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Abstract: Vehicle scheduling at shipyards can involve delays due to numerous risk factors encoun-
tered in the complicated shipyard road environment. This paper studies the problems of risk coupling
in shipyard vehicle scheduling based on the risk matrix approach, considering the complicated road
environment, assessing the degrees of coupling and disorder. Based on safety-engineering theory and
comprehensive analysis of the road environment, four key criteria are identified, vehicles, the road
environment, the working environment, and humans, including 12 factors and their specific contents.
The degree of coupling between various combinations of risk criteria is quantitatively determined
utilizing the N-K model. Additionally, the degree of disorder in the risk criteria is assessed based on
information entropy theory. The model’s correction coefficients are determined through comparative
analysis of experimental data. By integrating the degree of coupling and disorder, delays caused by
different combinations of risk criteria in scheduling tasks are computed. The quantitative evaluation
model enables accurate appraisal of risk events during shipyard vehicle scheduling. The model
provides a valuable managerial tool to analyze delays caused when specific risk criteria are met and
to compare these delays to the potential impact on time resulting from adjusting vehicle schedul-
ing plans. This research has significant implications for enhancing vehicle distribution efficiency
in shipyards.

Keywords: shipyard; vehicle scheduling; risk assessment; N-K model; information entropy theory

1. Introduction

Large cruisers manufactured in shipyards are custom-designed and constructed, and
their reliance on standardized components is significantly lower than that of automobiles
built in factories. Furthermore, a substantial proportion of the hull components used in
shipbuilding requires individualized processing within shipyards. Additionally, owing to
the generally non-mechanical nature of ship construction, extensive labor is required, which
poses significant challenges in terms of material management. The construction of large
cruise ships entails a vast number of components, estimated at tens of millions [1,2]. For ex-
ample, Adora Magic City, currently under construction in China, comprises 503 thin-plate
structural segments and requires the assembly of approximately 25 million individual
parts. Given the number and magnitude of these components, efficient and precise vehicle
scheduling for shipyards (VSS) is crucial. The coordination and management of VSS, which
encompasses various stages, are typically undertaken by the companies themselves. This
involves the organization of fleets and establishment of distribution routes [3]. Although
this approach to distribution offers benefits in terms of centralized management and in-
creased operational efficiency, it also features drawbacks such as substantial investment
requirements, diminished flexibility, and elevated risk levels.

Typically, for materials of great significance, a reliable logistics distribution service is
essential. It is crucial that such goods are transported without any damage or deterioration,
because such occurrences could result in the loss of the goods’ original properties, leading
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to the failure in meeting production-plan requirements [4]. Furthermore, timely delivery
in accordance with production schedules is paramount to ensure that materials are not
delivered prematurely or delayed [5,6]. When considering various logistics and distribution
modes, it is important to note that the higher the number of handling, loading, and
unloading processes during transit, the greater the likelihood of cargo damage. Similarly, a
large number of intermediate links within the logistics mode introduces greater uncertainty
regarding the timing of deliveries [7]. This uncertainty encompasses various risk events,
including those related to vehicles, road conditions, working environments, and human
factors, which can have a detrimental impact on vehicle scheduling [8]. Furthermore,
these effects are often inadequately assessed, leading to a lack of effective managerial
responses to these risk factors. To effectively assess the impact of these risk factors on
vehicle scheduling, in the context of the complicated shipyard road environment, this paper
studies the problems of risk coupling in the context of VSS.

Vehicles within shipyards comprise both motorized and non-motorized vehicles.
Furthermore, it is important to note the presence of pedestrians on roadways. Motorized
vehicles are categorized into production vehicles and non-production vehicles. There are
seven types of production vehicle, including flatbed trucks, aerial trucks, forklifts, tractor
trucks, car cranes, trucks, and battery forklifts [9]. Non-production vehicles are divided
into commuter cars, private cars, and commercial vehicles. Owing to the substantial
and intensive nature of production tasks within shipyards, both motorized vehicles and
non-motorized vehicles are frequently used on shipyard roads during working days. The
intersection of various vehicles on shipyards is characterized by a high level of complexity,
which distinguishes such roads from environments in public areas. Moreover, shipyard
roads are assigned managers who are responsible for their supervision and management.
The specific nature of vehicular movement within shipyards involves a higher frequency
of overtaking maneuvers, placing a greater emphasis on drivers’ situational awareness
compared with that in public areas despite the fact that, overall, the speeds at which vehicles
travel in these areas is lower than on regular roads. This latter factor also contributes to
vehicular congestion within shipyard environments. In the shipyard, the bicycle is the
predominant non-motorized vehicle and provides a high level of convenience. However,
conflicts frequently occur between non-motorized and motorized vehicles, particularly
in areas where roads are narrow. The large volume of bicycles occupying non-motorized
vehicle lanes frequently results in traffic congestion and encroachment into motorized-
vehicle lanes. This leads to lane-changing and overtaking maneuvers between bicycles and
motorized vehicles that ultimately reduce the capacity of motorized-vehicle lanes. Shipyard
roads also include pedestrian pathways and sidewalks, which pedestrians navigate in a
random manner, often moving in multiple directions. In the presence of pedestrians
on sidewalks, motorized vehicles are often required to take evasive measures to ensure
a safe driving environment. However, these circumstances require adaptations in the
distribution efficiency. Additionally, the distinctions between shipyard vehicles and typical
road vehicles extend to specialized flatbed trucks used for transporting medium-sized ship
products (Figure 1). Given the considerable dimensions of these products, flatbed trucks
occupy multiple lanes during their operation. As a result, other vehicles are required to
yield way, often leading to notable scheduling delays. Consequently, the shipyard road
environment is often chaotic owing to the diverse array of vehicle types, compounded by
the presence of pedestrians.
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Another contributing factor in the complexity and disorderliness of shipyard roads is
the existence of workshops. These workshops, each with specific functionalities, are located
on both sides of shipyard roads [10]. During their operational phases, the workshops
produce various levels of noise, which has a significant impact on drivers’ and marshals’
attentiveness [11]. Furthermore, ship segments are occasionally temporarily placed on
the roads, which reduces the available driving space and exacerbates disorderly road
environments, with pedestrians and bicycles further restricting the flow of motorized traffic
(Figure 1).

