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Abstract: Annual outbreaks of floating Ulva prolifera blooms in the Yellow Sea have caused serious
local environmental and economic problems. Rapid and effective monitoring of Ulva blooms from
satellite observations with wide spatial-temporal coverage can greatly enhance disaster response
efforts. Various satellite sensors and remote sensing methods have been employed for Ulva detection,
yet automatic and rapid Ulva detection remains challenging mainly due to complex observation
scenarios present in different satellite images, and even within a single satellite image. Here, a
reliable and fully automatic method was proposed for the rapid extraction of Ulva features using the
Tasseled-Cap Greenness (TCG) index from satellite top-of-atmosphere reflectance (RTOA) data. Based
on the TCG characteristics of Ulva and Ulva-free targets, a local adaptive threshold (LAT) approach
was utilized to automatically select a TCG threshold for moving pixel windows. When tested on
HY1C/D-Coastal Zone Imager (CZI) images, the proposed method, termed the TCG-LAT method,
achieved over 95% Ulva detection accuracy though cross-comparison with the TCG and VBFAH
indexes with a visually determined threshold. It exhibited robust performance even against complex
water backgrounds and under non-optimal observing conditions with sun glint and cloud cover.
The TCG-LAT method was further applied to multiple HY1C/D-CZI images for automatic Ulva
bloom monitoring in the Yellow Sea in 2023. Moreover, promising results were obtained by applying
the TCG-LAT method to multiple optical satellite sensors, including GF-Wide Field View Camera
(GF-WFV), HJ-Charge Coupled Device (HJ-CCD), Sentinel2B-Multispectral Imager (S2B-MSI), and
the Geostationary Ocean Color Imager (GOCI-II). The TCG-LAT method is poised for integration
into operational systems for disaster monitoring to enable the rapid monitoring of Ulva blooms in
nearshore waters, facilitated by the availability of near-real-time satellite images.

Keywords: Ulva prolifera; HY1C/D-CZI; automatic detection; optical satellite imagery; Yellow Sea

1. Introduction

Since 2008, green tides of Ulva prolifera (hereafter called Ulva) occurring every year have
negatively impacted the Yellow Sea [1–6], causing widespread ecosystem disruptions and
negative socioeconomic effects [7]. Timely and accurate acquisition of Ulva locations and
drift paths is an important prerequisite for disaster mitigation and emergency management.
For example, near real-time Ulva distribution greatly supports manual removal of Ulva
at sea. Valuable Ulva information can be provided through satellite remote sensing with
synoptic scale and repetitive observations. Therefore, various satellite high-resolution and
coarse-resolution sensors have been widely used for monitoring Ulva blooms in previous
efforts [8–11], such as Moderate Resolution Imaging Spectroradiometer (MODIS; 1000 m),
Geostationary Ocean Color Imager (GOCI; 500 m), Huanjing-Charge Coupled Device
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(HJ-CCD; 30 m), Gaofen1-Wide Field View Camera (GF1-WFV; 16 m), and Haiyang1C/D-
Coastal Zone Imager (HY1C/D-CZI; 50 m).

In previous applications, several remote sensing indexes and algorithms were de-
signed to detect the presence of Ulva, and consisted of machine learning (ML) methods and
index-based segmentation methods [8]. All methods utilize the spectral differences between
Ulva and Ulva-free targets in satellite imagery. Some ML approaches, such as Random
Forest [12], Deep Neural Network [13], Multi-layer Perceptron [14], and Deep Learning
models [15] were used for Ulva classification from satellite Rayleigh-corrected reflectance
(Rrc) or remote sensing reflectance (Rrs) data. These ML methods can automatically extract
Ulva pixels and thus reduce man-made errors. However, they need to be properly trained
using a large quantity of samples, and thus the accuracy depends on the training dataset.
Unlike ML methods, the index-based segmentation methods have a physical meaning and
are easy to understand and implement. Thus, they were commonly used in previous works
and operational systems, such as Normalized Difference Vegetation Index (NDVI) [16],
Enhanced Vegetation Index [17], Virtual-Baseline Floating Algae Index (FAI) [18], alter-
native FAI (AFAI) [19], Virtual-Baseline Floating macroAlgae Height (VB-FAH) [20], and
Tasseled-Cap Greenness (TCG) [9]. Each index-based segmentation method has its own
strengths and weaknesses, but the threshold selection is an inevitable step.

