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Abstract: There has been a growing interest in research on how to define and build indicators of
resilience to address challenges associated with sea-level rise. Most of the proposed methods rely on
lagging indicators constructed based on the historical performance of an infrastructure sub-system.
These indicators are traditionally utilized to build curves that describe the past response of the
sub-system to stressors; these curves are then used to predict the future resilience of the sub-system
to hypothesized events. However, there is now a growing concern that this approach cannot provide
the best insights for adaptive decision-making across the broader context of multiple sub-systems
and stakeholders. As an alternative, leading indicators that are built on the structural characteristics
that embody system resilience have been gaining in popularity. This structure-based approach can
reveal problems and gaps in resilience planning and shed light on the effectiveness of potential
adaptation activities. Here, we survey the relevant literature for these leading indicators within
the context of sea-level rise and then synthesize the gained insights into a broader examination of
the current research challenges. We propose research directions on leveraging leading indicators as
effective instruments for incorporating resilience into integrated decision-making on the adaptation
of infrastructure systems.

Keywords: leading indicators; resilience measures; structure-based resilience; critical infrastructure;
adaptation; sea-level rise; climate adaptation

1. Introduction

Over the last century, eustatic sea-level rise (SLR) has increased more rapidly than
it has at any time over the past three millennia [1]. This rapid change, compounded by
additional changes in relative vertical elevation at specific locations due to subsidence and
isostatic effects, poses a significant threat to coastal communities. The potential impacts to
communities include coastal and inland flooding, salt-water intrusion, and coastal erosion.
These risks, which are expected to be exacerbated by continuing and accelerating rates of
SLR in the future, have precipitated a need to design and implement adaptation measures
to curtail future losses and make communities more resilient [2]. Maintaining communities
that are resilient necessitates holistic and proactive approaches. Among the stakeholders
within these communities, there has been a call for a shift from ad hoc, disaster-driven, and
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reactive systems and policies to a proactive, threat-driven, and mitigative focus. This call
has fueled the rising interest in urban resiliency research [3,4].

Quantifying resilience is crucial for effective adaptation strategies. It provides a
comprehensive understanding of system vulnerabilities and capacities, enabling the iden-
tification of effective adaptation strategies. Quantifying resilience allows for comparing
adaptation options, assessing costs and benefits, and informing resource allocation de-
cisions. It also enables monitoring and evaluating implemented adaptation measures.
Existing frameworks for quantifying resilience generally fall into two categories: data-
driven (performance-based) or structure-driven (design-based or physical) approaches.
The data-driven approach relies on “lagging indicators” and assesses systems as resilient
based on their past performance and observed data. On the other hand, structure-driven
approaches proactively assess systems’ responses to current and future disturbances based
on their inherent design and structure. The latter approach relies on “leading indicators”.

The use of lagging indicators often necessitates a significant amount of historical data
on past events, which may not always be available. In contrast, leading indicators are
practical options for assessing resilience, particularly in the context of adaptation and
decision-making [5]. By definition, leading indicators are utilized to measure the reliability
of a certain process or system function and can be used to predict future performance.
When one or more of these measures indicate that a process or system’s safety or continuity
is weak or deteriorating, interventions can be implemented to improve the process before
negative consequences occur [6]. It is imperative to gain a comprehensive understanding
of the structure of a system, its interactions and dependencies on other interconnected
systems, and the surrounding environment in order to identify leading indicators related
to its resilience. Mapping the system structure and identifying potential hazards and the
risks associated with those hazards makes it possible to model all potential system failure
modes, understand why and how systems might fail, and what system characteristics are
most critical to shaping its response to identified risks.

In the context of resilience, an indicator can be regarded as a leading indicator if it
satisfies the following three key criteria; (i) it must be measurable, which may represent
distances, percentages, counts, flow rates, etc.; (ii) its interpretation must be system-specific
and risk-driven. Since resilience must be specific to a context and addressed in relation to a
given risk, a leading indicator must be specific to a given system and type of disruption; and
(iii) it must be structure-based since leading indicators are proposed as leading indicators
reflect the system’s capacities, design, and relationship with other interdependent systems
and are not predicted based on historical performance. For example, when modeling
the resilience of road networks to risks due to coastal flooding, the underlying indicators
may include the number of links located in high-risk flood zones, the criticality of links
represented by the peak traffic volume, the number, and size of recovery crews, etc. Other
measures based on the network’s architecture can also be used to assess the degree of
connectivity, accessibility, and redundancy in the network. We refer to the indicators that
satisfy these criteria as the resilience-leading indicators or resilience-critical indicators. Their
primary function is to measure a system’s resistive, adaptive, and restorative capacities in
responding to threats caused by climate change such as SLR.

Clearly, resilience is a multi-dimensional concept and as such cannot be captured by a
single indicator, especially in the context of complex infrastructure systems that interact
with people and environment and serve societal needs. As such, in most cases, resilience
must be assessed by means of multiple indicators, which necessitates a framework that
aggregates them into a unified function of resistive, adaptive and restorative capacities that
can effectively incorporate people–environment–infrastructure relations. Built on deduc-
tive rationale, leading indicators can be instrumental in achieving such aggregation and
developing composite metrics that can be used in policy analysis decision making [7]. Fol-
lowing the seminal paper authored by Cutter et al. [8], which introduces a disaster-focused
composite Social Vulnerability Index (SoVI), there has been an increase in the application
of composite indicator methodologies in measuring vulnerability and resilience to climate-
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related risks [9]. With this understanding, this study aims to review and contribute to the
existing literature on operationalizing resilience by (1) conducting an extensive review of
the resilience-critical indicators for various infrastructure systems subject to a range of
risks caused by SLR, (2) classifying the identified measures according to their contribution
to each of the system’s three response capacities, and (3) identifying research gaps and
offering recommendations for future research on integrating these critical measures into a
unified resilience measure that can inform adaptation decision-making. The literature that
introduces resilience-critical indicators as either a single variable or a composite measure is
the specific area of attention.

This review utilized popular scholarly databases such as Scopus, Google Scholar, Tay-
lor & Francis Online, and Springer Link, among others. More than 271 articles and reports
were gathered and filtered using a set of relevant keywords, including “sea-level rise”, “re-
silience assessment”, “resilience measures”, “critical infrastructure”, “climate adaptation”,
“operationalizing resilience”, “adaptation”, “risk”, and “vulnerability”. Following this
filtering process, 130 articles and reports were shortlisted as directly relevant to resilience
indicators. These articles were analyzed and deconstructed to synthesize information on
the proposed resilience-leading measures for critical infrastructure systems that are highly
vulnerable to SLR including water supply, agriculture and farming (Agri), transportation
(Transp.), wastewater drainage and treatment, and energy generation and transmission [10].
The selected articles were then classified according to three possible response capacities of
a coastal community’s infrastructure, namely, resistive, adaptive, and recovery capacities.

The distribution of these capacities among the reviewed publications is depicted
in Figure 1. Each bar chart in the figure corresponds to a capacity type combination and
displays the number of articles associated with various infrastructure systems in descending
order. As shown by the charts in diagonal, majority of the articles examined resilience for
only one system response capacity, more so for the resistive or adaptive capacities. Only
seven of these articles explicitly incorporate all three system capacities in their resilience
metrics (as shown on the top right of the figure).

Figure 1. Distribution of articles proposing resilience-leading indicators to model a single (shown on
the diagonal sub-graphs) or multiple system response capacities for different infrastructure systems.

In addition to the methodological papers, we identified eight systematic reviews on
resilience measures as the most relevant to the subject of interest. These articles either
survey quantitative resilience measures [11–14] or address both quantitative and qualitative
resilience metrics [15,16]. While some of the review articles examined multiple critical
infrastructure systems [12,13,16,17], others were specific to a particular system such as
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transportation networks [18], water supply and distribution resources [14,19], agriculture
infrastructure [15], or energy systems [20]. While these papers provide a comprehensive
review with a general focus on risks due to generic and multiple hazards, they present
limited coverage on measuring risks caused by rising sea levels, namely, coastal flooding,
inland flooding, coastal erosion, and saltwater intrusion. Furthermore, they provide limited
information on the proposed resilience-critical measures for various infrastructure systems.
The work of Bruneau et al. [12] represents an exception, where the authors identify and
classify resilience indicators based on four response capabilities of a system, referred to as
the 4Rs, standing for robustness, redundancy, resourcefulness, and rapidity, in the context of
seismic resilience. However, the majority of the identified sub-indicators are qualitative
and thus lack the identification of the critical leading indicators for measuring resilience,
which is a key focus of the present study.