In this study, the N-K model is utilized to quantify the degree of coupling among risk
factors, while information entropy theory is applied to assess the level of road congestion
during scheduling. Subsequently, the two models are integrated to establish a quantitative
model that calculates the degree of impact of risk factors. The contributions of this study
are threefold: (1) the formation mechanism of vehicle distribution risk for shipyards is
formulated based on the characteristics of shipyard roadways; (2) an innovative risk
assessment model combining the N-K model and information entropy theory is developed
to quantitatively evaluate the duration of delays of vehicle delivery caused by risk factors;
and (3) the duration of delays is added, which is the sum of the degree of coupling and the
degree of disorder.

Literature Review

Researchers investigating transportation risk predominantly utilize mathematical
models and methodologies to quantitatively determine the probability and magnitude of
the impact of risks. These models are applied to provide guidance to decision makers or
managers regarding the implementation of necessary safety measures [12]. Since it was
first proposed in 1970, the quantitative risk assessment method has been extended to the
transportation industry [13,14]. However, given transportation studies in shipyards are
uncommon, the research reviewed in this paper includes transportation studies in other
industries. In general, quantitative risk studies focus on the following: (a) calculation of
the probability of risk (CPR) [15–17]; (b) calculation of the risk-impact level (CRIL) [18,19];
(c) the combined model of risk probability and impact level (CMRPIL) [20–22]; and (d) the
improvement in risk models (IRM) [23,24]. This section of this paper is devoted to a review
of the literature on CMRPIL and IRM.

CMRPIL and IRM have been widely used in many areas, such as sustainable inte-
grated logistics and the transportation industry. Yang et al. [25] propose a risk diffusion
model integrating a motion mechanism to implement multiple-granularity traffic risk
evaluation. Shankar et al. [26] proposed an integrated risk-assessment model based on
intuitionistic fuzzy set theory and D-number theory to assess risk in freight-transportation
systems. Karatzetzou et al. [27] used the multi-hazard risk-assessment model to analyze
probabilities in transportation networks, while Chakrabarti and Parikh [28] evaluated risk
in hazmat transportation using the HAZAN methodology. Additionally, Yang et al. [29]
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innovatively develop Non-Negative Matrix Factorization (NMF) to explore the quantita-
tive risk under the coupling of multiple risk factors for traffic safety evaluation. Finally,
Ambituuni et al. [30] developed a framework for regulatory improvement to assess risk
in the context of transportation by road. These risk studies are based on the definition
of risk as a combination of the probability of the risk factors being encountered and the
consequences thereof. The process of the calculation of risk can be defined as the quantifi-
cation of risk index in the arithmetic pattern other than logic implication as follows [31]:
Risk = Severity × Probability. Probability and severity have different definitions depend-
ing on the object of study. The calculation of risk probabilities and severity in many studies
is based on expert knowledge, leading to subjective results. Extant studies have focused
more on the influence of risk in distribution processes and rarely examine the influence
of the impact on tasks; furthermore, they rarely analyze risk factors based on the road
environment. In the actual road environment, not all risk factors are encountered through-
out; therefore, the impact of different combinations of risk factors on the distribution tasks
needs to be considered.

2. Materials and Methods

The proposed integrated assessment model is implemented to quantitatively assess
the risk in VSS. A flowchart of the risk coupling analysis of VSS is shown in Figure 2. Once
the assessment criteria and factors are identified, the number of risk factors resulting from
each criterion over a period of time can be counted. Using these data, we calculate the
degree of coupling of risk criteria based on the N-K model. Based on the combination
probability calculated in the N-K model, the confusability of the combined risk factors can
be calculated based on information entropy theory. Next, the correction coefficient ε is
calculated to obtain the final quantitative evaluation model. Finally, the model is used to
evaluate delays in VSS.
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2.1. Hybrid Risk Coupling Model Based on Risk Matrix Approach

The formula for the combined risk coupling model proposed is based on the risk matrix
approach [31], which is considered a combination of the severity of the consequences S
and their probability P [32]. In this article, vehicle scheduling risk for shipyards is defined
based on the combination of risk criteria that cause delays in scheduling tasks.