For the index-based segmentation methods, the appropriate threshold is crucial for the
method accuracy because it directly determines the Ulva detection results [21]. In practice,
the threshold value was manually determined simply by visual interactive comparison
of satellite RGB image and the used index image, but it could result in some subjectivity
and uncertainties [8]. More importantly, because satellite observations are influenced by
water background, observing geometry, and aerosol optical thickness, the threshold for a
given index may vary across different satellite images, and even within a satellite image.
Thus, it is difficult to select the appropriate threshold, and the global threshold could
easily lead to the misclassification of Ulva pixels. The above situations will reduce the
efficiency of Ulva monitoring, especially for a large number of satellite images. Therefore,
the automatic selection of a local adaptive threshold (hereafter called LAT) is desired for
practical applications. For example, Muzhoffar, et al. [22] introduced adaptive thresholding
techniques utilizing Sentinel-2 satellite data, and evaluated the effectiveness of Otsu’s,
exclusion, and standard deviation methods in determining optimal thresholds for detecting
floating macroalgae in NDVI, NDWI, and FAI images. Garcia et al. [23] presented the scaled
algae index (SAI) through a moving window to automatically detect Ulva; however, the
SAI-detected Ulva are susceptible to the window size. Once the LAT value is reasonably
obtained, the Ulva features will be effectively and automatically classified from space,
thereby greatly improving the method efficiency without manual intervention. In addition,
the use of top-of-atmosphere reflectance (RTOA) in satellite methods will also reduce runtime
cost by eliminating the tedious atmospheric correction process. Satellite RTOA data were
previously used in certain aspects of remote sensing applications [24–27], although surface
reflectance data are more widely used. In terms of floating Ulva, Zhang et al. [9] clarified
the effectiveness of satellite RTOA for the Ulva extraction, by analyzing and comparing the
spectral characteristics of satellite RTOA between Ulva and water. Based on satellite RTOA
signals, Zhang et al. [9] designed a TCG index for Ulva detection using a Tasseled Cap-like
transform approach; however, automatic monitoring of Ulva was not achieved in this work.

The objective of this study was to develop a rapid and fully automatic RTOA-based
method with a local adaptive TCG threshold (hereafter TCG-LAT method) to detect Ulva
blooms from optical satellite images. The remainder of this article is organized as follows.
The satellite data used in the present study and the proposed method are introduced
(Section 2). We describe the performance and validation of the proposed method, followed
by its application in monitoring Ulva blooms in the Yellow Sea in 2023 (Section 3). Finally,
we discuss the strength and limitation of the proposed method and its potential future
application (Section 4).
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2. Materials and Methods
2.1. Satellite Data and Preprocessing

In this study, the Chinese HY1C/D-CZI sensor was mainly used to illustrate the
performance and validation of the proposed model. The HY1C/D-CZI sensor with 50 m
spatial resolution can provide real-time image data for coastal zone monitoring, and has
four wavebands, namely three visible bands and one near-infrared (NIR) band (see details
in Table 1). About 200 HY1C/D-CZI Level-1A (Digital Number; DN) images collected
on the Yellow Sea from 2019 to 2023 were downloaded from the National Satellite Ocean
Application Service (NSOAS; http://www.nsoas.org.cn; accessed on 15 October 2023). The
DN images were processed to top-of-atmosphere reflectance (RTOA) using Equation (1).

RTOA(λ) = πd2 × [DN(λ)× gain(λ) + bias(λ)]/[Esun(λ)× cosθs] (1)

where gain(λ) and bias(λ) are the radiometric gain and bias values at waveband λ, re-
spectively, which can be found in the metadata file. Esun(λ) represents the mean exo-
atmospheric solar irradiance values at waveband λ. d and θs are the Earth–Sun distance
in astronomical units and solar zenith angle, respectively, which are calculated based on
scanning latitude and overpass time for a given satellite image [28].

Table 1. The wavelength settings and spatial resolution of the satellite sensors.

Waveband
Wavelength/µm (Bands)

HY1C/D-CZI GF1-WFV HJ1A/B-CCD Sentinel2-MSI GOCI-II

Blue 0.42–0.50 (B1) 0.45–0.52 (B1) 0.43–0.52 (B1) 0.458–0.523 (B2) 0.443 (B3)
Green 0.52–0.60 (B2) 0.52–0.59 (B2) 0.52–0.60 (B2) 0.543–0.578 (B3) 0.555 (B6)
Red 0.61–0.69 (B3) 0.63–0.69 (B3) 0.63–0.69 (B3) 0.65–0.68 (B4) 0.68 (B9)
NIR 0.76–0.89 (B4) 0.77–0.89 (B4) 0.76–0.90 (B4) 0.785–0.90 (B8) 0.865 (B12)

Spatial resolution 50 m 16 m 30 m 10 m 250 m

Other commonly used satellite sensors were used to investigate the practicality of the
proposed method (see Section 4), including Chinese GF1-WFV, HJ1A/B-CCD, GOCI-II, and
Sentinel2- Multispectral Imager (S2-MSI). The wavelength settings of the GF1-WFV (16 m
spatial resolution) and HJ1A/B-CCD (30 m spatial resolution) are very similar to those
of the HY1C/D-CZI sensor (see Table 1). The GF1-WFV and HJ1A/B-CCD DN images
were downloaded from the China Centre for Resources Satellite Data and Application
(CRESDA; http://www.cresda.com/cn). Satellite DN images recorded by GOCI-II and
S2B-MSI sensors were freely available from the Korea Ocean Satellite Center website (KOSC;
https://kosc.kiost.ac.kr/index.nm?menuCd=44&lang=en; accessed on 12 October 2023)
and European Space Agency website (ESA; https://scihub.copernicus.eu/; accessed on
10 October 2023), respectively. For S2-MSI and GOCI-II sensors, Table 1 only lists four
wavebands in visible and NIR ranges that were used for TCG calculation. The multi-source
satellite DN images were processed to RTOA data following Equation (1).

