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Abstract: Discretization is the process of converting a continuous function or model or equation
into discrete steps. In this work, learning and adaptive techniques are implemented to control DC
motors that are used for actuating control surfaces of unmanned underwater vehicles. Adaptive
control is a strategy wherein the controller is designed to adapt the system with parameters that
vary or are uncertain. Parameter estimation is the process of computing the parameters of a system
using a model and measured data. Adaptive methods have been used in conjunction with different
parameter estimation techniques. As opposed to the ubiquitous stochastic artificial intelligence
approaches, very recently proposed deterministic artificial intelligence, a learning-based approach
that uses the physics-defined process dynamics, is also applied to control the output of the DC motor
to track a specified trajectory. This work goes further to evaluate the performance of the adaptive and
learning techniques based on different discretization methods. The results are evaluated based on
the absolute error mean between the output and the reference trajectory and the standard deviation
of the error. The first-order hold method of discretization and surprisingly large sample time of
seven-tenths of a second yields greater than sixty percent improvement over the results presented in
the prequel literature.

Keywords: discretization; DC motors; deterministic artificial intelligence; adaptive control; learning
control; proportional derivative; estimation; least squares; modeling

1. Introduction

Direct current (DC) motors, shown in Figures 1 and 2, are a class of rotating electrical
motors that convert DC electrical energy into mechanical energy, and such motors have
ubiquitous applications including unmanned underwater vehicles. The operation of DC
motors is amidst a revolutionary change with the adoption of sophisticated microcontrollers
and control strategies. Control of DC motors is a well-studied topic in the literature, includ-
ing using neural networks [1,2] including neural network-based auto-tuning of classical
proportional, integral, derivative controllers [3], and recursive least squares [4]. Estimators
and estimation techniques are deployed side-by-side with control strategies to determine
the parameters and even the state of the system using a model. Classical approaches
adopted for the control of DC motors include (but are not limited to) the proportional,
integral, derivative, proportional–integral, proportional–derivative, proportional–integral–
derivative controller, etc. In this work, the proportional–derivative control approach is
implemented, which operates on both the current and predicted process conditions. The
proportional–derivative control technique provides a combination of feedforward and
feedback control making it a more appropriate strategy for the learning-based approach
discussed and implemented in this work.
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Figure 1. The propeller and control surfaces of unmanned underwater vehicles [5] generally utilize 
DC motors [6] like those depicted in Figure 2. Credit: Navy photo by Petty Officer 1st Class Peter D. 
Blair. Department of Defense photographs and imagery, unless otherwise noted, are in the public 
domain [7]. 
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Figure 2. (a) High-torque brushless DC motors used in unmanned underwater vehicles (image 
credit Unmanned Systems Technology [6]). (b) Underwater thruster propeller motor (image credit 
Maxon [8]). (c) ECI-40 Maxon underwater drive motor and gear head (image credit Maxon [8]). 

1.1. Research Lineage from the M.I.T. Rule to Regression 
The method of least squares is one of the most foundational mathematical tech-

niques used in modeling and estimation theory. The objective of the least squares method 
consists of adjusting the parameters of a model of the system to best fit a set of data. Es-
timators designed for several adaptive modeling techniques, presented in literature, are 
developed using the least squares approach presented in the literature [9–14], along two 
lines of thought represented by Slotine [9,10] as modified by Fossen [11] and Åström 
[12–14], respectively. Each method involves formulation of canonical regression forms, 
while the Slotine/Fossen approach seeks to utilize the full regression form, and the 
Åström approach bifurcates the regression model into components exhibiting disparate 
characteristics that might or might not need to be adapted. The Slotine/Fossen approach 
was augmented [15] with physics-based methods of Lorenz [16] to formulate the bur-
geoning method referred to as deterministic artificial intelligence [17], which was pro-
posed for applications to DC motors [18] and validated by Shah [19]. Shah’s validation 
highlighted the criticality on motor performance of the discretization method and dis-
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Figure 2. (a) High-torque brushless DC motors used in unmanned underwater vehicles (image
credit Unmanned Systems Technology [6]). (b) Underwater thruster propeller motor (image credit
Maxon [8]). (c) ECI-40 Maxon underwater drive motor and gear head (image credit Maxon [8]).

1.1. Research Lineage from the M.I.T. Rule to Regression

The method of least squares is one of the most foundational mathematical techniques
used in modeling and estimation theory. The objective of the least squares method consists
of adjusting the parameters of a model of the system to best fit a set of data. Estimators
designed for several adaptive modeling techniques, presented in literature, are developed
using the least squares approach presented in the literature [9–14], along two lines of
thought represented by Slotine [9,10] as modified by Fossen [11] and Åström [12–14],
respectively. Each method involves formulation of canonical regression forms, while the
Slotine/Fossen approach seeks to utilize the full regression form, and the Åström approach
bifurcates the regression model into components exhibiting disparate characteristics that
might or might not need to be adapted. The Slotine/Fossen approach was augmented [15]
with physics-based methods of Lorenz [16] to formulate the burgeoning method referred
to as deterministic artificial intelligence [17], which was proposed for applications to
DC motors [18] and validated by Shah [19]. Shah’s validation highlighted the criticality
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on motor performance of the discretization method and discretization time interval and
recommended study of such. This manuscript is one such study as recommended by Shah.

A main theme of the research lineage is replacement of classical adaption methods
(e.g., the co-called “M.I.T. rule”) [20] with estimation methods based on least squares.
Numerous variations in the least squares approach have been developed that have been
used in designing different types of estimators. It is therefore worth obtaining an essence
of these forms that are prevalent to the work presented in this manuscript.

1.2. Least Squares Variations

Recursive form (an adaptive algorithm that recursively estimates the parameters of
a system using a model that is linear in those parameters) [14] and batch form (where all
measurements are collected together and processed simultaneously) [10] are variations in
the least squares approach that have also been applied as an adaptive method [15].

