. Reconstruction of MODIS total suspended matter time series maps
by DINEOF and validation with autonomous platform data. Ocean Dyn. 2011, 61, 1205–1214. [CrossRef]

http://dx.doi.org/10.1029/2001JC001089
http://dx.doi.org/10.1080/01490419.2012.718210
http://dx.doi.org/10.5194/gmd-13-1609-2020
http://dx.doi.org/10.3390/rs14030575
http://dx.doi.org/10.1007/s10872-006-0038-6
http://dx.doi.org/10.1175/2007JCLI1824.1
http://dx.doi.org/10.1175/1520-0442(1994)007<0929:IGSSTA>2.0.CO;2
http://dx.doi.org/10.1080/01431160903199155
http://dx.doi.org/10.1016/j.jmarsys.2005.01.004
http://dx.doi.org/10.1016/S0967-0645(00)00115-6
http://dx.doi.org/10.1175/2009JTECHO592.1
http://dx.doi.org/10.1007/s10872-005-5782-5
http://dx.doi.org/10.1007/978-3-030-41404-7_24
http://dx.doi.org/10.1175/1520-0426(2004)021<1471:UPTEEI>2.0.CO;2
http://dx.doi.org/10.1029/2005JC003313
http://dx.doi.org/10.1109/OCEANS.2014.7002988
http://dx.doi.org/10.1029/2007JC004537
http://dx.doi.org/10.3390/rs10121864
http://dx.doi.org/10.5194/npg-15-61-2008
http://dx.doi.org/10.1109/ICPR.2018.8546261
http://dx.doi.org/10.1029/2007GL029888
http://dx.doi.org/10.3390/jmse9030310
http://dx.doi.org/10.1109/JSTARS.2015.2457495
http://dx.doi.org/10.1109/LGRS.2016.2618941
http://dx.doi.org/10.5194/os-5-475-2009
http://dx.doi.org/10.3390/rs70505042
http://dx.doi.org/10.1007/s10236-011-0425-4


J. Mar. Sci. Eng. 2023, 11, 340 35 of 38

131. Conkright, M.E.; Gregg, W.W. Comparison of global chlorophyll climatologies: In situ, CZCS, Blended in situ -CZCS and SeaWiFS.
Int. J. Remote Sens. 2003, 24, 969–991. [CrossRef]

132. Brody, S.R.; Lozier, M.S.; Dunne, J.P. A comparison of methods to determine phytoplankton bloom initiation. J. Geophys. Res.
Ocean. 2013, 118, 2345–2357. [CrossRef]

133. Fu, Y.; Xu, S.; Zhang, C.; Sun, Y. Spatial downscaling of MODIS Chlorophyll-a using Landsat 8 images for complex coastal water
monitoring. Estuar. Coast. Shelf Sci. 2018, 209, 149–159. [CrossRef]

134. Jo, Y.H.; Kim, D.w.; Kim, H. Chlorophyll concentration derived from microwave remote sensing measurements using artificial
neural network algorithm. J. Mar. Sci. Technol. 2018, 26, 102–110. [CrossRef]

135. Hilborn, A.; Costa, M. Applications of DINEOF to Satellite-Derived Chlorophyll-a from a Productive Coastal Region. Remote
Sens. 2018, 10, 1449. [CrossRef]

136. Maritorena, S.; Siegel, D.A. Consistent merging of satellite ocean color data sets using a bio-optical model. Remote Sens. Environ.
2005, 94, 429–440. [CrossRef]

137. Kwiatkowska, E.; Fargion, G. Merger of ocean color information from multiple satellite missions under the NASA SIMBIOS
Project Office. In Proceedings of the Fifth International Conference on Information Fusion, FUSION (IEEE Cat.No.02EX5997),
Annapolis, MD, USA, 8–11 July 2002; Volume 1, pp. 291–298. [CrossRef]

138. Navarro, G.; Caballero, I.; Prieto, L.; Vázquez, A.; Flecha, S.; Huertas, I.; Ruiz, J. Seasonal-to-interannual variability of chlorophyll-a
bloom timing associated with physical forcing in the Gulf of Cádiz. Adv. Space Res. 2012, 50, 1164–1172. [CrossRef]