We acknowledge that resilience is a vast and multi-faceted research field, and it is not
possible for a single review article to cover all aspects and dimensions of the topic. Given
the complexity of integrating resilience assessment methodologies, specific infrastructure
systems, types of risks, and the system’s response capacity, our review focused on comple-
mentary articles that addressed particular systems, risk types, assessment methodologies,
or response capacities. In the following sections, we begin by examining the risks associated
with SLR, which serves as the basis for identifying leading indicators. Subsequently, we
provide a comprehensive review of leading indicators proposed in the literature for various
infrastructure systems. Drawing on these insights, we conclude the paper by discussing the
existing challenges and suggesting future research directions for operationalizing resilience
using leading indicators.

2. Delineating Risks in the Context of Sea Level Rise

Since the resilience of a system is associated with its exposure to risks, a risk assessment
must constitute an integral part of the decision-making process to effectively adapt and
respond to climate change. As such, risk is the main reference point for the formation
of resilience indicators. It is typically computed as a function of anticipated hazards
and their likely consequences in damages and losses. Consequently, quantifying risk
involves both exposure levels and likelihood of hazardous events. On the one hand,
exposure is mainly assessed by analyzing the localities of systems and the conditions under
which these systems become adversely exposed to undesirable events. In this regard,
Geographic Information Systems (GIS) has emerged as a useful and practical tool for
conducting such assessments [21–23]. On the other hand, future climate change scenarios
translate the likelihood of occurrence of adverse physical events. In the context of SLR, these
adverse events include (1) coastal flooding, (2) inland flooding, (3) saltwater intrusion,
and (4) coastal erosion. In what follows, we discuss these risk-triggering adverse events
associated with SLR and how they are modeled and quantified in the literature.

Coastal Flooding—Recent studies project increased frequency of flooding events with
rising sea levels [24]. Coastal flooding occurs when water levels or waves surpass crit-
ical thresholds for low-lying shorelines and defense structures [25–27]. Flood intensity
assessment employs static and dynamic models. Static models use a “bathtub” approach
to estimate flood depths and spatial extent based on projected relative sea level rise (SLR)
scenarios [28]. Non-linear hydrodynamic response models consider coastal topography,
land use, storm characteristics, wave effects, and storm surge to generate more accurate
predictions. These models incorporate damage functions related to flood water depth,
accounting for SLR, land subsidence, and flood surge [23,29,30]. Some models consider
additional factors like hydrodynamics, landforms, relief, geology, and shoreline displace-
ment [31]. Studies focusing on specific regions, such as Australia [32], Canada [33], and the
USA [34], highlight high-risk shorelines with low resilience to coastal flooding due to low
relief, erodible substrate, subsidence, and high wave energies.

Inland Flooding—In addition to coastal flooding, rising sea levels are associated with
rising groundwater tables, which extend the risks of inland flooding for low-lying areas
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located further inland from shorelines. As such, the response of groundwater tables to sea
levels, precipitation, and water extraction and use is an essential input for assessing risks
due to inland flooding. This relation is generally predicted through process simulation
models such as MODFLOW. The predicted response is then incorporated to evaluate the
exposure and potential impacts on various systems and communities [21,35]. For a further
detailed analysis of the process simulation models predicting groundwater response to sea
levels, we refer the interested reader to the detailed review conducted in [35].

Coastal erosion—Also known as “shoreline retreat”, coastal erosion is another projected
risk caused by SLR. It is a change in the morphology of coasts due to several factors, which
include, in addition to SLR, the sediment supply, wave energy, tidal currents, and wind
action. Prediction of shoreline response to SLR has been challenging due to the highly
dynamic nature of the process and the undetermined interactions between the contributing
factors. One of the early approaches to quantifying shoreline change is known as the
“Bruun Rule”. This method was developed by Bruun in 1954 [36] and has been extensively
used in shaping societal responses to future sea levels. The Bruun Method proposes a linear
relationship between SLR and shoreline recession based on equilibrium profile theory, as
visually presented in Figure 2. Several refinements were later published by Bruun and
other researchers and are incorporated as the basis for recent models aiming to capture
shoreline change, including GENESIS and SBEACH. For more details on these models, we
refer the reader to a review of the history of this method, its applications, and drawbacks
provided in [37].

Figure 2. Bruun Rule of shoreline retreat.

Saltwater intrusion—Saltwater intrusion is the encroachment of saline water into fresh
groundwater regions in coastal aquifers, leading to a reduction in freshwater availability.
Saltwater is pushed upstream from the ocean with forces exerted by rising sea levels. These
forces, coupled with the decreasing volumes of freshwater due to periodic dry seasons
and increased pumping activities, cause the saltwater to intrude even further into the
fresh aquifers.

To model saltwater intrusion as a result of the rising seas, Willem Badon-Ghijben and
Alexander Herzbergin proposed the first physical formulation to approximate the saltwater
intrusion known as the Ghyben–Herzberg relation [38]. Typically, the “toe length (t)" and
the “depth of the interface from sea-level (h)" are two measurable indicators that represent
the extent of saltwater intrusion (Figure 3). Due to the complexity of modeling the saltwater–
freshwater boundary response to SLR, reliance on process simulation and experimental
models, such as MODFLOW—SWI Package and SEAWAT, has become popular in recent
years. These models involve a high level of integration between different interdependent
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hydro-geological parameters, including the boundary conditions and the influences of tidal
fluctuation and groundwater exploitation through pumping and extraction [39]. Several
researchers provide reviews of a wide range of saltwater intrusion modeling techniques in
recent literature [40,41].

Figure 3. A diagram of a coastal aquifer showing the main seawater intrusion (SWI) metrics.

3. Resilience-Critical Indicators

As emphasized in the previous section, the identification of risks and their impacts
to the environment–people–infrastructure nexus informs the formation of indicators or
measures for resilience. These identified risks provide reference points and thresholds in
assessing the state of the system and hence, deducing the leading indicators for resilience.
In this section, we review resilience measures proposed and employed in the extant liter-
ature for infrastructure systems that are exposed to the aforementioned SLR-associated
risks. The scope of our study encompasses transportation, water supply and distribution,
wastewater collection and treatment, energy generation and transmission, and agricultural
infrastructure systems. The resilience indicators elicited from the literature and presented
in this study are primarily leading indicators that are consistent with the definition and
attributes discussed in Section 1. They have been proposed either as a uni-dimensional
measure of resilience or part of a composite indicator. In addition, they have been presented
in the context of assessing risks, vulnerability, or resilience to various SLR-related risks. We
categorize these indicators according to how they relate to a system’s resistive, adaptive, or
recovery capacities.

3.1. Transportation Infrastructure

SLR poses various risks to transportation infrastructure systems, including inundation
of roads in coastal areas, erosion of road base, bridge scours, and reduced clearance under
bridges [42]. According to the PESETA-II project [43], flooding due to sea-level rise and
storm surges encompasses 50% of the risk factors threatening the operability of transporta-
tion networks caused by all climate stressors. Therefore, coastal flooding is one of the most
addressed sources of risk for transportation infrastructure in the extant literature [44–47]
with very few articles addressing other sources of risks such as inland flooding [48]. Re-
silience metrics for transportation infrastructure in the context of coastal and inland flooding
risks are primarily driven by the robustness of the system components, including roads,
bridges, pavements, etc., the architecture of the network, and the connectivity among
these components.