Another version of the method of least squares is the weighted least squares, also
known as weighted linear regression, in which weights are assigned to the observations, and
these weights are proportional to the reciprocal of the error variance for that observation.
Ideally, the weights in the weighted least squares analysis are nonrandom quantities that
are proportional to the reciprocal of the variances of the measured data, but it might not
always be clear as to how to choose the weights.

In cases where there is an ambiguity in choosing the weights for the weighted least
squares approach, the extended least squares method may be adopted. The extended least
squares approach provides a potential solution to the weighting problem experienced in
the weighted least squares method by avoiding it. The extended least squares method is
a maximum likelihood kind of statistical estimation method when the data are normally
distributed. With the extended least squares, weights need not be chosen.

A common modeling assumption used in this work is the autoregressive moving
average model. By applying the analysis of autoregression and moving average simultane-
ously to time-stamped data, the autoregressive moving average method is obtained. In the
autoregressive approach, the output variable is linearly dependent on its previous values
as well as on a stochastic term (an imperfectly predictable term), resulting in a model in the
stochastic difference equation form. The moving-average model, or the moving-average
process, is a method implemented for modeling time series data that is univariate (a func-
tion involving only one variable) in nature. In the moving-average model, contrary to the
autoregressive analysis, the output variable is cross-correlated with a random variable
nonidentical to itself. The autoregressive moving average approach assumes that the time
series, for the model being implemented, is stationary. Further, if the time series fluctuates,
it is assumed to be uniformly fluctuating around a particular time.

1.3. Physics-Based Utilization of Governing Differential Equations

Various techniques, based on adaptation, have been implemented to control different
types of systems with unknown parameters and achieve the desired response, which often
would be an output signal tracking an input signal [21]. In most natural processes, a
change in the input does not lead to a matched change in the output. By incorporating
physics-based procedures, however, certain adaptive methods allow for control and track-
ing. The primary difference between nonlinear adaptive control [14] and the physics-based
method [16] is the implementation of complete mathematical expression for modeling
by physics. The feedforward portion of recent research in deterministic artificial intel-
ligence [18] (also called assertion of self-awareness) embodies the core idea of the two
techniques. Parameter adaption by classical methods (e.g., M.I.T. rule) is one option [22],
while Smeresky and Rizzo propose optimal learning [23] as another option utilizing batch
least squares, where current research investigates the efficacies of variations in least squares.
Last year, Zhai studied learning implementation by signal-encoded deep learning [24] and
offered a direct comparison to deterministic algorithms [25].
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Deterministic artificial intelligence, and likewise other learning-based techniques,
uses process dynamics (dictated by physics-based mathematical models) as self-awareness
statements in the form of feedforward controls [18]. Learning is driven by the evaluation
of performance metrics to track command-input. The novel idea in deterministic artificial
intelligence is that the self-awareness statements only function when a prior desired trajec-
tory derived analytically is provided, where the error calculation enables both adaption and
optimal learning according to recently published results [19]. The latest literature shows
that the adaptive approach achieves around 29% lower error than deterministic artificial
intelligence in input tracking [19].

1.4. Discretization

The models developed for estimating, adapting, and learning physical systems begin
as continuous functions, since the modeling is strictly taken from the first principles of
physics. However, when managing controllers and computers to implement the control
strategies, it is essential to discretize the continuous system. Different discretization strate-
gies are available to convert continuous systems into discrete systems, particularly in the
fields of signal processing, control, and estimation. This manuscript presents a study of the
effects of different discretization methods when converting the continuous model of the
DC motor and the eventual efficacy applied to DC motor control. Arbitrary selection of
different discretization methods and intervals led to the results depicted in Figure 3.
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Figure 3. Recently proposed DC motor improvements described in the literature, where the difference
is the discretization method and sample time [18]. The command signal is indicated by the black
solid line. The output obtained using deterministic artificial intelligence is represented by the blue
dotted line in (a). The output signal obtained through the model-following method with recursive
least squares estimation is described by the red dotted line in (b).

This work includes a study of the effects of changing the sample time, a scalar value
that represents the sampling period for the resulting discrete-time system. Discussions are
offered on the efficacy of DC motors’ output tracking a desired trajectory (in this work,
a series of alternating step functions) with iterations of the discretization method and
sample time. Finally, novel conclusions and recommendations are offered regarding what
discretization method and sample time are best suited (including limiting cases) for the
deterministic artificial intelligence method, based on the mean absolute error and standard
deviation of the error in the output from the desired trajectory.

Main conclusion of the prequel study. The potency of the deterministic artificial intelli-
gence approach is limited by sample time values and discretization method. Identification of the
limiting discretization values and recommendations for the discretization method is recommended.
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To summarize, the different strategies that were studied in this research are recursive
least squares, extended least squares, autoregressive moving average, and deterministic
artificial intelligence.

Main conclusion of this study. The deterministic artificial intelligence approach is suitable
only for a range of sample time values for each discretization method. To achieve high efficacy, these
values and methods must be adhered to.

2. Materials and Methods

To illustrate the main conclusions of this work, the Materials and Methods begin with
overarching principles such as methodological process flow (e.g., Figure 4) and topology
of eventual computer simulations (e.g., Figure 5). Next, Section 2.1 describes motor dy-
namics modeling and control strategies. Next, discretization is discussed regarding the
accompanying simulation. The simulation experiments are summarized in succinct tables
of common figures of merit (e.g., means and standard deviations) with accompanying
figures to provide qualitative depiction and comparison of the quantitative results. The
comparison leads to recommendations for the discretization method and time interval to
achieve efficacy in controlling DC motors.
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2.1. Modeling DC Motor Dynamics and Designing Control Strategies

The transfer function (a function in the frequency domain that relates the output of the
system to its input), also known as the process equation or the process truth model, in the
continuous time domain for modeling the dynamics of a DC motor is given by Equation
(1). Using analytical approaches presented in [15], the discrete transfer function for the DC
motor (typical specifications shown in Appendix B) is given using Equation (2):

G(s) =
B(s)
A(s)

=
1

s(s + 1)
(1)

G(z) =
B(z)
A(z)

=
b0z + b1

z2 + a1z + a2
=

0.1065z + 0.0902
z2 − 1.9z + 0.88

(2)

The canonical motor model from [26] with bump-test current regulation is integrated
for voltage display, where the bump-test reasonably resembles each discontinuous jump
of the square wave. The canonical model is available for purchase by readers seeking to
repeat the work in this manuscript, and its designation is Quanser USB QICii, and the
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canonical motor is Equation 2.6 in Section 2.6.1.1 of the laboratory workbook, DC Motor
Control Trainer (DCMCT) [26]. Module Description, a section in the workbook, elaborates
the modeling methods for rate output. The author of the workbook is the same author of
references [12–14], which reference the same motor model as that described herein; these
references provide the benchmark methods for this manuscript, e.g., provides the starting
point. This is important to allow researchers to duplicate these results.