Through comprehensive analysis of shipyard road environments, distinct characteris-
tics of VSS can be identified, leading to the formulation of the following definitions:

Definition 1. Complexity represents the extent of the intricate interrelationships or associations
observed between diverse types of criteria, denoted as the degree of coupling, C(x).

Definition 2. Disorderliness encompasses the intricacy or complexity inherent in the operational
environment of a vehicle, notably including the road and work surroundings. Disorderliness is
designated as the degree of disorder, H(x).

The risk of delays arising from vehicle scheduling tasks cannot be solely attributed
to the cumulative delays resulting from various risk criteria. Rather, the risk is intricately
linked to the interplay between various risk criteria and road characteristics. In this paper,
we add the result of risk, H, which is the sum of the degree of coupling and the degree
of disorder.

Hence, we propose Equation (1) as a means of assessing the delays associated with
diverse combinations of risk criteria. Equation (1) contains the form of the combination of
different risk criteria and the quantitative characteristics of shipyard roads. In Equation (1),
S is the total delay of the risk criteria; Tcar represents the average delays resulting from
inherent risk conditions specific to the vehicle; Troad denotes the average delays caused
by risk conditions pertaining to the road; Twork signifies the mean delays attributed to
environmental influencing vehicles; Tother represents the temporal influence exerted by
additional risk criteria, including pedestrian-related criteria; Ts denotes the long-term
repercussions, such as noise-related effects, of work activities that generate noise; and ε

represents the correction coefficient.
This paper increases the weight of the degree of coupling and the degree of disorder.

The formula is not only a simple summation of the degree of coupling and disorder, because
the calculation of the degree of disorder utilizes the probability of the degree of coupling.
Finally, we modify the model as follows:

S = H× I (1)

where I = TCar× a+Troad× b+Twork× c+Tother×d+Ts, representing the average delay
caused by the combination of risk factors. H = w1 ×C(x) + w2 ×H(x) + ε, w1 + w2 = 1,
and H ∈ [0, 1], indicating the characteristics of the transportation environment that
influence vehicle distribution.

This is subject to
0 ≤ a + b + c + d ≤ 4 (2)

a, b, c, d =

{
1, if combination
0, Otherwise.

(3)

Equations (2) and (3) represent combinations of criteria, with a maximum of three and
a minimum of no combinations of the various criteria occurring.

The relationship between the models is illustrated in Figure 3. The N-K model calcu-
lates the probability values of risk factors for different combinations, which can be applied
to the calculation of the coupling values and to information entropy theory. Information
entropy theory can be used to calculate the confusion value of the portfolio risk factors,
which should be applied to the probability values. Sections 2.2 and 2.3 introduce the N-K
model and information entropy theory, respectively.
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xn indicates the sum of the probability of the occurrence of n standard
couplings when the standard is in the state xi; and C(Xn) denotes the degree of coupling
under criteria n.

2.3. Calculating the Degree of Disorder of Risk Criteria Based on Information Entropy Theory

The information measure is the information created by a specific event that has oc-
curred, while the entropy measure refers to the amount of information that can be expected
to be generated before the result is known [35]. Entropy considers all possible values of
the random variable and is the amount of information that can be expected to result from
all possible events. Information can be understood as the probability of occurrence of a
particular kind of information (i.e., the probability of the occurrence of discrete random
events). In systems with high levels of order, the information entropy tends to be lower,
whereas in systems characterized by increased chaos, information entropy tends to be
higher [13]. Information entropy can be considered a quantitative measure of the level
of organization, or order, within a system. In this paper, information entropy is used to
determine the degree of disorder in various combinations of risk criteria.

H(x) =−
n

∑
i=1

p(x i) log(p(x i)) (5)
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where p(xi) denotes the probability of occurrence of event xi, and H(x) is the degree of
confusion in event xi. In this paper, because p(xi) represents the probability of the combined
events, we calculate it as follows:

p(x) = p(x 1x2 · · · xn) = p(x1x2 · · · xn)
n

∏
i=1

p(x 1)p(x 2) · · ·p(x n) (6)

where p(x1x2. . .xn) is the probability of the combined event (x1x2. . .xn) and p(x1x2Lxn
)

is
the probability of the occurrence of all events. Then, H(x) is calculated as follows:

H(x) =−
n

∑
i=1

p(x1x2 · · · xn)
n

∏
i=1

p(x 1)p(x 2) · · ·p(x n) log(p(x1x2 · · · xn)
n

∏
i=1

p(x 1)p(x 2) · · ·p(x n)) (7)

3. Analysis of the Criteria and Factors for Risk Events in VSS

In safety engineering theory, risks can be classified into the following criteria: human,
machine, materials, environment, and management [36]. Since shipyard vehicle trans-
portation processes do not involve dangerous materials or management failures, we have
limited our assessment to the following criteria: machine, environment, and human. In
this paper, the term “machine” pertains to the failure of a vehicle. Huang et al. [36] define
environment as bad weather and the condition of the roads. However, as evidenced by
the comprehensive analysis presented in Section 1, the shipyard environment exhibits a
profound level of complexity. Therefore, this paper meticulously divides the environment
into distinct categories, encompassing both the road environment and the working environ-
ment. The road environment is defined as the presence of risk factors on the road, including
other vehicles, pedestrians [37], and obstacles. The working environment is defined as
encompassing bad weather conditions [38] and risk factors emanating from other work
activities, particularly noise in this paper. Drivers who perform frequent high-risk events
(e.g., hard braking maneuvers) pose a significant threat to traffic [39]. The present study
classifies these high-risk event attributes as human.