Furthermore, in order to further evaluate the method’s performance, a HJ2B-CCD
image (16 m spatial resolution) collected on 6 June 2021 with a synchronous HY1C/D-CZI
image was downloaded from the CRESDA website. The HJ2B-CCD reflectance (Ref ) data
were obtained after atmospheric correction through the FLAASH module. Then the Ulva
extraction using Ref -based VBFAH index (Equation (2)) was compared with the TCG-LAT
method for model validation.

VBFAH =
(

RefNIR − Refgreen

)
+

(
Refgreen − Refred

)
·
(
λNIR − λgreen

)
/
(
2 · λNIR − λred − λgreen

)
(2)

where, for the HJ2A/B-CCD sensor, λgreen = 0.555 µm, λred = 0.66 µm, and λNIR = 0.83 µm.

http://www.nsoas.org.cn
http://www.cresda.com/cn
https://kosc.kiost.ac.kr/index.nm?menuCd=44&lang=en
https://scihub.copernicus.eu/
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2.2. Automatic Detection Method of Ulva Using Satellite RTOA Data

The objective of the current study was to introduce an automatic method with local
adaptive threshold based on the RTOA-based TCG index (referred to as the TCG-LAT
method) for rapid and automated monitoring of Ulva blooms. As illustrated in Figure 1,
the workflow for automated Ulva detection comprises the following key components:
(1) automatic image processing to obtain satellite RTOA and TCG data from satellite DN
data, using simple algebraic operations; (2) automatic detection and masking of Ulva-
free bright targets (classified as “other” category, including cloud, sun-glint, and highly
turbid water), based on satellite RTOA,red data with the BT_red approach (see Section 2.2.1);
(3) window-scale automatic Ulva detection using the proposed TCG-LAT method (see
Section 2.2.2); and (4) application of the CIE-FRGB constraint to minimize false positive
Ulva classification (see Section 2.2.3). All automatic processes were carried out using
MATLAB scripts.
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Figure 1. Workflow for the automatic Ulva detection from optical satellite images.

2.2.1. Ulva-Free Bright Targets Masking

Compared to background seawater, the Ulva-free bright targets are frequently found
in satellite optical imagery as unfavorable observing conditions, and mainly include cloud
cover, strong sun glints, and wave-induced glints. Sometimes the bright targets may show
similar RTOA-based TCG features to those of Ulva in satellite images. Thus, bright target
masking was conducted before Ulva extraction to reduce the false-positive identification.
The functions of the mask algorithm [29] and H_SWIR cloud-masking algorithm [30] were
developed and showed good performance on Landsat8-OLI and Sentinel2-MSI images
with the SWIR waveband, but were not suitable for four-band satellite images without
the SWIR band, such as HY1C/D-CZI and GF1-WFV. Here, we used a single threshold of
RTOA,red following Equation (3) (namely BT_red approach) to mask Ulva-free bright targets,
similar to the use of Rrc(1240 nm) in [31]. This was motivated by the fact that the bright
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targets had higher RTOA features in the red waveband (i.e., RTOA,red) than water and Ulva
(see Figure 2a,b for example).

RTOA,red > Thred (3)

where Thred is the global threshold value for a given satellite image. Considering the Thred
value may change for different images, it is desirable to automatically define Thred for the
BT_red segmentation, and further help achieve the automatic extraction of Ulva.
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Figure 2. HY1C-CZI false-color RGB image on 13 June 2023 (a), and the distribution of RTOA,red (b).
The bright targets (i.e., other class) were extracted using the BT_red approach (c). The diagram for
the automatic Thred selection (d).

Here, the BT_red approach utilizes the histogram feature of RTOA,red to automatically
define Thred for a given satellite image (Figure 2d), following the steps below. First,
the frequency distribution histogram of RTOA,red and its fitting curve were generated by
smoothing frequency values. The curve was further smoothed to eliminate outliers. Next,
the peak point with maximum frequency (denoted as P1(x1, y1)), mainly contributed
by water and Ulva with lower RTOA,red, was identified. Another point P2(x2, 0) on the
horizontal axis was accordingly marked (Figure 2d), where x2 = mean(RTOA,red). The
reason for selecting mean(RTOA,red) as the horizontal axis of P2 was to find one point on
the right side of the Thred point. The straight-line Lp was drawn through points P1 and P2
to establish a reference line. Then, the distances Di from all points with x∈(x1, x2) on the
fitting curve to the line Lp were calculated. The abscissa value of max(Di) was the threshold
Thred. As shown in Figure 2c as an example, the automatic BT_red approach effectively
identifies most pixels of the bright targets (i.e., “other” class in Figure 1).