Measuring Resistivity—The resistive capacity of road networks is often determined by
the structural integrity/robustness of the network foundations and surface material, its
ability to drain excess surface runoff, and the robustness of the flood defense structure
protecting the network. The structural integrity of pavement structures plays a crucial role
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in determining the ability of road networks to resist SLR-related risks, including heavy
rainfall and surface flooding. The resilient modulus, structural number (SN) of different
pavement layers, pavement moisture content, International Roughness Index (IRI), and
extent of rutting and cracking, as measured by rut and crack depths and lengths, are
some of the identified resilience-leading indicators to quantify the strength of pavement
structures [49]. In addition to the surface robustness, the robustness of the foundations
and other critical components of transportation systems, including bridges and bridge
crossings, has drawn particular attention in the context of resilience assessment studies.
In this regard, various measures have been proposed, including the actual condition of
exposed bridges, as determined by the National Bridge Inspection Standards (NBIS) [50],
as well as some design-related features that may accelerate future bridge scouring, such as
geometry (skew), length of maximum span, scour critical rating, the presence of channel
protection measures (such as steel sheeting or riprap), and cross-sectional area that may
exacerbate the potential for erosion (or scouring) of the streambed [50]. On the water side,
the amount of high and lowland flooding could reduce the top clearance between ships
and bridges and thus, also disturb the operations of maritime transportation systems. Such
measures are utilized to assess the ability of ports to resist inundation events [51].

In addition to the structural integrity of the system components, the capacity of
transportation infrastructure to efficiently drain excess surface water is a vital aspect of
its resilience to coastal flooding and intense rainfall. The landscape’s morphology and
connectivity, surface permeability and roughness [52,53], as well as the efficiency and
robustness of the stormwater and urban drainage systems [54], are some of the identified
resilience-critical factors that measure the transportation infrastructure’s capacity to drain
excess surface water. For instance, a transportation infrastructure located in a flat, low-lying
area with limited vegetation and poor surface permeability will be less resistant to surface
flooding than one located in a hilly, vegetated area with good surface permeability and
an efficient stormwater and urban drainage system. Another resilience-critical measure
that is commonly used to assess the robustness of existing flood defense structures is the
probability of overtopping of seawalls, which is computed based on the road elevation
profile and defense crest heights relative to the highest astronomical tide [55].

Measuring Adaptability—The adaptability of a transportation network is a key determi-
nant of its serviceability during adverse events. Various metrics have been developed to
quantify the adaptive capacity of transportation networks, most of which are derived from
the principles of graph theory. They focus on measures such as connectivity, accessibility,
mobility, and redundancy. While these metrics have been widely discussed in the literature,
few studies have considered them in the context of SLR. For details on these measures,
we refer the reader to work reported by Geurs and van Wee (2004) [56], Leobons et al.
(2019) [57], and Sun et al. (2020) [58].

The concept of accessibility in the context of transportation networks refers to the ease
with which individuals can reach a node from a specific location using a particular mode
of transportation [59]. The ease of access can be quantified in various ways, such as by
assessing the cost (or burden) of travel in terms of distance, travel time, and traffic volume
between two nodes [60], or by evaluating the attractiveness (importance) of the origin
and/or destination nodes, as represented by population size or the regional Gross Domestic
Product (GDP) [61]. On a network-wide level, measures such as the number of impassable
links and/or nodes, the total number or length of roads subject to disruptions [47,62],
and the Hansen accessibility Index and its variations [46,63] have been proposed in the
literature [47,62]. Other accessibility measures that are less commonly considered in
assessing the resilience of transportation infrastructure to SLR but could potentially be
incorporated in future studies include the regional accessibility index, the daily accessibility
index, and the gravity-based network efficiency (ease-of-access) indicator [64].

In addition to accessibility, connectivity is a key aspect of adaptability in transportation
networks. Generally, the degree of connectivity within a network determines the additional
distance a motorist would need to travel to reach a destination node in case of a disruptive
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event. A network with high connectivity has higher residual capacity, such as alternative
links connecting various origin–destination (O/D) nodes, and therefore, higher resilience
to disruptions. As connectivity is associated with the availability of backup resources, there
is a degree of overlap between connectivity and redundancy measures for a network. To
assess connectivity, measures such as the cyclomatic index, detour index, and network
density indicator are commonly used in the literature [61]. Availability of spare (or backup)
capacity, which can be computed by the clustering coefficient (also known as the transitivity
index) [61], the quality margin [65], and the redundancy ratio [66] are proposed to measure
redundancy. In addition, diversity of travel modes and routes between origin–destination
pairs are also considered for assessing redundancy. Diversity indices based on the availability
of multiple travel modes and routes are recommended as complementary measures [67].
Redundancy measures have also been employed for assessing the adaptability of port
systems to failures caused by sea-level rise or other disruptions. The proposed redundancy
measures include levels of backup energy and utility sources for contingency, availability
of reserve capacity for physical support (such as cranes [68]), and presence of nearby ports
for substitution [69].

Another pillar of adaptability is criticality, which pertains to identifying the network
components that are most vital for maintaining uninterrupted flows during planned or
unplanned disruptions. Commonly used measures to capture the criticality of nodes and
edges include the node-betweenness index and the edge-betweenness centrality. They
indicate the likelihood of a node or edge to be used for transportation between any given
pair of nodes [61,62,70]. Other criticality measures based on traffic volume and flow rate
have also been proposed in the literature such as the aggregated Network Vulnerability
Index (NVI) [45,71]. Criticality can also be evaluated in terms of the Zone Importance
Factor, computed as the ratio between trips flowing into a specific zone and all trips orig-
inating from the zone [46], the Network Robustness Index (NRI) [72], and the Detour
Length [50]. From the social perspective, criticality measures that take into account the
historical significance of specific network components, such as bridges [50], or assign equity
weights to transportation activities based on the attributes, motives, and characteristics
of commuters [73] have also been proposed. For a more comprehensive list of measures
and models that can be utilized to assess the criticality of networks, we refer the reader to
the interdiction optimization models, which are usually employed in network-disruption
analysis [74]. In the context of maritime transportation systems, several criticality measures
are proposed reflecting the different functionalities of ports. Such measures include an-
nual revenue, number of jobs supported, occupancy rate, and metric tons or twenty-foot
equivalent units (TEU) imported and exported [75].

Measuring Recovery—Recovery capacity of transportation infrastructure in the context
of SLR has not been widely addressed in the literature. Nonetheless, several measures
developed by earlier researchers in the context of generic disruptions are relevant and worth
mentioning. For instance, Chang et al. [76] evaluated post-disaster system performance of
network coverage and transport accessibility and proposed metrics for the urban rail and
highway transportation systems. They based their analysis on the 1995 Hyogoken–Nanbu
Earthquake that devastated Kobe, Japan. Similarly, Peeta et al. [77] developed a post-
disaster connectivity index between origin–destination nodes in transportation networks.
While many studies have assessed post-disaster recovery efforts in the transportation sector,
limited attention was given to pre-disaster adaptation in the context of recovery.

Table 1 summarizes the surveyed literature related to resilience-critical indicators in
the context of transportation infrastructure.
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Table 1. Summary of studies encompassing resilience leading indicators for transportation infrastructure.
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Recovery
[47] CF X X
[45] CF X X X
[44] CF X X
[46] CF X X
[61] CF X X X X
[78] CF X
[79] CF X X
[50] CF X X
[55] CF X
[49] CF X
[71] CF X
[54] CF X X
[62] CF X
[48] IF X
[53] CF X X
[80] CF X
[70] CF X X

3.2. Water Supply and Distribution Infrastructure

Urban water infrastructure systems are vulnerable to SLR on both the supply and
distribution sides. On the supply side, SLR may result in saltwater intrusion, which in-
creases the salinity of freshwater resources in surface water and groundwater thereby
reducing the availability of freshwater resources. SLR also indirectly impacts water quality
by accelerating the erosion of coastal wetlands, which play a critical role in reducing excess
nutrients such as phosphorus and nitrogen by providing a natural filtering process. The
adverse consequences of declining water quality include water infrastructure malfunc-
tioning during floods and overloading on water treatment plants during extreme rainfall
events [81]. On the distribution side, SLR results in a rising underground water table, caus-
ing inflow into water infrastructure components and increasing the frequency of backlogs
and overflows [39]. The rising water table causes increased stress on the foundations of
underground infrastructure. Additionally, wave run-up and overtopping can destroy water
management infrastructure and other assets for a considerable distance inland [82].