To investigate the factors that contribute to delays, we also conducted a survey of
workstations and engaged in consultations with twelve workers, five of whom possessed
a decade of experience and seven who had accrued no more than five years of expertise.
Eventually, we summarize the information pertaining to these criteria as follows.

Vehicle: Vehicles play a considerable role in scheduling tasks. Because shipyard
materials vary significantly in type and volume, it is difficult to transport them using
manpower alone. Therefore, vehicles are the main carriers in shipyard material distribution.
Table 1 shows the details of some risk events encountered during the distribution of vehicles.
The Internet of Vehicles (IOV) is a system used by the shipyard to track and record incidents
involving vehicles. Column 4 shows the shipyard’s documentation of factors that pose a
risk to vehicle operations in the IOV. Based on the IOV, we identified six types of vehicle-
related risks that cause delays in scheduling tasks: maintenance, oil leakage, tank, steering
arm, tire, and network. We counted the number of vehicle-related risk events resulting
from each factor and from multiple factors. According to our investigation, these factors
resulted in an average delay of 30 min for scheduling tasks.

Table 1. Vehicle scheduling risk events according to Internet of Vehicles.

No. Incidents Maintenance Cycle Type Delay
Time (min)

1 Equipment failure 9 h and 20 min Maintenance 31
2 Maintenance 1 days and 40 min Maintenance 32
3 Oil pipe bursting 23 h and 15 min Oil leakage 30
4 Maintenance 7 h and 52 min Maintenance 26
5 Repairing water tanks 5 days, 7 h and 45 min Tank 30
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Table 1. Cont.

No. Incidents Maintenance Cycle Type Delay
Time (min)

6 High water temperature 5 days, 23 h and 10 min Tank 35
7 Loss of steering 6 h and 45 min Steering arm 30
8 Loss of steering 2 days, 7 h and 32 min Steering arm 26
9 Loss of steering 7 h and 51 min Steering arm 28
10 Maintenance of air conditioners 59 min Maintenance 27
11 Replacement parts 18 h and 44 min Maintenance 28
12 Flat tire 12 h and 43 min Steering arm 29
13 Oil leakage from cylinder 3 days, 21 h and 11 min Oil leakage 32
14 Maintenance 5 h and 54 min Maintenance 32
15 Oil leakage from cylinder 2 days, 12 h and 2 min Oil leakage 34
16 No signal 9 h and 59 min Network 30

Road Environment: Shipyard roads carry vehicles and therefore feature different kinds
of vehicles and obstacles to public roads. In shipyard roads, target vehicles are significantly
influenced by the other vehicles present on the road during scheduling tasks. Obstacles
and pedestrians can further narrow the road, which can lead to additional task delays,
as shown in Table 2. Therefore, we identify other vehicles and obstacles as the factors of
road environment. These two factors exert a significant influence on the extension of the
duration of a task, resulting in delays of approximately 15 min.

Table 2. Road environment distribution risk events.

No. Incidents Type Delay Time (min)

1 Congestion caused by other vehicles Other vehicles 10
2 Congestion caused by pedestrians Pedestrians 10
3 Congestion caused by obstacles Obstructions 14
4 Congestion caused by other vehicles Other vehicles 20
5 Congestion caused by other vehicles Other vehicles 18
6 Congestion caused by other vehicles Other vehicles 20
7 Congestion caused by obstacles Obstructions 13
8 Congestion caused by obstacles Obstructions 14
9 Congestion caused by pedestrians Pedestrians 15

10 Congestion caused by pedestrians Pedestrians 16

Working Environment: The factors of the working environment include noise and
unfavorable weather. In Equation (1), Ts is defined as a long impact time, with a duration
of persistence as long as the working day. Noise, serving as a significant risk factor, has a
persistent presence throughout the working environment, encompassing sounds emanating
from vehicles, workers, and other sources. This noise can potentially impact workers’
concentration levels and the dissemination of critical information. Noise is therefore
classified as Ts, which affects the delay tasks by 5 min. Changes in climate can also affect
transportation systems. Because shipyards are built beside the sea, unfavorable weather
can occur, mainly in the form of wind or rain, which increases delays in the completion of
tasks by 15 min, as shown in Table 3.
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Table 3. Working environment distribution risk events.

No. Incidents Type Delay Time (min)

1 Noise from the workplace Noise 4
2 Drizzle Bad weather 10
3 Heavy rain Bad weather 18
4 Gale Bad weather 20
5 Noise from the workplace Noise 7
6 Heavy rain Bad weather 15
7 frigid weather Bad weather 13
8 Noise from the workplace Noise 5
9 Hot weather Bad weather 13
10 Gale Bad weather 16

Human: In a shipyard road, many uncertainties in human behavior can affect driving.
Human behavior is complex and variable, and therefore we do not attempt to categorize it
here. Human does not belong to Ts, and this delays tasks by 15 min.