Although some pixels of the bright targets may be missed by the BT_red approach,
they were further eliminated from the Ulva class using the TCG index (see Figure 11 in [9])
and CIE-FRGB constraint. It should be noted that some pixels of highly turbid water were
also identified as bright targets, but did not impact the accuracy of Ulva extraction.

2.2.2. TCG-LAT Method for Ulva Detection

In this study, the TCG index was used for Ulva detection from satellite RTOA images.
The RTOA-based TCG index with Ulva-specific coefficients following Equation (4) was
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originally designed by Zhang et al. [9] for Ulva extraction, and it was found that the Ulva
pixels had higher TCG features than Ulva-free targets (see Figure 4 in [9]). Therefore,
the pixels with TCG > TH were classified to the Ulva class following Equation (5). As a
conventional segmentation method, the threshold selection of TCG is inevitable. Generally
speaking, the common technique is to select the global threshold for the full satellite images
through visual interpretation. Such a global threshold may result in underestimation or
overestimation of Ulva extraction, due to complex and various observation backgrounds
for one satellite image, and even for different satellite images. Meanwhile, the manual
threshold selection technique is unfavorable for vast amounts of satellite images. To solve
this problem, we proposed a local adaptive thresholding (LAT) technique to determine
TH for a moving pixel window with 400 × 400 pixels according to the window-scale
TCG histogram.

TCG = −0.401×RTOA, blue − 0.17×RTOA, green − 0.498×RTOA, red + 0.75×RTOA, NIR (4)

TCG > TH (5)

where RTOA,i represents the RTOA data at i-th waveband. TH is the threshold value.
In actual situations, two cases of the TCG histogram for the moving pixel window

are shown in Figure 3a,b: with only Ulva-free and Ulva pixels. For a given pixel window,
the process for automatically determining the threshold TH and mapping Ulva distribution
consists of the following major steps. (1) The fitting curve of TCG frequency histogram was
produced and then smoothed with 9-pixel windows to eliminate outliers. (2) The peak point
having maximum frequency and a value less than 0 was found and marked as P1(x1, y1).
This was because the TCG values for the vast majority of water pixels were less than 0.
Correspondingly, another point on the horizontal axis was marked P2(|x1|, 0) with the
purpose of finding one point on the right side of the TH point. Here, note that the |x1| value
of P2 point was not fixed, and its selection, such as 2 × |x1| and 1.5 × |x1|, had little impact
on the TH definition. The straight line Lp was made between P1 and P2 (Figure 3). (3) For the
point (xi, yi) with xi∈(x1, |x1|) on the histogram curve, the distance Di from this point to the
line Lp was obtained. The abscissa value of max(Di) was the threshold TH. (4) The pixels with
TCG > TH were classified to the Ulva class, and otherwise to the water class. The classification
results of all pixel windows were integrated into the whole-image classification.
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2.2.3. CIE-FRGB Constraint on Ulva Detection

To further ensure the accuracy of Ulva extraction, the above whole-image classification
results were bound by the CIE chromaticity information (i.e., hue angle α and CIE-x)
from satellite false-color RGB images (termed the CIE-FRGB approach), and the final Ulva
detection was then produced. In this approach, satellite RTOA data in three wavebands
(NIR, red, and green) were converted into two-dimensional CIE chromaticity space by
following Equation (6) [32]. The two-dimensional coordinates CIE-x and CIE-y were
obtained following Equation (7), as shown in Figure 4a. Then, in the CIE chromaticity plane
(x, y), the hue angle α for any point lies between the vector to the white point (x − 1/3,
y − 1/3) and the positive x-axis at y = 1/3, giving higher angles in an anti-clockwise
direction [33]. The hue angle α (0–360◦) was defined following Equation (8).

X = 2.769 × RTOA, NIR + 1.752 × RTOA, red + 1.13 × RTOA, green
Y = 1.0 × RTOA, NIR + 4.591 × RTOA, red + 0.06 × RTOA, green
Z = 0.0 × RTOA, NIR + 0.057 × RTOA, red + 5.594 × RTOA, green

(6)

{
x = X/(X + Y + Z)
y = Y/(X + Y + Z)

(7)

α =

(
arctan

(
y − 1

3
, x − 1

3

)
modulus 2π

)
× 180/π (8)
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Figure 4. The distribution of the Ulva and Ulva-free pixel samples in the CIE color space (a). His-
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Here, satellite RTOA data in NIR, red, and green bands were input to R, G, and B
channels, respectively; this was different from previous studies, in which the R, G, and B
channels were satellite reflectance values in red, green, and blue bands [4,32,34]. In this
study, the RTOA,NIR data were used for the red channel because their values of Ulva pixels
significantly increase, which is different to the case of water and other targets. It is easy to
understand that the Ulva slicks in satellite FRGB images show the red color gamut and the
Ulva-free slicks (mainly including water and clouds) show other colors.