Our review of resilience-critical indicators for water supply and distribution infras-
tructure systems incorporates the aforementioned risk types. It is also inclusive of the
indicators proposed for assessing the systems’ resilience to generic risks that cause a re-
duction in freshwater availability. Although the latter indicators are not directly presented
in the context of SLR, they are relevant to risks caused by SLR. On a general note, most
of the articles in the extant literature utilize the measures proposed in the seminal paper
by Hashimoto et al. [83], where the authors characterize the resilience of water supply
systems in mathematical form. For a comprehensive review of these and similar measures,
the reader is referred to [19,84].

Measuring Resistivity—Aquifers and sources of freshwater supply constitute an integral
component of the water supply infrastructure, and their disruption can have a significant
impact on the entire system. As such, their ability to resist disruptions resulting from SLR,
mainly due to saltwater intrusion, has gained attraction in research in recent years. Various
indicators have been proposed in the literature to evaluate the aquifer’s resistance to salt-
water intrusion, including the type of aquifer, its hydraulic conductivity, thickness, depth
to groundwater, and perpendicular distance inland from the shoreline. Generally, those
indicators are measured using process simulation models, such as the GALDIT Model [85].
In addition to the aquifer characteristics, the saltwater-freshwater interface characteristics
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are utilized to assess the potential of saltwater intrusion. Conceptual saltwater intrusion
models such as the Ghyben-Herzberg approximation are employed to determine the posi-
tion of the freshwater-saltwater transition zone based on the ratio of the thickness of the
freshwater zone to the depth below the mean sea level. For more detailed mathematical
formulations of these measures, we refer the interested reader to the studies conducted by
Werner et al. [39,86].

When reservoirs are part of the water supply system, the robustness of the reservoir
operations to changing climate, especially to the rising sea level, is an essential factor that
influences the availability of freshwater and hence the robustness of the supply resources.
Studies have examined the impact of climate risks on small, distributed reservoirs [87]
and multi-purpose, integrated reservoirs [88,89]. When multiple small-scale distributed
reservoirs are located upstream from a central reservoir, water availability downstream is
an important measure to consider. This can be represented by the reservoir yield measured
by the constant outflow that can be guaranteed 90% of the year, in addition to the total
volume of water stored in the smaller reservoirs located upstream [87]. Although these
metrics are primarily used to assess the expected reduction in freshwater availability due
to a reduction in precipitation, they can also be deployed in the context of the increased
salinity and contamination associated with the SLR. Other measures assess the reservoir’s
robustness to flooding events, including the expected amount of water discharge during
flooding, known as reservoir spill [88,90].

On the distribution side, the robustness of critical network components affects the
network’s ability to resist disruptions. Proposed metrics in this scope include material,
age, and condition of the water pipes and the number of breakage incidents resulting from
pipes’ deterioration [91].

Measuring Adaptability—The ability of a water supply and distribution system to adapt to
SLR is influenced by how well both the supply sources and distribution network can adapt
to disruptions. These disruptions can be localized pipe failures or long-term freshwater
shortages affecting the system entirely. On the supply side, the inability to satisfy a
minimum daily threshold of freshwater is considered a critical condition for the system;
this threshold is estimated to be 50% of the expected water demand [92] or 1000 m3 per
capita. according to the Food and Agriculture Organization (FAO) of the United Nations. To
mathematically evaluate this ability, the proposed measures focus on evaluating the excess
(or redundant) amounts of supply measured relative to the minimum thresholds, such as
the shortage Index (SI), Stability Degree (SD) [93], and the expected freshwater availability
per capita given the anticipated risks [90,94]. In addition, where reservoirs constitute part
of the system, proposed measures include the multivariate resilience index that combines
the Inflow-Demand Reliability indicator (IDR) and the Water Storage Resilience indicator
(WSR) [95]. These indicators assess the changes in the inflow to reservoirs due to climate
conditions, including rising sea levels and the reservoir storage capacity relative to the
forecasted demand and the hydrological variability. Although this composite index was
deployed in the context of drought, it can also be utilized in assessing resilience to relevant
risks due to SLR.

Diversity in supply resources is another measure that reflects redundancy in the
water supply system. Modern water supply systems have multiple water sources such as
groundwater, surface water, desalinated water, and water diverted from other regions. In
these systems, the freshwater supply is not entirely compromised if one source is disrupted.
Diversion of water from upstream reservoirs to lower streams helps the downstream
regions sustain a specific volume of fresh water and, at the same time, minimize the
saltwater intrusion rates, especially during the dry season. In this regard, a measure of the
annual water diversion capacity is developed to assess the resilience of upstream water
supply resources [96]. The ideal benefits of diversion can be achieved when two regions,
namely the original destination and the diverted destination, are in the wetness–dryness
alternation, known as asynchronous encounter situations. Thus, indicators measuring the
probability of having asynchronous encounter situations between two regions, such as the
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Shortage Index (SI), are developed when assessing the effectiveness of the multi-supply
process in adapting to risks due to SLR [97].

On the distribution side, various measures have been proposed to assess the network’s
criticality, connectivity (redundancy), and reliability based on network topology and graph
theory. The criticality of a network component can be quantified using metrics such
as the average daily flow through a pipe [98], the average outflow rate from a water
supply facility [99], the size of the area the water network is serving [100], in addition to
other measures including the Loading Rate (LR) and Congestion Frequency (CF) that are
developed to identify potential bottlenecks and critical components in a water distribution
system [93].

Connectivity across the network is also an essential measure of adaptability that has
not been addressed much in the context of SLR. One of the emerging research tracks in this
context extends the concepts of the Structural Vulnerability Theory (SVT) proposed by Wu
et al. [101]. SVT is utilized to identify the vulnerable parts of a network based on analyzing
its structural form and connectivity. One of the proposed measures includes the nodal
connectivity index that measures the availability of alternative (redundant) water supply
paths between a branched cluster and the rest of the network [102]. Other measures include
link density, path length, clustering coefficient, Meshedness coefficient, etc. [103,104]. We
note although none of these measures have been presented specifically in the context of
SLR, they can be tailored to and used in this context. For further studies on resilience
measures based on the application of the SVT and network topology to generic disruptions,
we refer the reader to [91,98].

In addition to criticality and connectivity, the reliability of a network is also utilized to
measure its adaptive capacity. one of the proposed measures is the resilience index [105]
that assesses the amount of surplus pressure in the network. Basically, networks with
excess pressure are more capable of meeting customers’ demands under disruptive events.
Another measure, the nodal uniformity metric, is founded on the understanding that
reliable sections of the network can be attained if the pipes connected to a node are not
widely varying in diameter [106,107]. To the best of our knowledge, none of the articles in
this track address failures precisely due to SLR, which remains to be an interesting potential
research direction.

Measuring Recovery—Compromising the water quality due to saltwater intrusion and
pollution is a major threat caused by SLR. Therefore, measures assessing the extent of
water pollution have been proposed to assess the ability of water supply systems to recover
following possible disruptions. Some of the proposed leading indicators include the
percentage of rivers and stream miles that meet applicable water quality standards [90].
Other measures integrate the social element by accounting for the size of the population
and the level of economic development (Gross Domestic Product) in the areas serviced by
the supply source under study. These measures could also be used to reflect the criticality
of the system as they are direct projections for the expected demand, hence the amount of
effort required to adapt to possible disruptions.

Although risks due to SLR may impact the water supply and distribution network at
various levels, the literature mostly focuses on the supply side by mainly addressing the
risks of saltwater intrusion and the indirect contamination of freshwater resources. On the
distribution side, although several measures are proposed in the extant literature to assess
the resilience of water distribution infrastructure, they are often conceptualized as generic
disruptions. As such, most of the proposed measures are yet to be tailored to the context
of SLR.