By altering the discretization method and the sample time, the values of b0, b1, a1, and
a2 in Equation (2) change, resulting in a different discrete transfer function each time. The
transfer function in Equation (2) has poles at z = 1.1, 0.80 and zero at z = −0.8469. Thus,
the system is unstable since the magnitude of one pole is greater than 1.0 (i.e., the pole lies
outside the unit circle). By applying adaptive control techniques, these poles are relocated
such that the system becomes stable. The deterministic artificial intelligence modeling
strategy, however, implements a proportional–derivative (PD) feedback adaptive technique
to follow the target path instead of attempting pole relocation. While modeling, nonwhite
(correlated) noise as two delayed noise terms, having a Gaussian distribution N(0, 1/625),
are added. MATLAB® was used to perform simulations of both approaches. Appendix A
provides the code used to obtain the latter mentioned results. The input signal to the
learning and the adaptive control technique is an identical square wave. The former design
creates trajectories that are sinusoidal in nature and begin at the initial discontinuity of the
square wave while terminating at the peak of each square wave discontinuity through an
autonomous path planning algorithm. Using Equation (2), the output equation for the DC
motor system is obtained and given by Equation (3):

y(k + 2) = b0u(k + 1) + b1u(k)− a1y(k + 1)− a2y(k) (3)

While implementing the deterministic artificial intelligence approach, drastic forced
changes are not caused in the output signal of the system to match the changes in the input
signal. In contrast, for any change in the input state, the output progressively follows a
calculated trajectory towards the target state in a manner such that for any time step there
is not an analytically undefined position. Self-awareness is achieved by asserting process
dynamics through the control mechanism in a feedforward manner, while the feedback
parameters that are learned via a proportional–derivative feedback mechanism (or 2-norm
optimal methods) enable modulating the control signal. The process flow of deterministic
artificial intelligence is illustrated in Figure 4 while Figure 5 shows the topology and the
self-awareness statements. Equation (4) demonstrates how the feedback parameters are
calculated through batch least squares [23], where θ̂ represents the learned parameters
to adjust the control input u, φd represents a matrix comprising the states of the desired
trajectory, and δu is the error in the control input.

u = φd θ̂ = φd

(
φd

Tφd

)−1
φd

Tδu (4)

2.2. Discretization Methods

The different discretization methods used in this study are least squares, zero-order
hold, Tustin approximation, first-order hold, zero-pole matching equivalents, and impulse-
invariant mapping. When the input has a staircase form and the continuous and discrete
models of the system in the time domain need to be matched exactly, the zero-order hold
technique of discretization is implemented. The zero-order hold discretization gives the
discretized transfer function Hd(z) of a continuous time linear model H(s). In the zero-
order hold technique, by holding every sample value u(k) constant during one sample
period, i.e., u(t) = u(k)∀ kTs ≤ t ≤ (k + 1)Ts, the continuous time input signal u(t) is
generated. This signal u(t) serves as an input to the continuous system H(s). By sampling
the output of the continuous time system y(t) every Ts seconds, the output for the discrete
time system y(k) is obtained.
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When the input has a piecewise linear form and the continuous and discrete models in
the time domain need to be matched exactly, the first-order hold technique of discretization
is implemented. The first-order hold technique differs from the previously mentioned
zero-order hold approach by the basic holding mechanism. To convert the discrete input
samples u(k) into a continuous input u(t), the first-order hold uses linear interpolation
between samples, as given by Equation (5):

u(t) = u(k) + (t− k ∗ Ts)(u(k + 1)− u(k))/Ts ∀ kTs ≤ t ≤ (k + 1)Ts (5)

In general, the first-order hold method is more accurate than the zero-order hold
approach, particularly when the systems are driven by smooth inputs. The first-order hold
method is more appropriately called the triangle approximation [25] since it varies from the
standard causal first-order hold approach. The first-order hold method is also known as the
ramp-invariant approximation. When the impulse response of the discrete time model and
the corresponding continuous time model is required to be the same, the impulse-invariant
mapping approach is applied. The sum of shifted copies of the continuous time model
frequency response provides the related discrete-time model frequency response. The
former model’s impulse response hc(t) is sampled with the sampling period T to obtain
the latter model’s impulse response h(k) such that h(k) = T∗hc(kT).

The Tustin approximation, also known as the bilinear approximation, provides the
best match in the frequency domain between the discrete time model of the system and the
corresponding continuous time model. The Tustin approach relates the transfer functions
in the s-domain and z-domain through the approximation given by Equation (6):

z = esTs ≈ (1 + (0.5Ts)s)/(1− (0.5Ts)s) (6)

s′ = (2z− 1)/(Tsz + 1) (7)

In continuous to discrete conversions using the Tustin approach, the discretization
Hd(z) of H(s), the continuous transfer function, is performed such that Hd(z) = H(s′),
where s′ is given by Equation (7). The states of s system are not preserved when the Tustin
method is implemented to convert a state-space model. The state-space matrices and the
time delays in the system play a key role in determining the state transformation. When
the system has poles at z = −1, this method is not defined, while it is ill-conditioned for
those with poles near z = −1. This method of approximation is used when good matching
is required between the discrete and the continuous time models in the frequency domain.
The Tustin approach is also the best suited discretization method when the model of the
system has important dynamics at certain frequency that need to be captured.