Figure 4 shows the illustration of pixel examples selected from several satellite images,
including 117,436 Ulva pixels, 122,000 water pixels, and 88,718 cloud pixels. In practice,
for Ulva pixels, the converted colors in the CIE chromaticity diagram were located in the
purple–red gamut (see Figure 4a). As shown in Figure 4b, their hue angle CIE-α values
were between 0–50◦ and 250–360◦; however, the CIE-α values of the water pixels were
mainly between 10 and 250◦. Meanwhile, the CIE-x values of Ulva pixels (x > 0.33) were
higher than those of most water pixels (x < 0.33), as shown in Figure 4c. Based on the above,
this CIE-α and CIE-x information is useful for constraining the detected Ulva pixels that
may be misjudged by the TCG index alone. Specifically, if the CIE-FRGB information of a
detected Ulva pixel does not satisfy the conditions of (CIE-x > 0.33) and (0◦ ≤ α ≤ 50◦ or
250◦ ≤ α ≤ 360◦), it is excluded from the Ulva class.
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2.3. Method Assessment

Direct validation of satellite methods is challenging because the field-measured Ulva
patches are hardly linked to the satellite-detected patches [35,36]. In this study, the proposed
method was tested on several separate groups of representative HY1C/D-CZI images to
evaluate the extraction accuracy. The method-detected results were compared with the
algae features detected using the TCG index with a visually determined threshold. The
corresponding Kappa coefficient, overall accuracy (OA), and F1-score were computed [37].
This accuracy was regarded as self-consistent accuracy because the validation dataset was
produced from the manual work from satellite images, but was not obtained from field
measurements [38]. Meanwhile, the Ulva pixel area (UA) extracted by different methods
was also calculated from the following equation: UA = NA × SR2, where NA is the number
of detected Ulva pixels and SR is the spatial resolution of satellite imagery. On the other
hand, in order to further validate the method performance, the Ulva results (including
spatial distribution and UA) detected by the TCG-LAT method were compared with the
Ref -based VBFAH index with a visually determined threshold based on synchronous
image pairs.

3. Results
3.1. Necessity of Local Adaptive TCG Threshold to Ulva Detection

Multiple HY1C/D-CZI images over the Yellow Sea during 2020 to 2022 were selected
and used to demonstrate the effectiveness of the TCG index in HY1C/D-CZI RTOA images,
as shown in Figure 5. It was clearly observed from the bottom panel of Figure 5 that the
TCG values of Ulva pixels were higher than those of Ulva-free pixels, and the difference in
TCG features remained stable over multiple years, indicating the RTOA-based TCG index
was a reliable indicator for satellite extraction of Ulva from HY1C/D-CZI images. Certainly,
the TCG index, as a threshold segmentation method, must require a reasonable threshold.
Because of complicated observing conditions, the fixed TCG threshold is not suitable for all
images, as evidenced by Figure 5 showing the difference in the numeric range of TCG for
multiple satellite images.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 9 of 18 
 

 

 
Figure 5. Satellite images of HY1C/D-CZI during 2020 to 2022 (top panel). The FRGB (NIR–red–
green) images of the selected sub-images (middle panel), where their locations marked by white 
boxes were shown in top panel, and their TCG distributions (boĴom panel). 

In addition, we specifically selected one HY1C-CZI image on 23 June 2019 to beĴer 
illustrate the regional differences in the TCG threshold within the same satellite image, as 
shown in Figure 6. In this analysis, four sub-regions (termed region 1–4; see their locations 
in Figure 6a) were chosen to represent different background environments. Their RTOA-
based TCG values were obtained as shown in Figure 6b, showing that the Ulva features 
were effectively extracted by the TCG index from Ulva-free features under different back-
ground conditions. Figure 6c shows the scaĴer distributions of TCG values of all pixels in 
regions 1–4. It was found that the appropriate TCG thresholds for four local regions were 
different (see the different-colored lines in Figure 6c representing the respective threshold 
values for regions 1–4). In this case, the global threshold used for the full image would 
result in misclassifications or omissions of Ulva detection. Overall, it was evident from the 
results of Figures 5 and 6 that the TCG thresholds should be determined for different sat-
ellite images even for sub-images, suggesting the local adaptive threshold of TCG index 
is necessary for Ulva detection. 

 

Figure 5. Satellite images of HY1C/D-CZI during 2020 to 2022 (top panel). The FRGB (NIR–red–
green) images of the selected sub-images (middle panel), where their locations marked by white
boxes were shown in top panel, and their TCG distributions (bottom panel).