Table 2 summarizes the surveyed literature related to resilience-critical indicators in
the context of water supply and distribution infrastructure.
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Table 2. Summary of studies encompassing resilience leading indicators for water supply and
distribution infrastructure.
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Recovery
[95] WS S X X X
[99] WS S/D X X X
[90] CF S X X X X
[92] WS S X
[105] CF S X
[107] Generic D X X
[98] Generic D X X
[91] Generic D X X X
[94] Generic D X X X

[104] Generic D X X X
[103] Generic D X X X
[85] SWI S X
[39] SWI S X
[96] SWI S X
[97] Generic S X
[87] Generic S X
[88] CF S X

[102] Generic D X X X
1 WS: Water Scarcity, SWI: Saltwater Intrusion, S: Supply-Side, D: Distribution-Side.

3.3. Wastewater Collection and Treatment Infrastructure

Typically, wastewater is handled under two broad categories: (1) decentralized systems
(septic systems and holding tanks) and (2) centralized systems, including pipes, manholes,
and pumps that convey wastewater from local areas to treatment facilities and disposal
locations. In both systems, wastewater network components are either buried or located in
low-lying lands close to the shoreline, which makes them highly vulnerable to risks due
to SLR. The direct impacts of SLR on wastewater infrastructure include: (1) degradation
of underground utilities, (2) sewage overflow, and (3) inundation of low-lying treatment
facilities [10]. In addition to the direct impacts, indirect impacts could be more subversive.
These impacts include infiltration and inflow into the collection system due to the rising
water table, increased precipitation, and storm surges [108]. Infiltration and inflow can
stress the sewage system as it is forced to transport more flow than its design capacity,
causing subsequent failures in the distribution or treatment functions of the system. In
addition, infiltration can also cause pipe structure failures due to erosion of soil support
and ground subsidence due to underground soil erosion. For the decentralized systems,
on the other hand, the rising groundwater, increased precipitation, and surface flooding
caused those systems to experience hydraulic failures or contamination of groundwater.
These failures are a result of the partially treated wastewater seeping into groundwater
through cracked components or insufficient treatment conditions for the septic systems.
Both cases result in aggravated health and environmental problems.

Measuring Resistivity—Various leading measures are introduced in the literature to assess
the ability of the different system components to resist risks associated with SLR. Some
of the proposed measures assess the robustness of the system components, such as the
elevation of a wastewater treatment facility or its critical components such as pump motors,
aeration tanks [99], and outlet pipes (discharge points) [108,109]. Other measures evaluate
the robustness of the existing flood defense structures [99].

On the collection side, whether a system is composed of a combined sewer/storm
mechanism governs the measures regarding the system’s response to flooding. Combined
sewer systems may send runoff groundwater to a wastewater plant during storms and
excess rainfall. This might cause overflow when the plant’s inflow capacity is exceeded [99].
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Other measures, such as the frequency of sewer overflowing from manholes, are also
developed to reflect the network’s ability to resist additional stresses caused by flooding
events [108]. Generally, assessing pipes’ condition and deterioration rate is a complex
process determined by various factors. Although not considered explicitly in studies
assessing the resilience of wastewater collection systems, some indicators identified in the
extant literature have good potential for future consideration in the context of resilience
assessment studies and are worth mentioning. Such indicators include pipe length, age (in
years), gradient, depth, and material (in Manning’s roughness coefficient). For additional
details on other factors affecting pipe deterioration, we refer the interested reader to [110].
Besides the centralized wastewater collection and treatment systems, a few studies address
the resilience of onsite wastewater systems (OSTDS) in the context of SLR. Some of the
developed resistivity measures include depth to groundwater level (the vertical separation
distance between the bottom of the drain field and the high-season water table), soil
moisture content, and base flood elevation at a given OSTDS location [111,112].

Measuring Adaptability—The literature on measuring the adaptability of wastewater
collection and treatment systems focuses on the criticality, redundancy, and connectivity of
the system’s components. The criticality of a wastewater treatment facility can be evaluated
through various measures, including the population it serves and the Discharge Monitoring
Reports (DMR) violations index. The DMR violations index measures the percentage of
effluent violations and serves as an indicator of the facility’s ability to adapt to daily stress
and increased vulnerability to flooding events [21,113]. Another measure employed to
evaluate criticality is the elevation of pipes and manholes in relation to the expected future
groundwater levels. According to Friedrich et al. [108], network elements with an elevation
between 0 and 2 m are considered critical under a worst-case scenario of a 2.8-meter rise
in sea level. Additionally, the network clustering coefficient, measured as a function of
the total length of pipes and the number of manholes within a region [108], and proximity
to other critical infrastructure systems [110] are employed to evaluate an unfavorable
and critical situation, where regions with high densities of network components lead to
a diminished ability to adapt to failure. In assessing the criticality of OSTDS, measures
such as proximity to other infrastructure systems, including public or private drinking
water wells, waterbodies, and surface drainage lines (watersheds), which can function as
channels that accelerate transferring the effluent to nearby freshwater sources, are proposed
in the literature [111].

Indicators associated with connectivity within the wastewater network primarily rely
on the type of network structure (tree vs. loop networks) [114]. Studies show that loop net-
works are considered more resilient to disruptions since the proportion of critical hydraulic
pipes is relatively less significant compared to tree networks [114]. Other connectivity mea-
sures include the betweenness centrality index computed based on Dijkstra’s shortest path
algorithm, degree distribution, and the number of connected network components [115].

Redundancy in the system can be assessed by the overload capacity of a pump sta-
tion [108], the existence of underground tunnel systems, availability of backup facilities
in the neighboring areas, and the availability of additional onsite storage provided by the
volume of lakes in a given zone [113]. Also, redundancy in a treatment facility can be
assessed by measuring the permitted inflow relative to the facility’s design, which provides
a measure of how close the plant is to its capacity [99,113], or the maximum amount of
untreated wastewater to be bypassed to secondary treatment facilities [99]. Treatment
plants with the ability to bypass untreated sewage from primary to secondary treatment
facilities are observed to be more capable of adapting to excessive damages that can be
caused by the increased flow during flooding.

Measuring Recovery—To assess the recovery of wastewater treatment and collection
systems, a few leading indicators, including the availability of multiple backup parts, such
as pump motors [99], and the resourcefulness resiliency index [113] are proposed. For
the OSTD systems, the resilience index proposed by [111] employs leading indicators that
reflect the ease with which adaptations can be made in the event of failure. The adaptation
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options in this context include structural improvement of the existing system or extension
to the existing sewer network. Specific measures in this context include distance to existing
and planned sewer lines, distance to sewer overflow locations, and the moratorium status
of the pump station basin to which the on-site system belongs. Moreover, socio-economic
conditions, measured by the median household income, are also incorporated into the
proposed metric.

Table 3 summarizes the surveyed literature related to resilience-critical indicators in
the context of wastewater collection and treatment infrastructure.

Table 3. Summary of studies encompassing resilience leading indicators for wastewater collection
and treatment infrastructure.
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[110] Generic C X
[99] CF C/T X X X X
[108] CF/IF C/T X X X X
[113] CF T X X X X X
[21] CF/IF T X X X X
[109] CF/IF/SWI T X
[111] CF/IF OSTDS X X N/A. N/A. X X X

1 CF: Coastal Flooding, IF: Inland Flooding, SWI: Saltwater Intrusion, C: Collection System, T: Treatment System,
OSTDS: On-Site Wastewater Treatment and Disposal System (Septic).

3.4. Energy Generation and Transmission Infrastructure

Like many wastewater treatment facilities, power generation facilities were initially
constructed near shorelines for cost-efficient water intake and cooling-water discharge
operations. Locating such facilities at lower elevations and near shoreline exposes them to
increased risk of flooding associated with SLR [116]. Moreover, salt-water intrusion may
accelerate substructure erosion, resulting in higher maintenance costs, shorter equipment
replacement cycles, and more frequent and prolonged power outages. These risks have
significant cascading impacts on other critical infrastructure systems that primarily rely on
energy for maintaining an uninterrupted level of services.