By analyzing the four types of risk factors, this paper determines the inputs and
outputs of information and the average delay time of each criterion in a risk event, as
shown in Table 4.

Table 4. The details of attributes of different risk criteria in VSS.

Risk Criteria Input Output Average Time (min)

Vehicle
(C)

Maintenance Vehicle needs replacement parts and maintenance 30

Oil leakage
Damage to the vehicle’s oil pipes or oil cylinders

and other equipment, resulting in oil leakage from
the vehicle

30

Tank The water temperature of the vehicle’s water tank
is excessively high, or the water pump is abnormal 30

Steering arm The vehicle’s steering appears abnormal or its
rocker arm breaks 30

Tire One or more of the tires on the vehicle are flat
or runaway 30

Network There is no signal in the car network 30

Road Environment
(R)

Other vehicles Other vehicles on the road impact scheduling 15

Obstructions
Space in the shipyard is limited and many blocks

are placed on the roadside, which affects
driving behavior

15

Pedestrians Congestion caused by pedestrians 15

Working Environment
(W)

Noise
There are various workshops in the shipyard,

which generate significant noise and can affect
drivers and pilots

5

Bad weather This mainly refers to the impact of unfavorable
weather, such as wind and rain, on traffic and staff 15

Human
(H) Human behavior There are many uncertainties in human behavior

that can affect driving 15

4. Analysis of Coupling of Risk Criteria in VSS
4.1. Definition of Risk Criteria Coupling in VSS

In physics, the interaction of two or more individuals or forms of motion is called
“coupling”. Risk coupling is the phenomenon whereby interactions between factors within
a system produce changes in the stability and risk level of the system. In a system, risk
coupling is the result of nonlinear interactions between factors and can be viewed as a part
of the system. Therefore, the interaction of vehicles, the road environment, the working
environment, and humans in the vehicle distribution process is analyzed qualitatively from
the perspective of risk criteria coupling in VSS.
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We identify the historical frequency of occurrence of vehicles (C), the road environment
(R), bad weather (W), and human errors (H), as well as the coupling between these risk
criteria, in the quantitative assessment model mentioned above. Thereafter, we calculate
the coupling probability. We use Nc, r, w, h, c ∈ {0, 1}, r ∈ {0, 1}, w ∈ {0, 1}, and h ∈ {0, 1} to
represent the historical occurrence frequency and Pc, r, w, h, Nc, r, w, h, c ∈ {0, 1}, r ∈ {0, 1},
w ∈ {0, 1}, and h ∈ {0, 1} to denote the probability of coupling of each criterion, where C is
in state c, R is in state r, W is in state w, and H is in state h.

4.2. Definition of Risk Criteria Coupling in VSS

Figure 4 illustrates the coupling mechanism of the VSS system. Based on the number
of different categories of risk criteria involved in the coupling, the risk coupling of the VSS
system can be divided into four categories, including single-criteria risk coupling, pairwise-
interacting risk criteria, three-interacting risk criteria, and four-interacting risk criteria. The
coupling values can change as the number of criteria in the combination increases.
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(1) Single-criteria risk coupling
Single-criteria risk coupling refers to the risk arising from the interaction between risk

criteria within a certain category of criteria, whose coupled action risk causes an increase in
the level of systemic risk. The total coupling value is expressed by Pc (Vehicle), Pr (Road
Environment), Pw (Working Environment), and Ph (Human).

(2) Pairwise-interacting risk criteria
Pairwise-interacting risk criteria refer to the interaction of two categories of risk criteria

that affect the safety of VSS. Pc, r, Pc, w, Pc, h, Pr, h, Pr, w, and Pw, h show the risk change value
of double-criteria risk coupling in each state. For example, Pc, r denotes the combination of
Vehicle and Road Environment.

(3) Three-interacting risk criteria
Three-interacting risk criteria refer to the interaction of three categories of risk criteria

that affect the safety of VSS. The total coupling value is expressed by Pc, r, h, Pc, r, w, Pc, w, h,
and Pr, w, h. For example, Pc, r, h denotes the combination of Vehicle, Road Environment,
and Human.

(4) Four-interacting risk criteria
Four-interacting risk criteria refer to the interaction of four categories of risk criteria

that affect the safety of VSS. The total coupling value is expressed by Pc, r, w, h, which
denotes the combination of all criteria.

5. Case Application and Results
5.1. Risk Database

In this study, the selected target vehicle for the shipyard is the flatbed truck. Using this
type of vehicle, we investigate 288 delays caused by risk factors of a shipyard in Shanghai
in 2022, as shown in Table 5. We divide the criteria of Vehicle and Road Environment into
different categories and conduct a statistical analysis of the frequency of occurrence of delay
risk for each factor. Owing to the extensive diversity and complexity of the categorization
of the working environment and human, we conduct a macroscopic enumeration of the
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incidence of delayed risks. The frequency levels of the four risk criteria are denoted as
24.66%, 24.20%, 25.11%, and 26.03%, and they exhibit a minimal degree of variance. Within
the domain of vehicular criteria, maintenance and steering arm represent a significantly
larger proportion of the total. Within the road environment, other vehicles and pedestrians
constitute a substantial proportion of the overall total. Noise accounts for a relatively large
proportion of the total because of the potential for noise generation from workshops.