The zero-pole matching equivalents conversion method applies only to systems with
single-input, single-output. The discretized and continuous models have matching DC
gains. The zeros and poles of the continuous and discretized system are related by the
transformation zi = esiTs , where si represents the ith zero or pole of the continuous time
model, zi represents the ith zero or pole of the discrete time model, and Ts represents the
discretization sample time. The zero-pole matching equivalents approach is preferred
when the system model at hand has a single input and a single output, and good matching
is desired in the frequency domain between the discrete and continuous time models.

The least squares method of discretization implements a vector-fitting optimization
strategy in order to reduce the error between the discrete and continuous time model
frequency responses of the system up to the Nyquist frequency. The Nyquist frequency
(or folding frequency) is a characteristic of the operation that extracts samples from a
continuous time signal (also known as a sampler) and converts it to a discrete sequence.
The value of the Nyquist frequency is one-half of the sampling rate. The obtained discrete
time sequence is free of distortion if the highest frequency of the signal (bandwidth) is
less than the Nyquist frequency. The least squares method is useful to capture fast system
dynamics and large sample times are desired, e.g., if the computational resources are
limited. The least squares method is only suitable for changing continuous to discrete
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systems and for single-input, single-output systems. Like the zero-pole matching and the
Tustin approximation, the least squares method results in a good match between the original
continuous model’s and the converted discrete model’s frequency responses. However,
for the same sample time, the least squares approach leads to a smaller difference in the
discrete and continuous frequency responses when compared with the zero-pole matching
or Tustin approximation. A slower sample time results in a reduced load on the processor,
which is beneficial when there are limitations on the computational resources.

3. Results

Simulations were performed for different time samples using each discretization
method. Results are shown qualitatively in Figure 6 with corresponding description in
Table 1. Each line plotted in Figure 6 represents one of the four control strategies designed
for the DC motor system. Section 4 provides the quantitative results corresponding to the
depicted qualitative results.J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 9 of 17 
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Figure 6. Output plot for each of the four control strategies with different discretization methods
and sample time. (a) zero-order hold with 0.6 s sample time, (b) zero-order hold with 0.5 s sample
time, (c) zero-order hold with 0.1 s sample time, (d) first-order hold with 0.7 s sample time, (e) first-
order hold with 0.5 s sample time, (f) first-order hold with 0.1 s sample time, (g) impulse-invariant
mapping with 0.5 s sample time, (h) impulse-invariant mapping with 0.3 s sample time, (i) impulse-
invariant mapping with 0.1 s sample time, (j) Tustin approximation with 0.8 s sample time, (k) Tustin
approximation with 0.5 s sample time, (l) Tustin approximation with 0.1 s sample time, (m) zero-
pole matching with 0.5 s sample time, (n) zero-pole matching with 0.3 s sample time, (o) zero-pole
matching with 0.1 s sample time, (p) least squares with 0.6 s sample time, (q) least squares with 0.5 s
sample time, (r) least squares with 0.1 s sample time.
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Table 1. Discretization method and sample time used for each plot displayed in Figure 6.1

Plot Description Plot Description Plot Description

(a) ZOH and Ts = 0.6 s (b) ZOH and Ts = 0.5 s (c) ZOH and Ts = 0.1 s
(d) FOH and Ts = 0.7 s (e) FOH and Ts = 0.5 s (f) FOH and Ts = 0.1 s
(g) IIM and Ts = 0.5 s (h) IIM and Ts = 0.3 s (i) IIM and Ts = 0.1 s
(j) TA and Ts = 0.8 s (k) TA and Ts = 0.5 s (l) TA and Ts = 0.1 s

(m) ZPM and Ts = 0.5 s (n) ZPM and Ts = 0.3 s (o) ZPM and Ts = 0.1 s
(p) LS and Ts = 0.6 s (q) LS and Ts = 0.5 s (r) LS and Ts = 0.1 s

1 ZOH: zero-order hold; FOH: first-order hold; IIM: impulse-invariant mapping; TA: Tustin approximation; ZPM:
zero-pole matching equivalents; LS: least squares.

For each of the discretization methods, sample time lower than 0.1 s results in signifi-
cant error and deviation from the desired output for the deterministic artificial intelligence
method. The plots (a), (d), (g), (j), (m), and (p) in Figure 6 represent the largest permissible
sample time value for the deterministic artificial intelligence approach for each discretiza-
tion method. A sample time larger than the permissible value leads to incorrect results.
Based on the plots obtained by running the simulations using Equation (1) and discretizing
it using various methods and sample times, the mean of the absolute error between the
output and the reference trajectory and the standard deviation of the error are tabulated in
the table in Section 4. The lowest mean error for each method is also highlighted.

4. Discussion

The prime contribution of this work is to demonstrate the effects of changing the
discretization method and sample time on the control of DC motors used in unmanned
underwater vehicles. This work directly uses the continuous transfer function and dis-
cretizes it to implement various adaptive control strategies together with learning-based
deterministic AI. Figure 7a shows that deterministic artificial intelligence yields lower mean
and standard deviation of error in input trajectory tracking when compared with modeling
techniques such as indirect self-tuner without process zero cancellation and minimum
phase plant presented in [16]. However, the latest literature states that using deterministic
artificial intelligence yields an error of 0.224 [19], and the performance of this approach is
theorized to be dependent on the efficacy with discretized implementations. From Table 2,
it is seen that using the appropriate sample time and discretization method for Equation
(1) provides significantly lower errors and thus demonstrates the superiority of using
deterministic artificial intelligence. Each discretization method can provide substantially
lower error than stated in [18]. The lowest error of 0.0840 is obtained using the first-order
hold method and sample time of 0.7 s, a 62.5% reduction from that stated in [19]. It is also
observed that as the sample time is reduced, the performance of the deterministic artificial
intelligence decreases as well, leading to delays and errors in input trajectory tracking.
This result is surprising and not in accordance with conventional logic and intuition. An
explanation for this demands research that needs to be carried out in future work.