Several studies have reviewed the impacts of climate change on energy infrastruc-
ture [117,118]. The extant literature primarily highlights the effects of temperature and
precipitation changes on energy infrastructure, particularly emphasizing the increasing
frequency of windstorms as a major threat to power transmission lines. Limited research
has been conducted on the stressors caused by SLR on energy infrastructure. Nevertheless,
specific contributions within this literature merit mention as they further our understanding
of resilience-critical metrics in the energy sector that can be applied to the context of SLR.

Measuring Resistivity—The response capacities of energy infrastructure are assessed at
the supply (S) and transmission (T) component levels. On both the power generation and
transmission sides, damages resulting from SLR are primarily attributed to flooding and
inundation of critical system components such as power plants, substations, distribution
circuits, and buried cables. The literature has extensively examined the ability of the
existing energy infrastructure to resist inundation. Proposed resilience-critical metrics are
based on a system’s structural integrity, a base elevation of its critical equipment relative to
the expected flood levels, and the likelihood of failure of flood defense structures [119–121].
Additionally, higher salinity levels accelerate the processes of corrosion, fouling, and scaling
along the surfaces of the cooling tower and the condenser; thereby, decreasing thermal
performance, leading indicators capturing the ability of the cooling systems to resist failures
caused by salinity are also proposed [122].
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The aging of physical assets, notably timber poles and overhead cables, is the main
cause of the brittleness of transmission infrastructure components. To address this issue,
resilience-critical indicators based on age-based strength measures are proposed [123].
These measures include initial fiber strength, age-dependent capacity loss factor, geometric
features, and modulus of rapture. Additionally, as wooden poles are made of natural
material prone to absorbing moisture, which accelerates degradation, the rate of in-service
degradation is also computed as a function of soil moisture and humidity as a resistivity
measure. Although these measures are primarily used in the context of windstorm-caused
risks, they can also be applied in the case of SLR, which may result in flooding events
resulting in increased precipitation and stresses to poles.

Measuring Adaptability—Diversification of energy supply, including fuel mix and multi-
sourcing, is one of the essential strategies to hedge against energy supply risks [124] and as
such, related indicators have been employed to capture their resilience. In this regard, the
proposed leading indicators assess the diversity of energy supply sources by means of three
key elements: (1) “variety" represented by the number and nature of sources, (2) “balance"
represented by the spread across different sources, and (3) “disparity" signifying the degree
to which the sources are different [125]. While metrics have been commonly referenced to
the first two elements, no clear metrics are reported in the literature to measure disparity
in energy supply [126]. Among the proposed metrics are the fuel import dependence,
calculated based on net imports or the Shannon index introduced by the Asian Pacific
Energy Research Center (APERC) [102], the Herfindahl-Hirschman Index as a measure of
market concentration [127], and the degree of dependence on reserves of energy sources to
assess energy security [128].

Diversity in generation is recommended as a pertinent metric in addition to supply
diversity [128]. Diversification in power generation can be assessed by the availability of
on-site energy production such as solar energy for individual buildings or relatively small
communities [129]. For communities that rely heavily on fossil oil as their primary energy
source, Oil Vulnerability Index (OVI) is proposed to assess the supply efficiency [130]. OVI
is computed as a function of the ratio of oil imports value to GDP, oil share in total energy
supply, domestic reserves to the oil consumption ratio, and net oil import dependence.

Redundancy is another indicator that reflects the system’s adaptability. In energy
systems, redundancy can be represented by the amount of spare capacity, the number
of redundant (or backup) components such as generators and pumps [98,131]. Other
measures are mostly based on the network topology as reviewed in detail by Watts and
Strogatz [132]. The authors proposed several interesting models in this context. They
include dynamic flow models, shortest path models, power flow entropy models, etc.
These models are constructed using a variety of topology-based metrics that assess the
resilience of the connected power networks, including average path length, clustering
coefficient, betweenness centrality, hybrid flow betweenness [133], centrality [134], and
criticality measures including maximum link flow [135]. As mentioned earlier, although
the theory behind these models can be applied to assess the resilience of power grids to
risks due to SLR, the reviewed literature does not include this aspect explicitly as a focal
point. We refer the interested reader to [136–139] for detailed discussions on resilience
indicators designed for power grid architecture.

Measuring Recovery—The ability of energy systems to rebuild after disruptions can be
assessed through the use of financial, technical, and governance-related indicators. These
indicators include the availability of financial resources measured in GDP per capita, the
amount of private investment into energy infrastructure, the percentage of technically
qualified personnel in the energy sector and electric utilities, and the average outage
times [140]. Additional indicators include the availability of recovery resources that are
quantified by the number and size of recovery crews working in the energy sector [126].
When historical data is available, lagging indicators such as Mean Time to Repair (MTTR)
and Random Time to Repair (RTTR) can also be utilized [126].
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Table 4 summarizes the surveyed literature related to resilience-critical indicators in
the context of wastewater collection and treatment infrastructure.

Table 4. Summary of studies encompassing resilience leading indicators for energy generation and
transmission infrastructure.
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[134] Generic T X
[130] Generic S X X
[121] CF S/T X
[102] Generic S X
[127] Generic S X
[128] Generic S X X
[123] W T X X
[129] Generic S X
[131] Generic T X
[119] CF S X
[133] Generic T X X
[135] Generic T X
[139] Generic T X X
[118] Generic T X X
[126] Generic S/T X X
[122] SWI S
[140] Generic S/T X X X X X X

1 CF: Coastal Flooding, W: Wind, SWI: Saltwater Intrusion.

3.5. Agricultural Systems

Agriculture systems and crop yields are susceptible to the adverse effects of climate
change, which is projected to threaten food security by 2050 as global agricultural pro-
duction must be doubled to meet rising demand [141,142]. Increased surface and inland
flooding, exacerbated by rising sea levels, has negatively impacted the yield of non-water
tolerant crops [143]. For example, the projected rise in groundwater in Qingpu county in
China is expected to significantly reduce wheat production by 2050 unless electric pumping
capacity is increased to maintain a vertical distance of greater than 0.5 m between the
surface and groundwater [144]. In addition to inundation, increased salinity resulting from
saltwater intrusion poses a significant risk to both water and soil elements, disrupting
nutrient flow and negatively impacting the production of crops with low salinity tolerance,
such as rice [145]. Another detrimental effect, soil erosion, poses additional constraints on
agricultural yield. On the one hand, the eroded shorelines lead to fewer shoals for reclama-
tion and, thus, a reduction in the total agricultural land. On the other hand, agricultural
soil erosion impacts soil health and agricultural yield by removing the fertile topsoil. Soil
erosion can be assessed using various models, such as the EPIC and APSIM models [146].

Simulation tools that utilize crop growth models are commonly employed to evaluate
the effects of SLR on crop production. These models aim to analyze the response of
crops to future climate stressors by integrating field experiments and statistical analyses
of past and projected future climate data into simulations of crop growth dynamics [147].
These models typically incorporate factors such as soil and cultivar characteristics, crop
management practices, irrigation schedules, nutrient supply, and weather information
including temperatures, rainfall, and solar radiation [146]. Additionally, some crop growth
models also incorporate the effect of waterlogging on crop growth. In addition to crop
growth models, salinity-impact models are also recommended for assessing the impact
of SLR on agricultural production. Salinity in soil primarily affects root water uptake,
the process by which plants absorb water, and the quality of nutrients obtained from
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the soil. Salinity-impact models can capture water uptake in relation to the average salt
concentration in the root zone [145].