Table 5. Delay distribution of risk factors.

Risk Criteria Factors Number Delay Ratio
(Proportion of Delays Caused by the Factor)

Vehicle
(C)

Maintenance 48 7.31%

24.66%

Oil leakage 22 3.35%
Tank 6 0.91%

Steering arm 43 6.54%
Tire 32 4.87%

Network 11 1.67%

Road Environment
(R)

Other vehicles 58 8.83%
24.20%Obstructions 20 3.04%

Pedestrians 81 12.33%

Working Environment
(W)

Noise 101 15.37%
25.11%Bad weather 64 9.74%

Humans
(H) Human behavior 171 26.03% 26.03%

5.2. Analysis of Coupling Value and Disorder Value

The number and frequency of the different criteria are shown in Table 6. For ex-
ample, Nc=1,r=0,w=0,h=0 is expressed as the frequency of occurrence of Vehicle only, and

Pc=1, r=0, w=0, h=0 = Nc=1, r=0, w=0, h=0/
1
∑

i=0

1
∑

j=0

1
∑

g=0

1
∑

h=0
Nc=i, r=j, w=g, h=l.

Table 6. Historical occurrence frequency Nc, r, w, h and coupling probability of each criterion Pc, r, w, h.

Frequency Nc=0,r=0,w=0,h=0 = 0 Nc=1,r=0,w=0,h=0 = 3 Nc=0,r=1,w=0,h=0 = 15

Probability Pc=0,r=1,w=0,h=0 = 0 Pc=1,r=0,w=0,h=0 = 0.0208 Pc=1,r=0,w=0,h=0 = 0.0521

Frequency Nc=0,r=0,w=1,h=0 = 18 Nc=0,r=0,w=0,h=1 = 12 —

Probability Pc=0,r=0,w=1,h=0 = 0.0625 Pc=0,r=0,w=0,h=1 = 0.0417 —

Frequency Nc=1,r=1,w=0,h=0 = 21 Nc=1,r=0,w=1,h=0 = 27 Nc=1,r=0,w=0,h=1 = 18

Probability Pc=1,r=1,w=0,h=0 = 0.0729 Pc=1,r=0,w=1,h=0 = 0.0938 Pc=1,r=0,w=0,h=1 = 0.0625

Frequency Nc=0,r=1,w=1,h=0 = 9 Nc=0,r=1,w=0,h=1 = 15 Nc=0,r=0,w=1,h=1 = 24

Probability Pc=0,r=1,w=1,h=0 = 0.0313 Pc=0,r=1,w=0,h=1 = 0.0521 Pc=0,r=0,w=1,h=1 = 0.0833

Frequency Nc=1,r=1,w=1,h=0 = 21 Nc=1,r=1,w=0,h=1 = 36 Nc=1,r=0,w=1,h=1 = 24

Probability Pc=1,r=1,w=1,h=0 = 0.0729 Pc=1,r=1,w=0,h=1 = 0.125 Pc=1,r=0,w=1,h=1 = 0.0833

Frequency Nc=0,r=1,w=1,h=1 = 30 Nc=1,r=1,w=1,h=1 = 12 —

Probability Pc=0,r=1,w=1,h=1 = 0.1042 Pc=1,r=1,w=1,h=1 = 0.0417 —

Using the data in Table 6, we calculate the probability of a change in risk for the dif-
ferent interaction-risk criteria, as shown in Tables 7–10. For example, Pc=0 = Pc=0,r=0,w=0,h=0 +
Pc=0,r=1,w=0,h=0 + Pc=0,r=0,w=1,h=0 + Pc=0,r=0,w=0,h=1 + Pc=0,r=1,w=1,h=0 + Pc=0,r=1,w=0,h=1 +
Pc=0,r=0,w=1,h=1 + Pc=0,r=1,w=1,h=1 = 0 + 0.0521 + 0.0625 + 0.0417 + 0.0313 + 0.0521 + 0.0833
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+ 0.1042 = 0.4272. These results are applied to calculate the degree of coupling C(x) and
degree of disorder H(x).

Table 7. Risk-change probabilities for each single-criteria risk coupling.

Type Pc=0 Pc=1 Pr=0 Pr=1 Pw=0 Pw=1 Ph=0 Ph=1
Probability 0.4272 0.5729 0.4479 0.5522 0.4271 0.573 0.4063 0.5938

Table 8. Risk-change probabilities of the pairwise-interacting risk criteria (PIRC).