Recommended future research. In this work, the sample time is changed in steps of 0.1 s.
Reducing this further, a functional relationship could be generated between the sample time and
the error statistics for the deterministic artificial intelligence approach. The advantages of doing
this would be twofold. Firstly, it might provide even better results for the deterministic artificial
intelligence approach. Secondly, comparing the error statistics of the approach with similar statistics
from the other methods used in this work would provide quantitative results about the sample time
at which the performance of the adaptive approach supersedes the performance of the learning-based
approach. Further research should also be carried out to obtain a theoretical and practical explanation
for the poor performance of deterministic artificial intelligence with reduced sample times.
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Figure 7. (a) Results presented in [16] for deterministic artificial intelligence tracking command trajectory. (b)
Plots for the results obtained in most recent research [18], which shows that the performance of deterministic
artificial intelligence is concerned with the efficacy of discretized implementations.

Table 2. Mean and standard deviation of the error for various discretization methods and sample times.1

Sample Time
(s) ZOH FOH

Impulse
Invariant
Mapping

Tustin
Approximation

Zero-Pole
Matching

Equivalents
Least Squares

0.8 – – – 0.1041/0.1646 – –
0.7 – 0.0840/0.1430 – 0.0894/0.1322 – –
0.6 0.1969/0.2683 0.0886/0.1297 – 0.0996/0.1403 – 0.0912/0.1451
0.5 0.1137/0.1612 0.1083/0.1513 0.0967/0.1437 0.1209/0.1658 0.1219/0.1722 0.0998/0.1416
0.4 0.1408/0.1897 0.1453/0.1953 0.1179/0.1628 0.1604/0.2141 0.1434/0.1932 0.1329/0.1802
0.3 0.2018/0.2647 0.2148/0.2771 0.1782/0.2331 0.2341/0.3012 0.2037/0.2669 0.1983/0.2571
0.2 0.3405/0.4225 0.3691/0.4512 0.3169/0.3903 0.3981/0.4849 0.3415/0.4238 0.3452/0.4232
0.1 0.8467/0.9812 0.8708/1.0032 0.8045/0.9288 0.9040/1.0405 0.8474/0.9822 0.8413/0.9698

1 The smallest combination of error mean and standard deviation is highlighted for each method.
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the results presented.
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%% Investigating the effects of discretization for control of DC motors using deterministic
artificial intelligence

clear; close all; clc;

rng(100); %% Setting up the problem:

% Generate reference input as a square wave
maxtime = 200;
U_ctrl = zeros(1,201);
for i = 1:length(U_ctrl)

if (mod(floor(i/20),2) == 0)
U_ctrl(i) = 1;

else
U_ctrl(i) = 0;

end
end
U_ctrl_traj = zeros(1,length(U_ctrl));
check = 1;
next_run = 0;
for i = 1:length(U_ctrl)-1

if (check)
U_ctrl_traj(i) = U_ctrl(i);
delta = U_ctrl(i + 1)-U_ctrl(i);
i_last = i;
val_last = U_ctrl(i);

end
if (delta ~= 0)

check = 0;
if (next_run)

U_ctrl_traj(i) = val_last + delta/2*(1 + (sin(0.2*pi*(i-i_last)-pi/2)));
end
next_run = 1;
if (U_ctrl_traj(i) == U_ctrl(i) && (i ~= i_last))

check = 1;
next_run = 0;

end
end

end
U_ctrl = U_ctrl(1:200);

% System modeling
Ts = 0.7;
TF_c = tf(1,[1 1 0]); % continuous transfer
function
TF_d = c2d(TF_c,Ts,‘foh’); % discrete transfer
function
% Hd = tf([0 0.1065 0.0902],poly([1.1 0.8]),0.5); % analytic discrete
transfer function
% Hd = tf([0 0.0902 0.06461],[1 -1.213 0.3679],0.5); % offline discrete
transfer function
Num_coef = [TF_d.Numerator{1,1}(1,1),TF_d.Numerator{1,1}(1,2),TF_d.Numerator{1,1}(1,3)];
Denom_coef =
[TF_d.Denominator{1,1}(1,1),TF_d.Denominator{1,1}(1,2),TF_d.Denominator{1,1}(1,3)];
nzeros = 5;
noise_std = 25;
Noise_distr = 1/noise_std*randn(1,maxtime + nzeros);
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%% Algorithm for Recursive Least Squares (RLS):
% Setup system parameters
b_1 = 0.2; b_0 = 0.1; a_2 = 0; a_1 = 0;
B_m = [0 0.1065 0.0902]; A_m = poly([0.2 + 0.2j 0.2-0.2j]);
a_0 = 0; a_m2 = A_m(3); a_m1 = A_m(2);
time = zeros(1, nzeros); Y_RLS = zeros(1, nzeros); Ym_RLS = zeros(1, nzeros);
U_RLS = ones(1, nzeros); Uc_RLS = [ones(1, nzeros), U_ctrl];
Pmatrix = [100 0 0 0;0 100 0 0;0 0 1 0;0 0 0 1]; THETA_hat_RLS(:,1) = [-a_1 -a_2 b_0 b_1]’;
alpha = 0.5; beta = []; gamma = 1.2; lambda = 1.0; Rmatrix = [];

%%%%%%%%%%%%%%%%%%%%%%%RECURSIVE LEAST
SQUARES%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:1:maxtime

t = i + nzeros; phi_vec = []; time(t) = i;
Y_RLS(t) = [-Denom_coef(2) -Denom_coef(3) Num_coef(2) Num_coef(3)]*[Y_RLS(t-1)

Y_RLS(t-2) U_RLS(t-1) U_RLS(t-2)]’+...
Noise_distr(t-1) + Noise_distr(t-2);

Ym_RLS(t) = [-A_m(2) -A_m(3) B_m(2) B_m(3)]*[Ym_RLS(t-1) Ym_RLS(t-2) Uc_RLS(t-1)
Uc_RLS(t-2)]’;