Measuring Resistivity—The resistive capacity of agricultural lands is governed by their
ability to resist excess water, waterlogging, and increased salinity. The ability to resist
waterlogging is shaped by the drainage capacity, soil moisture content, and availability
of efficient flood defense structures that can keep water out of the fields [144]. Drainage
systems help maintain the groundwater at an adequate level that sustains the produc-
tivity of the agricultural land. Therefore, the importance of maintaining the drainage
infrastructure, including the associated equipment and machinery, is emphasized in the
literature. The drainage capacity with respect to the expected inundation levels and the
maintenance frequency of the drainage infrastructure is used as leading indicators for
resistivity [144]. Additionally, soil water (moisture) percentage [148] and the Standard
Precipitation Index (SPI) [149] are other proposed leading indicators that can assess the
reduction in crop yield as a result of the increased moisture content measured relative
to the soil saturation capacity [150]. Although soil moisture is generally used to assess
the response of agricultural fields to projected drought conditions, it can also be used in
the context of flooding to assess resistance to excess water. Actual soil moisture data can
be obtained from several national and global soil moisture database such as the surface
satellite soil moisture dataset provided by the Soil Moisture and Ocean Salinity (SMOS).
Another source is the root zone soil moisture dataset made available by the Canadian
Meteorology Center’s Regional Deterministic Prediction System (RDPS) [151]. In addition
to the soil moisture content, depth to groundwater table is also proposed to measure the
likelihood of diminished yield due to inland flooding [152].

Besides tolerance to increased water contents, a crop’s tolerance to increased soil
salinity can also be used as an indicator for resistivity [153]. We refer the interested reader
to a detailed review by Maas and Hoffman [154] on various measures employed to assess
the tolerance of crops to increased salinity.

Measuring Adaptability—The majority of the studies within this category examine adapt-
ability to SLR from the perspectives of the community and household rather than solely
from the agricultural field. Proposed indicators include the ratio of rice production in
a region to its gross domestic product (GDP), the number of employees engaged in the
agriculture sector, the number of households with a primary income source from agricul-
ture, the average net income per household from agricultural production, the percentage
of households with alternative livelihood options besides agriculture, the percentage of
paddy land in the total area, the percentage of rural population per square kilometer, and
the percentage of rain-fed fields compared to irrigation-dependent fields [145]. With a
special focus on agricultural fields, Antle et al. [155] have proposed a spatial heterogene-
ity indicator, which utilizes physical characteristics of the soil, such as biogeochemistry,
moisture, and texture, and measures the endowment capacity of resources by assessing the
proportion of farmers with access to alternate technology and other resources.

Measuring Recovery—The majority of the recovery measures published in the body of
literature are community-centric, which is in tune with the adaptation measures. These
measures are mostly socio-economic in nature, including the literacy rate, represented by
the proportion of individuals who possess reading and writing proficiency, the poverty rate,
represented by the percentage of individuals below the poverty line, and the agricultural
income share, represented by the percentage of crop production in relation to the region’s
Gross Domestic Product (GDP) [145].

Table 5 summarizes the surveyed literature related to resilience-critical indicators in
the context of agricultural systems.
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Table 5. Summary of studies on assessing the resilience of agricultural systems.
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[144] CF/IF/SWI/SE X X X X
[148] Generic X
[150] CF/IF X
[151] PT X
[145] CF/IF/SWI/SE X X X
[152] CF/SWI X X X
[155] Generic X X X X
[153] SWI X
[149] Generic X

1 CF: Coastal Flooding, IF: Inland Flooding, SWI: Saltwater Intrusion, SE: Shoreline Erosion, PT: Precipitation.

4. Results and Insights: Operationalizing SLR Resilience with Leading Indicators

This paper reviews various indicators that have been introduced in the literature to
quantitatively assess resilience in the face of sea-level rise (SLR) risks. These indicators,
categorized based on the system’s capacity to respond, namely resistive, adaptive, and
restorative capacities, contribute to the overall resilience of different systems. Given the
complexity of infrastructure systems and the scarcity of adequate or readily available
data, multi-variate leading indicators for resilience have emerged as promising tools for
enabling resilience assessment and adaptation decision-making for infrastructure systems.
Such indicators can be useful to form a baseline for making adaptation decisions in both
spatial and temporal domains. The review of the extant literature provides us with insights
pertaining to potential areas for future research.

One crucial research area relates to multidimensionality of resilience. As indicated in
Figure 1, previous studies have focused on various aspects of resilience capacities. How-
ever, a majority of the reviewed works concentrate on a single dimension of resilience:
37 on resistive capacity, 40 on adaptive capacity, and 12 on recovery capacity. Only 41 out
of 130 papers consider some combinations of capacities, with a mere 7 incorporating all
capacity domains. This observation highlights the need for holistic methods to capture the
overall resilience of infrastructure systems. These approaches should integrate multidimen-
sional measures and indicators of resilience into metrics that facilitate decision-making for
adaptation. One effective strategy involves developing composite metrics in functional
forms that can serve as fundamental elements in decision models.

Another notable finding is that the majority of research papers in this field focus on
the resilience of specific infrastructure systems or their components. Exploring resilience
metrics for systems composed of multiple infrastructure elements, such as urban or regional
systems, presents an interesting and promising research avenue. In this respect, leading
indicators can be studied as instruments of integrating resilience metrics and adaptation
efforts across different infrastructures and geographical regions. Furthermore, there is
significant potential for studying coordination mechanisms that employ leading indicators
and establishing links between infrastructure resilience and community resilience. This
aspect has been largely overlooked in existing literature.

Building upon these insights, the following discussion explores these potential research
directions in greater detail and addresses the associated challenges.

4.1. Multidimensionality and Composite Indicators

The reviewed work suggests and demonstrates that multiple metrics can be used to
mathematically measure resilience and, consequently, facilitate its integration into adapta-
tion planning. One effective way to achieve this integration is to develop mechanisms that
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aggregate multiple dimensions inherent in resilience into a single, multi-variate, composite
indicator. Composite indicators ideally combine multidimensional concepts in some man-
ner to produce a baseline. The quality of such an indicator, as well as the soundness of its
underlying premises, depend not only on the methodology used in its construction (i.e.,
the aggregation methodology) but also on the validity of the underlying theory and the
quality of the data used to reflect that theory (i.e., the selection of variables) [7].

While the use of composite indicators in policy analysis is growing, its application
to climate-based resilience, particularly in informing decision-making rather than global
comparisons, is still nascent. Developing effective composite indicators alongside advance-
ments in data analytics and prediction models can significantly contribute to ongoing
research on operationalizing resilience. A key challenge in this endeavor is identifying
resilience-leading indicators. Throughout this paper, we emphasize the importance of
selecting indicators based on their relevance and criticality in shaping system resilience,
rather than solely relying on data availability. Given the complexity and dynamic nature of
infrastructure systems, adopting a systems thinking approach can enhance understanding
of how systems respond to climate threats and evolve under different adaptation strategies.
Concepts such as causal hypotheses can be employed to establish the theoretical foundation
for operationalizing resilience using the identified leading indicators. This process involves
identifying and linking various indicators and sub-indicators, as depicted in Figure 4.

Figure 4. Hierarchical structure of resilience indicators, sub-indicators, and resilience-critical variables.

The second major challenge in constructing a composite resilience index is aggregating
the leading indicators into a single multidimensional index. In the context of climate
resilience, the most commonly used method for aggregation is linear addition of variables
using equal weights [17,156]. Some examples include PEOPLES [157] and BRIC [8]. Other
aggregation techniques include “fuzzified rules” such as min-max IF-THEN logic for con-
junctive and disjunctive reasoning, weighted multi-criteria overlay analysis, and Analytic
Hierarchy Process (AHP) [7]. The fuzzy inference models generally specify explicit input
conditions to generate an output. These conditions hinder the aggregation strategy from
robustness while also assigning the same importance to all the fuzzified factors. AHP and
weighted multi-criteria overlay analysis are mainly utilized to prioritize criteria based on
the assigned weights. However, decision-making based on weighted comparisons, for the
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most part, relies on the judgment of the decision-maker and often results in the assignment
of arbitrary weights. Moreover, in AHP, pairwise comparisons must be established to
determine the weights since the main goal is to order factors in their importance. This
process becomes computationally expensive with a potentially large number of variables,
and the complexity of the process is further exacerbated by the selection of scale and range
for the weights from an arbitrary spectrum.