139. Michel, R.; Beckers, J.M.; Alvarez, A.; Tintoré, J. Results on SSH neural network forecasting in the Mediterranean Sea. In Remote
Sensing of the Ocean and Sea Ice 2001; SPIE: Bellingham, WA, USA, 2002; Volume 4544. [CrossRef]

140. Høyer, J.L.; She, J. Optimal interpolation of sea surface temperature for the North Sea and Baltic Sea. J. Mar. Syst. 2007, 65, 176–189.
[CrossRef]

141. Lguensat, R.; Tandeo, P.; Ailliot, P.; Chapron, B.; Fablet, R. Using archived datasets for missing data interpolation in ocean remote
sensing observation series. In Proceedings of the OCEANS 2016, Shanghai, China, 10–13 April 2016; pp. 1–5. [CrossRef]

142. Ping, B.; Su, F.; Meng, Y. An Improved DINEOF Algorithm for Filling Missing Values in Spatio-Temporal Sea Surface Temperature
Data. PLoS ONE 2016, 11, e0155928. [CrossRef]

143. Huynh, H.N. Reconstruction and analysis of long-term satellite-derived sea surface temperature for the South China Sea. J.
Oceanogr. 2016, 72. [CrossRef]

144. Nikolaidis, A.; Georgiou, G.; Hadjimitsis, D.; Akylas, E. Applying DINEOF Algorithm On Cloudy Sea-Surface Temperature
Satellite Data Over The Eastern Mediterranean Sea. First Int. Conf. Remote. Sens. Geoinf. Environ. 2013, 8795, 176–185. [CrossRef]

145. Tandeo, P.; Autret, E.; Chapron, B.; Fablet, R.; Garello, R. SST spatial anisotropic covariances from METOP-AVHRR data. Remote.
Sens. Environ. 2014, 141, 144–148. [CrossRef]

146. Thiébaux, J.; Rogers, E.; Wang, W.; Katz, B. A New High-Resolution Blended Real-Time Global Sea Surface Temperature Analysis.
Bull. Am. Meteorol. Soc. 2003, 84, 645–656. [CrossRef]

147. Patil, K.; Deo, M. Prediction of daily sea surface temperature using efficient neural networks. Ocean Dyn. 2017, 67, 357–368
[CrossRef]

148. Liu, X.; Wang, M. Global daily gap-free ocean color products from multi-satellite measurements. Int. J. Appl. Earth Obs. Geoinf.
2022, 108, 102714. [CrossRef]

149. Wang, M.; Jiang, L.; Son, S.; Liu, X.; Voss, K.J. Deriving consistent ocean biological and biogeochemical products from multiple
satellite ocean color sensors. Opt. Express 2020, 28, 2661–2682. [CrossRef]

150. Álvarez, A.; López, C.; Riera, M.; Hernández-García, E.; Tintoré, J. Forecasting the SST Space-time variability of the Alboran Sea
with genetic algorithms. Geophys. Res. Lett. 2000, 27, 2709–2712. [CrossRef]

151. Beckers, J.M.; Rixen, M. EOF Calculations and Data Filling from Incomplete Oceanographic Datasets. J. Atmos. Ocean. Technol.
2003, 20, 1839–1856. [CrossRef]

152. Chin, T.M.; Vazquez-Cuervo, J.; Armstrong, E.M. A multi-scale high-resolution analysis of global sea surface temperature. Remote
Sens. Environ. 2017, 200, 154–169. [CrossRef]

153. Everson, R.; Cornillon, P.; Sirovich, L.; Webber, A. An Empirical Eigenfunction Analysis of Sea Surface Temperatures in the
Western North Atlantic. J. Phys. Oceanogr. 1997, 27, 468–479. [CrossRef]

154. He, R.; Weisberg, R.H.; Zhang, H.; Muller-Karger, F.E.; Helber, R.W. A cloud-free, satellite-derived, sea surface temperature
analysis for the West Florida Shelf. Geophys. Res. Lett. 2003, 30, 4-1–4-5