Type Pc=0,r=0 Pc=0,r=1 Pc=1,r=0 Pc=1,r=1 Pr=0,w=0 Pr=1,w=0 Pr=0,w=1 Pr=1,w=1
Probability 0.1875 0.2397 0.2604 0.3125 0.125 0.3021 0.3229 0.2501

Type Pr=0,h=0 Pr=1,h=0 Pr=0,h=1 Pr=1,h=1 Pw=0,h=0 Pw=1,h=0 Pw=0,h=1 Pw=1,h=1
Probability 0.1771 0.2292 0.2708 0.323 0.1458 0.2605 0.2813 0.3125

Type Pc=1,h=0 Pc=1,h=1 Pc=0,h=1 Pc=0,h=0 Pc=1,w=0 Pc=1,w=1 Pc=0,w=0 Pc=0,w=1
Probability 0.2604 0.3125 0.2813 0.1459 0.2812 0.2917 0.1459 0.2813

Table 9. Risk-change probabilities of three-interacting risk criteria (TIRC).

Type Pc=0,r=0,w=0 Pc=1,r=0,w=0 Pc=0,r=1,w=0 Pc=0,r=0,w=1 Pc=1,r=1,w=0 Pc=1,r=0,w=1 Pc=0,r=1,w=1
Probability 0.0417 0.0833 0.1042 0.1458 0.1979 0.1771 0.1355

Type Pc=1,r=1,w=1 Pr=0,w=0,h=0 Pr=1,w=0,h=0 Pr=0,w=1,h=0 Pr=0,w=0,h=1 Pc=0,r=0,h=0 Pc=1,r=0,h=0
Probability 0.1146 0.0208 0.125 0.1563 0.1042 0.0625 0.1146

Type Pc=0,r=1,h=0 Pc=0,r=0,h=1 Pc=1,r=1,h=0 Pc=1,r=0,h=1 Pc=0,r=1,h=1 Pc=1,r=1,h=1 Pc=0,w=0,h=0
Probability 0.0834 0.125 0.1458 0.1458 0.1563 0.1667 0.0521

Type Pc=1,w=0,h=0 Pc=0,w=1,h=0 Pc=0,w=0,h=1 Pc=1,w=1,h=0 Pc=1,w=0,h=1 Pc=0,w=1,h=1 Pc=1,w=1,h=1
Probability 0.0937 0.0938 0.0938 0.1667 0.1875 0.1875 0.125

Type Pr=1,w=1,h=0 Pr=1,w=0,h=1 Pr=0,w=1,h=1 Pr=1,w=1,h=1
Probability 0.1042 0.1771 0.1666 0.1459

Table 10. Risk-change probabilities of four-interacting risk criteria (FIRC).

Type Pc=0,r=0,w=0,h=0 Pc=1,r=0,w=0,h=0 Pc=0,r=1,w=0,h=0 Pc=0,r=0,w=1,h=0 Pc=0,r=0,w=0,h=1
Probability 0 0.0208 0.0521 0.0625 0.0417

Type Pc=1,r=1,w=0,h=0 Pc=0,r=1,w=1,h=0 Pc=0,r=1,w=0,h=1 Pc=0,r=0,w=1,h=1 Pc=1,r=1,w=1,h=0
Probability 0.0729 0.0313 0.0521 0.0833 0.0729

Type Pc=1,r=1,w=0,h=1 Pc=1,r=0,w=1,h=1 Pc=1,r=0,w=1,h=0 Pc=1,r=0,w=0,h=1 Pc=0,r=1,w=1,h=1
Probability 0.125 0.0833 0.0938 0.0625 0.1042

Type Pc=1,r=1,w=1,h=1
Probability 0.0417

Applying Equations (1) and (7), we calculate the degree of coupling and the degree
of disorder for each combination, respectively, as shown in Table 11. In this paper, based
on expert recommendations that both A and B hold equal significance, their respective
weights are assigned as 0.5 each. We take the calculated coupling value as the degree of
coupling of vehicle distribution. Using Equation (7) and taking the combination of A and B
as an example, DC can be calculated by

H(C, R) = −Pc=1log (Pc=1) + (−Pr=1log (Pc=1)) + (−Pc=1, r=1log (Pc=1, r=1)) = 0.1386 + 0.1424 + 0.1579 = 0.4389
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Table 11. Values of the various combination types.

Combination Type C(C, R) C(C, W) C(C, H) C(R, W) C(R, H) C(W, H)
C(x) 0.003955 0.001613 0.009267 0.053291 0.000142 0.014472
H(x) 0.4389 0.4329 0.4309 0.4315 0.4353 0.4309
Sum 0.2214 0.2173 0.2201 0.2424 0.2177 0.2227

Combination Type C(C, R, W) C(C, R, H) C(C, W, H) C(R, W, H) C(C, R, W, H)
C(x) 0.072486 0.00968 0.036161 0.083253 0.153196
H(x) 0.5274 0.5686 0.548 0.5609 0.6192
Sum 0.2999 0.2891 0.2921 0.3221 0.3862