J. Mar. Sci. Eng. 2024, 12, 680 9 of 17

In addition, we specifically selected one HY1C-CZI image on 23 June 2019 to better
illustrate the regional differences in the TCG threshold within the same satellite image,
as shown in Figure 6. In this analysis, four sub-regions (termed region 1–4; see their
locations in Figure 6a) were chosen to represent different background environments. Their
RTOA-based TCG values were obtained as shown in Figure 6b, showing that the Ulva
features were effectively extracted by the TCG index from Ulva-free features under different
background conditions. Figure 6c shows the scatter distributions of TCG values of all pixels
in regions 1–4. It was found that the appropriate TCG thresholds for four local regions were
different (see the different-colored lines in Figure 6c representing the respective threshold
values for regions 1–4). In this case, the global threshold used for the full image would
result in misclassifications or omissions of Ulva detection. Overall, it was evident from
the results of Figures 5 and 6 that the TCG thresholds should be determined for different
satellite images even for sub-images, suggesting the local adaptive threshold of TCG index
is necessary for Ulva detection.
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3.2. Ulva Detection and Validation of the TCG-LAT Method

In order to avoid the tedious process of manually selecting a threshold, and to reduce
the error caused by the use of a global threshold, this study proposed the TCG-LAT method
for automatic Ulva extraction from satellite RTOA images, as mentioned in Section 2.2. Here,
the HY1C-CZI image on 6 June 2021, as an illustrative example, was used to demonstrate
the performance and accuracy of the proposed TCG-LAT method. As shown in Figure 7a,b,
we specifically selected four sub-regions named region 1–4 with different proportions of
Ulva features: region 1 without Ulva, region 2 with moderate density of Ulva, region 3 with
small plaque Ulva, and region 4 with higher proportions of Ulva. Their distributions of the
RTOA-based TCG are mapped in Figure 7c, showing the obvious TCG difference between
Ulva pixels and Ulva-free pixels. For four sub-regions, the TH values of the TCG index were
automatically defined using the TCG-LAT method (Figure 7e). Then, the corresponding
Ulva pixels were automatically extracted following Equation (5), as shown in Figure 7d. By
visually comparing Figure 7b,d, the method-detected Ulva features were very consistent
with the Ulva features shown in satellite FRGB images.
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Figure 7. The HY1C-CZI FRGB image on 6 June 2021 and the locations of the selected sub-regions
marked by white boxes (a). For four sub-regions, the FRGB images (b), TCG images (c), Ulva detection
results (d), and the TH thresholds determined by the TCG-LAT method (e).

In addition, Figure 8 shows the application of the TCG-LAT method on the full satellite
HY1C-CZI image collected on 6 June 2021. It was clearly observed that the Ulva patches
identified by the proposed method correspond well with the patches in satellite FRGB
images, and meanwhile no apparent Ulva-free pixels were misclassified to the Ulva class
with a low number of false positives. It should be noted that the TCG-LAT method was
unable to accurately identify the “other” class, mainly including cloud pixels, sun-glint
pixels, and highly turbid waters; fortunately, they did not affect the accuracy of Ulva
extraction. The results of Figures 7 and 8 suggest the RTOA-based TCG-LAT method
proposed in this study had good performance on the automatic extraction of Ulva blooms.
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To quantitatively evaluate the detection accuracy of the proposed model, a cross-
comparison was conducted between satellite Ulva detection using the proposed TCG-
LAT method, the TCG index with a visually determined threshold (TCG-VDT method),
and the Ref-based VBFAH index with a visually determined threshold (VBFAH-VDT



J. Mar. Sci. Eng. 2024, 12, 680 11 of 17

method). Figure 9 illustrates the cross-comparison between three different methods for
three different sub-images (i.e., regions 2–4 in Figure 7). It was evident that the Ulva
features detected by the TCG-LAT method (Figure 9c) closely align with the TCG-VDT
results (Figure 9b), and closely correspond to the Ulva features depicted in the FRGB image
(Figure 9a). Furthermore, the Ulva pixel areas extracted by two methods were comparable
(with UA error ≤ 5%), and the TCG-LAT method exhibited high Ulva detection precision,
with Kappa value ≥ 97% and F1-score ≥ 98% for the three sub-images. The slightly higher
UA error in region 3 of 5% was primarily due to the presence of numerous low-density
Ulva patches, making the detected Ulva pixel area somewhat sensitive to changes in the
threshold. In addition, we observed that the Ulva features identified using the TCG-LAT
method on the HY1C-CZI images (Figure 9c) were in agreement with those detected by
the VBFAH-VDT method on the HJ2B-CCD images (Figure 9d). The areas of Ulva algae
detected by two methods were similar. While there may be some subjectivity involved in
manually selecting the threshold of the TCG and VBFAH indexes, there was a notable level
of consistency in the satellite-detected Ulva results using the three methods (see Figure 9),
which can effectively demonstrate the reliability of the proposed TCG-LAT method. Thus,
the TCG-LAT method showed promise for automated Ulva detection from satellite data.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 9. Cross-comparison between satellite Ulva detection using different three methods for three 
selected sub-regions as depicted in Figure 7. HY1C-CZI FRGB images (a) and the Ulva results de-
tected by the TCG-VDT method (b) and TCG-LAT method (c). HJ2B-CCD FRGB images (e) and the 
Ulva results detected by the VBFAH-VDT method (d). 