Some statistical techniques for dimensionality reduction, such as Principal Component
Analysis (PCA) and Factor Analysis (FA), are also proposed to aggregate the selected indi-
cators into a composite index (proxy). For instance, in the PCA method, the first principal
component is calculated as a linear combination of all the variables while preserving as
much variation within the data as possible [158,159]. When applied to real cases with data
imperfections and deficiencies, this approach may result in poorly constructed principal
component(s) and provide misleading reflections of the underlying indicators. In gen-
eral, such methods often result in a measure that does not reflect the established theory
behind which multiple causal pathways are initially constructed. In that respect, there
is a significant niche in the literature for novel aggregation methods specific to the con-
text of measuring resilience to sea-level rise risks. For instance, an axiomatic fault-driven
resilience metric has been proposed to bridge this gap in the context of SLR in a recent
study [111]. The axioms of the proposed framework are developed using a deductive (for-
mative) construct based on the conditions essential for systems’ survival during and after
disruptions. As such, the resulting composite metric does not require the assumption of
statistical homogeneity of data and does not resort to weights to map the system capacities
to resilience.

4.2. Integration: From Local View to Global Perspective

Urban critical infrastructure systems are densely collocated and reliant on each other
to function effectively. Overall, the interdependence of urban critical infrastructure systems
underscores the need for a holistic and integrated approach to their management and
maintenance. Any disruption or failure in one system can have cascading effects on the
others, highlighting the importance of an integrated approach in sustaining resilient and
adaptive urban infrastructure systems. As such, both the direct and indirect impacts of SLR
on a system must be assessed and incorporated in associated resilience measures (Figure 5).
In that respect, leading indicators can be employed to reflect not only the resilience of the
components of a system but also their interaction with multiple systems. For instance, lead-
ing indicators are used in a recent study that focuses on onsite wastewater treatment and
disposal systems to incorporate the impact propagation of these systems failing on freshwa-
ter resources in resilience metric generation process [111]. In another study, a vulnerability
assessment is proposed to address physical interdependencies between infrastructures,
where the output at one node serves as an input for another [160]. Besides the physical
interdependence, other forms of infrastructure interdependencies were identified by Ri-
naldi et al. [161]. These include: (1) cyber interdependency mapping the communication or
information links and (2) geographic interdependency representing interactions between
neighboring geographic locations. To our knowledge, these different forms of infrastructure
inter-dependencies are yet to be addressed in the context of measuring resilience.

Even though the extant literature offers a rich mix of resilience measures, as exem-
plified by the leading indicators listed in Tables 1–5, they are introduced with narrow
scope, focusing on a particular system component or limited to a certain type of risk.
Although it is essential to understand the marginal influence of specific risk types, more
comprehensive and inclusive modeling approaches are needed for capturing resilience of
systems to multiple risks in the context of developing holistic adaptation solutions. For
example, in the context of SLR, all potential risks, such as coastal flooding, inland flooding,
saltwater intrusion, and coastal erosion, must be inclusively addressed and reflected in the
constructed resilience index. A noteworthy example is a study due to Snoussi et al. [162],
where the authors investigate the impacts of SLR on a coastal zone by quantifying and
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integrating measures related to both coastal erosion and flooding. Additionally, the study
by Ciscar et al. [163] proposes a comprehensive and holistic model for a collection of climate
risks by fusing a variety of process models, such as flood models, various forecast models
for coastal erosion, and rising groundwater levels under a collection of SLR scenarios.
Extending such models to build metrics that capture the resilience of an overall urban
system is a promising area for research. Leading indicators can offer the “joining points” to
connect metrics across multiple systems (local models) within a larger system of systems
framework (global model).

Figure 5. A diagrammatic representation of interdependencies across infrastructure systems (inclu-
sive of other systems such as harbor, residential, communications, etc.) in the context of SLR impact.

4.3. Inclusion and Coordination: from Infrastructure-Centered Resilience to
People-Centered Resilience

Most of the resilience metrics pertaining to infrastructure systems tend to focus on
the engineering aspects of the risks and often ignore the social and economic impacts.
Therefore, solutions based on such metrics often overlook the uneven distribution of costs
and impacts across social classes. Integrating the social determinants into the construction
of resilience metrics will help prioritize addressing the needs of those on the front-line and
those who already suffer from a range of social challenges and develop more equitable
solutions. Such integration must be reflected in the adaptive and restorative capacities of
the engineered systems and the communities they serve. People-centric indicators typically
relate to social connectedness, equity and social justice, health and well-being, economic
security and cultural preservation. Developing an inclusive methodology must account
for community or region-wide resilience, which incorporates such factors as well as the
inter-dependencies between multiple systems and regions. Only a small group of studies
such as [70,90,111,140] can be cited from the extant literature that explicitly integrates
socioeconomic factors into infrastructure resilience modeling.

Climate adaptation is of relevance and interest to a wide range of stakeholders and
policymakers. Their engagement and participation can offer support during the planning
and implementation stages. From the policy-making perspective, it is imperative to inte-
grate multiple objectives and stakeholder incentives into the decision-making process to
ensure actionable solutions. For example, some stakeholders are so risk-averse that the
decision makers, acting on their behalf at the negotiations, are willing to invest heavily into
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infrastructure to minimize expected damages [164], whereas decision-makers represent-
ing fiscally conservative stakeholders would argue for low investment-cost solutions. In
either case, a traditional single-objective function masks these trade-offs leading to a locally
optimal solution that could be inconsistent with these stakeholders’ preferences [165]. In
this regard, reaching a global optimal adaptation policy that addresses the stakeholders’
visions, which in some cases might be conflicting, is a challenging problem that needs
further research. This challenge is exacerbated by the need for resilience metrics that can be
aptly incorporated into objective functions.

Stakeholder coordination is crucial at the very early stages; when the theory behind the
resilience metric is formulated, expert opinions, community needs, and concerns should be
reflected in the metric by designing appropriate leading indicators that inclusively address
the different perspectives on resilience. Such coordination ensures that leading indicators
are grounded in the lived experiences and perspectives of community members, rather
than being imposed from above by outside experts or authorities. Developing metrics with
communities can help to identify and prioritize the factors that are most important for
building resilience in a particular context. The indicators identified by such processes will
have a higher chance of collective understanding, acceptance, ownership, and building
trust. Several community engagement and community disaster resilience frameworks
proposed in the literature [166,167] can be leveraged to develop methodologies for iden-
tifying indicators and co-constructing metrics that can be integrated into infrastructure
resilience modeling.

5. Conclusions

In contrast to lagging indicators that are characterized based on historical performance,
leading indicators aim to capture the state of a system to predict its future performance. In
this respect, they focus on “what drives results” and as such, their construct is structure-
based, formative, and deductive. They are especially useful for assessing complex systems
or when adequate or readily available data are scarce. As such, leading indicators offer
practical options for assessing infrastructure and community resilience developing mea-
sures, particularly in the context of adaptation and decision-making. When adequately
mapped to the system variables, leading resilience indicators can guide assessing and
monitoring the resilience of systems across time and space. They can guide communities
in taking adaptation actions at the right time, at the right location, and with the right
scope. Likewise, they can be instrumental in setting thresholds and priorities for adaptation
actions. More importantly, they can be used in shaping adaptation actions as components
of the decision-making process.

We provide a review of leading indicators employed to assess the resilience of a selec-
tion of critical infrastructure systems, namely transportation, water supply and distribution,
waste water collection and treatment, energy generation and transmission, and agriculture,
to sea-level rise. Based on the insights gained from this review, we highlight three research
directions to fill the gap in the existing literature on resilience measurements that can aid
decision-making on adaptation: (i) aggregating leading indicators into functional composite
resilience measures, (ii) leveraging leading indicators to integrate resilience metrics across
multiple systems, and (iii) using leading indicators to design mechanisms to coordinate
resilience measures across the environment–people–infrastructure nexus. We examine and
discuss the pertinent challenges and opportunities for each of these research directions.
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