BETA = (A_m(1) + A_m(2) + A_m(3))/(b_0 + b_1); beta = [beta BETA];

% Implementation of the RLS method
phi_vec = [Y_RLS(t-1) Y_RLS(t-2) U_RLS(t-1) U_RLS(t-2)]’;
Kmatrix = Pmatrix*phi_vec*1/(lambda + phi_vec’*Pmatrix*phi_vec);
Pmatrix = Pmatrix -

Pmatrix*phi_vec*inv(1+phi_vec’*Pmatrix*phi_vec)*phi_vec’*Pmatrix/lambda;
% RLS-EF

error(i) = Y_RLS(t) - phi_vec’*THETA_hat_RLS(:,i);
THETA_hat_RLS(:,i + 1) = THETA_hat_RLS(:,i) + Kmatrix*error(i);
a_2 = -THETA_hat_RLS(2,i + 1); a_1 = -THETA_hat_RLS(1,i + 1);
b_1 = THETA_hat_RLS(4,i + 1); b_0 = THETA_hat_RLS(3,i + 1);
Bf(:,i) = [b_0 b_1]’; Af(:,i) = [1 a_1 a_2]’;

% Determine R,S, & T for CONTROLLER
r_1 = (b_1/b_0) + (b_1ˆ2-a_m1*b_0*b_1 + a_m2*b_0ˆ2)*(-b_1 +

a_0*b_0)/(b_0*(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2));
s_0 = b_1*(a_0*a_m1-a_2-a_m1*a_1 + a_1ˆ2 + a_m2-a_1*a_0)/(b_1ˆ2-a_1*b_0*b_1 +

a_2*b_0ˆ2)...
+b_0*(a_m1*a_2-a_1*a_2-a_0*a_m2 + a_0*a_2)/(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2);

s_1 = b_1*(a_1*a_2-a_m1*a_2 + a_0*a_m2-a_0*a_2)/(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2) + ...
b_0*(a_2*a_m2-a_2ˆ2-a_0*a_m2*a_1 + a_0*a_2*a_m1)/(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2);

S = [s_0 s_1]; R = [1 r_1]; Rmatrix = [Rmatrix r_1]; T = BETA*[1 a_0];

% Calculate control signal
U_RLS(t) = [T(1) T(2) -R(2) -S(1) -S(2)]*[Uc_RLS(t) Uc_RLS(t-1) U_RLS(t-1) Y_RLS(t)

Y_RLS(t-1)]’;
U_RLS(t) = 1.3*[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc_RLS(t) Uc_RLS(t-1) U_RLS(t-1) Y_RLS(t)

Y_RLS(t-1)]’;
end
%%%%%%%%%%%%%%%%%%%%%%%%END OF RECURSIVE LEAST
SQUARES%%%%%%%%%%%%%%%%%%%%%

%% Algorithm for Autoregressive moving average (ARMA):
% Setup system parameters
b_1 = 0.2; b_0 = 0.01; a_2 = 0; a_1 = 0;
B_m = [0 0.1065 0.0902]; A_m = poly([0.2 + 0.2j 0.2-0.2j]);
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a_m2 = A_m(3); a_m1 = A_m(2); a_0 = 0; n = 8;
time = zeros(1, nzeros); Y_ARMA = zeros(1, nzeros);
U_ARMA = ones(1, nzeros); Uc_ARMA = [ones(1, nzeros), U_ctrl];
THETA_hat_ARMA = zeros(4, maxtime); beta = [];
THETA_hat_ARMA(:,1) = [-a_1 -a_2 b_0 b_1]’;
Pmatrix = 10000*eye(n); Pmatrix(1,1) = 1000; Pmatrix(2,2) = 100; Pmatrix(3,3) = 100;
Pmatrix(4,4) = 10000; Pmatrix(5,5) = 1000; Pmatrix(6,6) = 100;
phi_vec = []; Rmatrix = []; lambda = 1;

%%%%%%%%%%%%%%%%%%%%%%AUTOREGRESSIVE MOVING
AVERAGE%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:1:maxtime

t = i + nzeros; time(t) = i;
Y_ARMA(t) = [-Denom_coef(2) -Denom_coef(3) Num_coef(2) Num_coef(3)]*...

[Y_ARMA(t-1) Y_ARMA(t-2) U_ARMA(t-1) U_ARMA(t-2)]’ + ...
Noise_distr(t-1) + Noise_distr(t-2); % Generate truth output

BETA = (A_m(1) + A_m(2) + A_m(3))/(b_0 + b_1); beta = [beta BETA];
phi_vec = [phi_vec; Y_ARMA(t-1) Y_ARMA(t-2) U_ARMA(t-1) U_ARMA(t-2)];
if (i > 3)

THETA_hat_ARMA(:,i + 1) = inv(phi_vec’*phi_vec)*phi_vec’*Y_ARMA(1 + nzeros:t)’;
else

THETA_hat_ARMA(:,i + 1) = THETA_hat_ARMA(:, i);
end
a_2 = -THETA_hat_ARMA(2,i + 1); a_1 = -THETA_hat_ARMA(1,i + 1);
b_1 = THETA_hat_ARMA(4,i + 1); b_0 = THETA_hat_ARMA(3,i + 1); % Update A & B

coefficients

% Save final coefficient values for comparison with real values to obtain epsilon errors
B_f(:,i) = [b_0 b_1]’; A_f(:,i) = [1 a_1 a_2]’;

% Determine R, S, & T for CONTROLLER
r_1 = (b_1/b_0) + (b_1ˆ2-a_m1*b_0*b_1 + a_m2*b_0ˆ2)*(-b_1 +

a_0*b_0)/(b_0*(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2));
s_0 = b_1*(a_0*a_m1-a_2-a_m1*a_1 + a_1ˆ2 + a_m2-a_1*a_0)/(b_1ˆ2-a_1*b_0*b_1 +

a_2*b_0ˆ2) + ...
b_0*(a_m1*a_2-a_1*a_2-a_0*a_m2 + a_0*a_2)/(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2);

s_1 = b_1*(a_1*a_2-a_m1*a_2 + a_0*a_m2-a_0*a_2)/(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2) + ...
b_0*(a_2*a_m2-a_2ˆ2-a_0*a_m2*a_1 + a_0*a_2*a_m1)/(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2);