3.3. Method Performance on Different Observing Conditions 
To investigate the method performance on the common and diverse observing con-

ditions (including turbid water, clear water, cloud cover, and sun glint), two satellite im-
ages (HY1C-CZI image on 23 June 2021, HY1D-CZI image on 14 June 2023) simultane-
ously with the above conditions were intentionally used for the case analysis, as shown in 
Figure 10. Here, for each HY1-CZI image, four sub-images containing Ulva bloom were 
selected under clear water (R1), turbid water (R2), sun glint (R3), and cloud cover (R4), as 
shown in middle panel of Figure 10a,b. 

For the full satellite images (see left panel of Figure 10a,b), we found from visual 
inspection that the proposed TCG-LAT method can effectively extract the Ulva features, 
without obvious misclassification. Specifically, the good performances of the automatic 
method under different observing conditions were validated by the middle and right pan-
els of Figure 10. Under each condition, the method-detected Ulva features matched well 
with the visually identified features in satellite RGB images. Meanwhile, the Ulva-free pix-
els were not misclassified as Ulva, with a low false negative ratio. The results of Figure 10 
demonstrate that the automatic TCG-LAT method for Ulva bloom provided satisfactory 

Figure 9. Cross-comparison between satellite Ulva detection using different three methods for three
selected sub-regions as depicted in Figure 7. HY1C-CZI FRGB images (a) and the Ulva results detected
by the TCG-VDT method (b) and TCG-LAT method (c). HJ2B-CCD FRGB images (e) and the Ulva
results detected by the VBFAH-VDT method (d).
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3.3. Method Performance on Different Observing Conditions

To investigate the method performance on the common and diverse observing condi-
tions (including turbid water, clear water, cloud cover, and sun glint), two satellite images
(HY1C-CZI image on 23 June 2021, HY1D-CZI image on 14 June 2023) simultaneously with
the above conditions were intentionally used for the case analysis, as shown in Figure 10.
Here, for each HY1-CZI image, four sub-images containing Ulva bloom were selected under
clear water (R1), turbid water (R2), sun glint (R3), and cloud cover (R4), as shown in middle
panel of Figure 10a,b.
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Figure 10. The performance analysis of the TCG-LAT method under different observing conditions
based on HY1C-CZI image (a) and HY1D-CZI image (b): clear water (R1), turbid water (R2), sun
glint (R3), and cloud cover (R4).

For the full satellite images (see left panel of Figure 10a,b), we found from visual
inspection that the proposed TCG-LAT method can effectively extract the Ulva features,
without obvious misclassification. Specifically, the good performances of the automatic
method under different observing conditions were validated by the middle and right panels
of Figure 10. Under each condition, the method-detected Ulva features matched well with
the visually identified features in satellite RGB images. Meanwhile, the Ulva-free pixels
were not misclassified as Ulva, with a low false negative ratio. The results of Figure 10
demonstrate that the automatic TCG-LAT method for Ulva bloom provided satisfactory
performances under complex observing conditions, and was less sensitive to the changing
environmental background.

3.4. Ulva Blooms in the Yellow Sea in 2023 from HY1C/D-CZI Images

The automatic TCG-LAT method was applied to multi-date HY1C/D-CZI images
for monitoring the dynamic process of the 2023 Ulva bloom event in the Yellow Sea, as
shown in Figure 11. The proposed TCG-LAT method showed satisfactory performance on
different satellite images, which was qualitatively supported by the good consistency with
satellite RGB images. Based on the available HY1C/D-CZI images with low cloud cover in
the present study, the Ulva outbreak was first observed in the northern and eastern regions
of radial sand ridges on 9 May 2023 (see yellow circles in the first subgraph in Figure 11). it
is worth noting that it may not be the actual start time of the Ulva outbreak, as early Ulva
patches with small-scale features were likely undetected in the 50 m HY1C/D-CZI images
by the proposed method. Additionally, the drift trajectory of the Ulva bloom exhibited two
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directions: one towards the north and the other towards the northeast (see yellow arrows
in the third subgraph in Figure 11). According to the available Ulva results detected by
the proposed method, the Ulva outbreak reached its peak between 22 June and 5 July 2023.
Subsequently, the Ulva bloom started to decline, and by around 23 July 2023, it almost
disappeared, with a small amount of Ulva coverage remaining (see yellow circles in the
last subgraph in Figure 11). The results of Figure 11 suggested the proposed method can
be effectively applied to the long-term remote sensing data, indicating its good stability.
With a sufficient number of satellite images, the remote sensing dataset of Ulva distribution
can be automatically generated using the TCG-LAT method, thereby providing a valuable
database for disaster prevention and the study of spatiotemporal evolution of Ulva blooms.
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4. Discussion