155. Mohebzadeh, H.; Lee, T. Spatial downscaling of MODIS Chlorophyll-a with machine learning techniques over the west coast of
the Yellow Sea in South Korea. J. Oceanogr. 2020, 77. [CrossRef]

156. Hu, C.; Feng, L.; Lee, Z.; Franz, B.; Bailey, S.; Werdell, J.; Proctor, C. Improving Satellite Global Chlorophyll a Data Products
Through Algorithm Refinement and Data Recovery. J. Geophys. Res. Ocean. 2019, 124. [CrossRef]

157. Stock, A.; Subramaniam, A.; Van Dijken, G.L.; Wedding, L.M.; Arrigo, K.R.; Mills, M.M.; Cameron, M.A.; Micheli, F. Comparison
of Cloud-Filling Algorithms for Marine Satellite Data. Remote Sens. 2020, 12, 3313. [CrossRef]

158. Schaeffer, P.; Faugére, Y.; Legeais, J.F.; Ollivier, A.; Guinle, T.; Picot, N. The CNES_CLS11 Global Mean Sea Surface Computed
from 16 Years of Satellite Altimeter Data. Mar. Geod. 2012, 35, 3–19. [CrossRef]

http://dx.doi.org/10.1080/01431160110115573
http://dx.doi.org/10.1002/jgrc.20167
http://dx.doi.org/10.1016/j.ecss.2018.05.031
http://dx.doi.org/10.6119/JMST.2018.02_(1).0004
http://dx.doi.org/10.3390/rs10091449
http://dx.doi.org/10.1016/j.rse.2004.08.014
http://dx.doi.org/10.1109/ICIF.2002.1021164
http://dx.doi.org/10.1016/j.asr.2011.11.034
http://dx.doi.org/10.1117/12.452757
http://dx.doi.org/10.1016/j.jmarsys.2005.03.008
http://dx.doi.org/10.1109/OCEANSAP.2016.7485433
http://dx.doi.org/10.1371/journal.pone.0155928
http://dx.doi.org/10.1007/s10872-016-0365-1
http://dx.doi.org/10.1117/12.2029085
http://dx.doi.org/10.1016/j.rse.2013.10.024
http://dx.doi.org/10.1175/BAMS-84-5-645
http://dx.doi.org/10.1007/s10236-017-1032-9
http://dx.doi.org/10.1016/j.jag.2022.102714
http://dx.doi.org/10.1364/OE.376238
http://dx.doi.org/10.1029/1999GL011226
http://dx.doi.org/10.1175/1520-0426(2003)020<1839:ECADFF>2.0.CO;2
http://dx.doi.org/10.1016/j.rse.2017.07.029
http://dx.doi.org/10.1175/1520-0485(1997)027<0468:AEEAOS>2.0.CO;2
http://dx.doi.org/10.1007/s10872-020-00562-6
http://dx.doi.org/10.1029/2019JC014941
http://dx.doi.org/10.3390/rs12203313
http://dx.doi.org/10.1080/01490419.2012.718231


J. Mar. Sci. Eng. 2023, 11, 340 36 of 38

159. Saxena, N. Efficient Downscaling of Satellite Oceanographic Data With Convolutional Neural Networks. In Proceedings of
the 28th International Conference on Advances in Geographic Information Systems; Association for Computing Machinery,
SIGSPATIAL ’20, New York, NY, USA, 3–6 November 2020; pp. 659–660. [CrossRef]

160. Liu, J.; Sun, Y.; Ren, K.; Zhao, Y.; Deng, K.; Wang, L. A Spatial Downscaling Approach for WindSat Satellite Sea Surface Wind
Based on Generative Adversarial Networks and Dual Learning Scheme. Remote Sens. 2022, 14, 769. [CrossRef]

161. Atkinson, P.M. Downscaling in remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2013, 22, 106–114. [CrossRef]
162. Fablet, R.; Huynh Viet, P.; Lguensat, R.; Horrein, P.H.; Chapron, B. Spatio-Temporal Interpolation of Cloudy SST Fields Using

Conditional Analog Data Assimilation. Remote Sens. 2018, 10, 310. [CrossRef]
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