S = [s_0 s_1]; R = [1 r_1]; Rmatrix = [Rmatrix r_1]; T = BETA*[1 a_0];

% Calculate control signal
U_ARMA(t) = [T(1) T(2) -R(2) -S(1) -S(2)]*[Uc_ARMA(t) Uc_ARMA(t-1) U_ARMA(t-1)

Y_ARMA(t) Y_ARMA(t-1)]’;
% Arbitrarily increased to duplicate text
U_ARMA(t) = 1.3*[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc_ARMA(t) Uc_ARMA(t-1) U_ARMA(t-1)

Y_ARMA(t) Y_ARMA(t-1)]’;
end
%%%%%%%%%%%%%%%%%%%END OF AUTOREGRESSIVE MOVING
AVERAGE%%%%%%%%%%%%%%%%%%%%

%% Algorithm for Extended Least Squares (ELS):
% Setup system parameters
b_1 = 0.2; b_0 = 0.01; a_2 = 0; a_1 = 0;
B_m = [0 0.1065 0.0902]; A_m = poly([0.2 + 0.2j 0.2-0.2j]);
a_m2 = A_m(3); a_m1 = A_m(2); a_0 = 0; n = 8;
time = zeros(1, nzeros); Y_ELS = zeros(1, nzeros); Ym_ELS = zeros(1, nzeros);
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U_ELS = ones(1, nzeros); Uc_ELS= [ones(1, nzeros), U_ctrl];
THETA_hat_ELS(:,1) = [-a_1 -a_2 b_0 b_1]’; beta = []; % initialize P(t), THETA_hat(t) &
Beta
epsln = [zeros(1, nzeros + maxtime)];
Pmatrix = 10000*eye(n); Pmatrix(1,1) = 1000; Pmatrix(2,2) = 100; Pmatrix(3,3) = 100;
Pmatrix(4,4) = 10000; Pmatrix(5,5) = 1000; Pmatrix(6,6) = 100;
Rmatrix = []; lambda = 1; theta_hat_els = zeros(n, 1);

%%%%%%%%%%%%%%%%%%%%EXTENDED LEAST
SQUARES%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i = 1:1:maxtime

t = i + nzeros; time(t) = i; phi_vec = []; k = i + nzeros;
Y_ELS(t) = [-Denom_coef(2) -Denom_coef(3) Num_coef(2) Num_coef(3)]*...

[Y_ELS(t-1) Y_ELS(t-2) U_ELS(t-1) U_ELS(t-2)]’ + ...
Noise_distr(t-1) + Noise_distr(t-2); % generate truth output

Ym_ELS(t) = [-A_m(2) -A_m(3) B_m(2) B_m(3)]*...
[Ym_ELS(t-1) Ym_ELS(t-2) Uc_ELS(t-1) Uc_ELS(t-2)]’;

BETA = (A_m(1) + A_m(2) + A_m(3))/(b_0 + b_1); beta = [beta BETA];
phi_vec = [Y_ELS(t-1) Y_ELS(t-2) U_ELS(t-1) U_ELS(t-2) epsln(t) epsln(t-1) epsln(t-2)

epsln(k-3)]’;
Kmatrix = Pmatrix*phi_vec*1/(1 + phi_vec’*Pmatrix*phi_vec);
Pmatrix = Pmatrix-Pmatrix*phi_vec*pinv(1 + phi_vec’*Pmatrix*phi_vec)*phi_vec’*Pmatrix;
error(i) = Y_ELS(k)-phi_vec’*theta_hat_els(:, i);
theta_hat_els(:, i + 1) = theta_hat_els(:, i) + Kmatrix*error(i);
epsln(k) = Y_ELS(k) - phi_vec’*theta_hat_els(:, i + 1); % Posterior Residual formulation
THETA_hat_ELS(:, i + 1) = theta_hat_els(1:4, i + 1);

% Update A & B coefficients
a_1 = -THETA_hat_ELS(1,i + 1); a_2 = -THETA_hat_ELS(2,i + 1);
b_0 = THETA_hat_ELS(3,i + 1); b_1 = THETA_hat_ELS(4,i + 1);

% Store final A and B for comparison with real A&B to generate epsilon errors
A_f(:,i) = [1 a_1 a_2]’; B_f(:,i) = [b_0 b_1]’;
r_1 = (b_1/b_0) + (b_1ˆ2-a_m1*b_0*b_1 + a_m2*b_0ˆ2)*(-b_1 +

a_0*b_0)/(b_0*(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2));
s_0 = b_1*(a_0*a_m1-a_2-a_m1*a_1 + a_1ˆ2 + a_m2-a_1*a_0)/(b_1ˆ2-a_1*b_0*b_1 +

a_2*b_0ˆ2) + ...
b_0*(a_m1*a_2-a_1*a_2-a_0*a_m2 + a_0*a_2)/(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2);

s_1 = b_1*(a_1*a_2-a_m1*a_2 + a_0*a_m2-a_0*a_2)/(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2) + ...
b_0*(a_2*a_m2-a_2ˆ2-a_0*a_m2*a_1 + a_0*a_2*a_m1)/(b_1ˆ2-a_1*b_0*b_1 + a_2*b_0ˆ2);

S = [s_0 s_1]; R = [1 r_1]; Rmatrix = [Rmatrix r_1]; T = BETA*[1 a_0];

% Calculate control signal
U_ELS(t) = [T(1) T(2) -R(2) -S(1) -S(2)]*[Uc_ELS(t) Uc_ELS(t-1) U_ELS(t-1) Y_ELS(t)