An automatic monitoring method for Ulva blooms can improve the efficiency of ob-
taining Ulva information and is more conducive to the emergency response and disaster
management. The TCG index obtained from RTOA data following Equation (4) can effi-
ciently separate the features of algae-free and algae pixels for various optical satellite images
with visible and NIR bands [9] and HY1C/D-CZI (Figure 5). The key to the implementa-
tion of automatic Ulva detection using the TCG index, as a threshold-based segmentation
approach, is the automatic selection of a threshold without operator assistance [39]. The
proposed method automatically determined the local adaptive TCG threshold for the mov-
ing pixel window, thereby achieving the goal of automatic Ulva extraction from satellite
RTOA images (Figure 7), and showed good method performance (see Figures 8 and 9). As
shown in the last subfigure of Figure 12, the size change of the moving window (from
100 pixels to 700 pixels) has little effect on the method-detected Ulva results for the test
image with 4581 × 5338 pixels. Theoretically increasing the window size can decrease
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runtime consumption. Thus, the moving window size with 400 × 400 pixels was chosen in
this study, and it was not a fixed choice. In order to further ensure the method accuracy,
the CIE information (i.e., hue angle α and CIE-x) from satellite false-color RGB images
(red channel: NIR band; green channel: red band; blue channel: green band) was used to
effectively rule out the confusing Ulva-free targets. Under this optimization, the TCG-LAT
method performed well under various observing conditions with cloud cover, sun glint,
and turbid water (see Figure 10). Compared to CIE information from true RGB image (red
channel: red band; green channel: green band; blue channel: blue band), the CIE-FRGB
can better distinguish between Ulva and Ulva-free pixels, especially for CIE-α (Figure 4).
This is because the CIE-FRGB approach takes advantage of the marked spectral signature
of Ulva, with an obvious RTOA peak in the NIR band [9].
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The TCG-LAT method proposed in the present study is easy to implement and its
rules are easy to understand. Satellite RTOA data as the input signal, and the TCG index
as an indicator for Ulva detection, are easy to obtain following only simple mathematics
(i.e., Equations (1) and (4)). Due to the use of satellite RTOA data, the proposed method
omitted the atmospheric correction process. Additionally, in terms of data processing, the
TCG-LAT method achieves fast and fully automatic monitoring of Ulva blooms, which is
highly suitable for a near real-time operational monitoring system. Certainly, the TCG-LAT
concept can be applied to satellite Rrc and Rrs data for detecting floating Ulva blooms.
For small Ulva patches, the weak Ulva features, especially in coarse-resolution satellite
imagery, may be not easy to detect. With the continuous improvement in spatial resolution
of satellite imagery, this limitation will be somewhat improved.

In addition, the TCG-LAT method could theoretically be extended to other optical
satellite sensors with three visible and NIR wavebands, such as HJ-CCD, GF-WFV, Landsat-
OLI, and GOCI. Here, due to space limitations, some selective satellite images of four
satellite sensors (including HJ-CCD image on 22 June 2021, GF1-WFV image on 27 June
2023, S2B-MSI on 22 June 2023, and GOCI-II on 5 July 2023) were used to demonstrate
the extended application of the TCG-LAT method, as shown in Figure 13. From visual
inspection, Ulva extraction from satellite RTOA images of these satellite sensors appeared
satisfactory. Therefore, the fully automatic workflow of the TCG-LAT method could also
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apply to other optical satellite images, and future works can be conducted to verify the
method performance. Once confirmed, the Ulva product collection is available based on
multi-source satellite imagery, significantly improving the capacity in monitoring and
tracking Ulva blooms. Further investigations are needed to quantify the biomass of Ulva
blooms and their spatiotemporal variation in the Yellow Sea, and we believe the distribution
products of Ulva blooms generated by the TCG-LAT method will provide the basic dataset.
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5. Conclusions

A fully automatic and reliable method (termed the TCG-LAT method) was proposed
for the rapid detection of Ulva features in satellite imagery. The local adaptive thresholding
approach used to select the window-wide TCG threshold and the Ulva optimization of the
CIE-FRGB information effectively ensured the success of the TCG-LAT method. This auto-
matic method demonstrated outstanding performance, achieving an overall Ulva detection
accuracy exceeding 95% when tested on HY1C/D-CZI data. Moreover, the TCG-LAT
method proved to be robust under various observing conditions, including clear water,
turbid water, sun glint, and cloud cover, indicating its tolerance to environmental pertur-
bations in satellite imagery. Furthermore, the method revealed successful applicability to
other satellite sensors such as HJ-CCD, GF-WFV, Sentinel2-MSI, and GOCI. Future studies
should explore its applicability to a wider range of satellite images. The automatic method
is expected to be incorporated in the monitoring operational system for rapidly providing
Ulva products to the user community once near-real-time satellite images are available.
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