Y_ELS(t-1)]’;
U_ELS(t) = 1.3*[T(1) T(2) -R(2) -S(1) -S(2)]*[Uc_ELS(t) Uc_ELS(t-1) U_ELS(t-1) Y_ELS(t)

Y_ELS(t-1)]’;
end
%%%%%%%%%%%%%%%%%%%%%%%%%%END OF EXTENDED LEAST
SQUARES%%%%%%%%%%%%%%%%%%%%

%% Algorithm for Deterministic Artificial Intelligence (DAI):
% Create command signal
nzeros = 5; time = zeros(1, nzeros);
U_DAI = ones(1,nzeros); Y_DAI = zeros(1, nzeros); % initialize ouput
vectors
t = 0:200;
hvy_m = [zeros(1, nzeros) U_ctrl_traj];
eb = Y_DAI(1) - hvy_m(1);
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kd = 6.0; kp = 2.0; err = 0;
phid = []; hatvec = zeros(4,1); Rmatrix = []; ustar = [];

%%%%%%%%%%%%%%%%%%%%%DETERMINISTIC
AI%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Loop through the output data Y(t)
for i = 1:1:maxtime + 1

t = i + nzeros; time(t) = i;
d_e = err - eb; u = kp*err + kd*d_e; U_DAI(t-1) = u;
Y_DAI(t) = [-Denom_coef(2) -Denom_coef(3) Num_coef(2) Num_coef(3)]*...

[Y_DAI(t-1) Y_DAI(t-2) U_DAI(t-1) U_DAI(t-2)]’ + ...
Noise_distr(t-1) + Noise_distr(t-2);

phid = [phid; Y_DAI(t) -Y_DAI(t-1) Y_DAI(t-2) -U_DAI(t-2)];
ustar = [ustar; u]; newest = phid\ustar; hatvec(:,i) = newest;
eb = err; err = hvy_m(t)-Y_DAI(t);

end
%%%%%%%%%%%%%%%%%%%%%%%%%END OF DETERMINISTIC
AI%%%%%%%%%%%%%%%%%%%%%%%%%%%

THETA_hat_DAI = [hatvec(2,:)./hatvec(1,:); hatvec(3,:)./hatvec(1,:);...
ones(1,201)./hatvec(1,:); hatvec(4,:)./hatvec(1,:)];

mean_abs_error_DAI = mean(abs(traj_Uc - Y_DAI(1,6:end)))
mean_abs_error_ELS = mean(abs(Uc - Y_ELS(1,6:end)))
mean_abs_error_ARMA = mean(abs(Uc - Y_ARMA(1,6:end)))
mean_abs_error_RLS = mean(abs(Uc - Y_RLS(1,6:end)))
std_error_DAI = std(traj_Uc - Y_DAI(1,6:end))
std_error_ELS = std(Uc - Y_ELS(1,6:end))
std_error_ARMA = std(Uc - Y_ARMA(1,6:end))
std_error_RLS = std(Uc - Y_RLS(1,6:end))

%% Plotting results:
figure(); hold on; grid on;
plot(time(1,1:205), Y_RLS,‘g–*’); plot(time(1,1:205), Y_ARMA,‘b–o’);
plot(time(1,1:205), Y_ELS,‘r-.’); plot(time, Y_DAI,‘m:’);
xlabel(‘Time step (in sec)’); ylabel(‘Output (Y)’);
plot(time(1:200),Uc,‘k-’);
axis([0 50,-0.5 2.0]);
% legend(‘RLS’,‘ARMA’,‘ELS’,‘DAI’,‘Reference Input’);
title("Discretization using First Order Hold and Sample Time "+ ts);
PrepFigPresentation(gcf);

function PrepFigPresentation(fignum)

% Prepares a figure for presentations
% Font size: 10
% Font Name: Times
% LineWidth: 2
%
figure(fignum);
fig_children = get(fignum,‘children’); % find all sub-plots

for i = 1:length(fig_children)
set(fig_children(i),‘FontSize’,10);
set(fig_children(i),‘FontName’,‘times’);
fig_children_children = get(fig_children(i),‘Children’);
set(fig_children_children,‘LineWidth’,2);

end
end
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Appendix B

General specifications for DC motors that can be controlled using the approach de-
scribed in this paper.

Low Voltage DC Motors

Diameter
(mm)

Input
Voltage (V)

No Load
Speed (rpm)

Maximum
Efficiency

(%)

Stall Torque
(mNm)

Max. Output
Power (W)

15.5 5.0 12,623 50 2.09 0.69
20.4 13.0 25,000 65 20.00 15.00
20.4 2.4 6200 65 8.00 1.30
24.2 2.4 7000 70 26.00 5.00
24.2 1.2 7800 60 12.00 2.50
24.2 24.0 26,000 70 85.00 60.00
24.0 21.0 30,000 60 40.00 32.00
24.4 12.0 8200 62 25.50 5.50
27.5 24.0 7200 55 20.00 4.00
27.5 41.0 18,000 65 38.00 18.00
27.5 18.0 9987 57 39.24 10.20
27.5 39.0 21,000 70 70.00 40.00
27.5 24.0 22,000 70 60.00 35.00
27.5 7.2 17,230 64 114.86 51.24
27.5 36.0 11,000 70 90.00 25.00
27.5 28.0 19,000 75 140.00 70.00
29.0 42.0 6400 64 92.00 15.50
42.3 18.0 20,950 78 1175.03 644.74
48.0 14.4 20,120 66 787.72 415.00
48.0 18.0 20,281 69 656.65 348.79
48.0 18.0 19,600 66 1055.00 542.00
48.0 18.0 22,500 76 1400.00 830.00

High Voltage DC Motors

Diameter
(mm)

Input
Voltage (V)

No Load
Speed (rpm)

Maximum
Efficiency

(%)

Torque @
Max.

Efficiency
(mNm)

Speed @
Maximum
Efficiency

(rpm)

35.8 60.0 8600 70 25.00 7400
45.0 230.0 15,600 65 92.00 11,500
52.4 120.0 11,000 64 155.00 8200
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