Figure 5 shows the variation in values for different combinations. Figure 6 shows the
summation of DD and DC for different interaction risk criteria. The probabilities of the
combined risk criteria are displayed in Figure 7. The results in Figures 5–7 indicate the
following: (a) The risk level of the system increases as the number of risk criteria increases.
FIRC causes the greatest risk, followed by TIRC; furthermore, the higher the number of
risk criteria involved in coupling, the greater the severity of a vehicle-operation-risk event.
(b) As the number of combination criteria increases, the values of DC and DD increase,
indicating that the environment in which the vehicle is transported is becoming more
complex and chaotic. (c) The value of DD is greater than that of DC, indicating that the
vehicle is operating in a more chaotic environment. (d) In the pairwise-interacting risk
criteria, C (R, W) > C (W, H) > C (C, R) > C (C, H) > C (R, H) > C (C, W); accordingly,
the road environment and the working environment affect the vehicle scheduling task to
an increased extent because the road environment and the working environment in both
combinations reach their maximal values. (e) C(R, W, H) > C(C, R, W), indicating that the
combination of road environment, working environment, and human causes a higher risk
of delays. (f) C(C, R, W) > C(C, W, H) > C(C, R, H), denoting that the working environment
and the road environment can contribute to a higher risk of delays in combination with
vehicles. (g) The probability of a vehicle operational risk event decreases as more risk
criteria are involved in coupling.
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5.3. Calculation of Coefficient ε

Based on the current operational conditions, the risk-event delay times for various
combinations were recorded for the period from July 2022 to October 2022, as shown in
Table 12. In Equation (1), the acquisition of the optimal adjustment coefficient ε is essential
to determine the cumulative delay time. The aim of the optimization objective function
in this study is to minimize the error ∆T between the actual measured time Ta and the
theoretically calculated time Tr, from which the optimal value ε is identified. The formula
for ∆T is as follows:

∆T = min
I

∑
i=1

(T i,a−Ti,r

)2
(8)
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Table 12. Actual delay time for each combination of events for July 2022 to October 2022.

Combination
Type T (C, R) T (C, W) T (C, H) T (R, W) T (R, H) T (W, H)

Delay_Time_1 45 47 55 32 36 33
Delay_Time_2 47 52 45 38 34 35
Delay_Time_3 51 53 55 32 33 32
Delay_Time_4 55 54 50 35 34 38
Delay_Time_5 52 49 50 36 33 38
Delay Time_6 50 46 50 37 35 32
Delay_Time_7 48 47 55 35 34 38
Delay_Time_8 47 55 47 32 35 36
Delay_Time_9 50 52 45 36 36 36
Delay_Time_10 55 48 50 38 37 32
Delay_Time_11 52 48 51 33 38 36
Delay_Time_12 48 49 47 36 35 34

Combination
Type T (C, R, W) T (C, R, H) T (C, W, H) T (R, W, H) T (C, R, W, H)

Delay_Time_1 60 58 69 49 103
Delay_Time_2 68 70 65 50 99
Delay_Time_3 74 56 60 52 84
Delay_Time_4 67 59 70 58 87
Delay_Time_5 58 61 75 65 103
Delay Time_6 70 59 75 73 77
Delay_Time_7 59 70 67 57 83
Delay_Time_8 64 63 66 71 79
Delay_Time_9 71 75 57 73 100
Delay_Time_10 64 70 61 57 75
Delay_Time_11 68 72 57 46 102
Delay_Time_12 57 67 58 69 88

In this study, 12 groups of data are selected, with Group Delay_Time_1 to Group
Delay_Time_10 treated as the experimental groups, while Group Delay_Time_11 and
Group Delay_Time_12 serve as the control group. Based on the equation ∆T and the
statistical data, the specific optimization equation can be derived as follows:

∆T1 = min
(
(48− 50 ×

(
0.2214 + ε1))

2 + · · · (102− 75 × (0.3862 + ε1))
2
)

(9)

∆T2 = min
(
(52− 50 ×

(
0.2214 + ε2))

2 + · · · (75− 75 × (0.3862 + ε2))
2
)

(10)

Proposition 1. When ε takes values between 0 and 1, ∆T can be used to obtain the minimum value.

Proof. Consider any ∆Ti, where Ta, (Ti, car
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ε1 ε2 ε3 ε4 ε5 ε6 ε7 ε8 ε9 ε10
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In this paper, we take the average of εi as the value of ε, i.e., ε = (0.7404 + 0.7657 +
0.7185 + 0.7576 + 0.7912 + 0.7489 + 0.7325 + 0.7324 + 0.8089 + 0.7156)/10 = 0.7511.

Finally, the optimal value of ε is 0.7511, which is substituted into Equation (1) to derive
the equation expressing the total impact on time due to each criterion being met:

T = (T car
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5.4. Consequence Analysis of Risk Criteria

The theoretical delays for each combination of events are calculated using Equation (9), as
shown in Table 14. In this study, we use the Group Delay_Time_11 and Group_Delay_Time_12
of the data as the control group to verify the reliability of the theoretical data obtained
by using R2. R2 is a measure of the goodness of fit of the regression model, R2∈(0, 1). As
the value approaches 1, the model’s reliability increases correspondingly. The values of
R2 for Delay_Time_11, Delay_Time_12, and theoretical delay time were 0.8886 and 0.8519,
which proves that the results are reliable. Figure 8 depicts a comparative analysis of the
data from delays, Delay_Time_11, Delay_Time_12, and average delay time, indicating
minimal discrepancy between the three outcomes. This can be attributed to the ability of
the quantitative evaluation model to handle risk criteria efficiently.

Table 14. Theoretical delays for each combination of criteria.

Combination Type T (C, R) T (C, W) T (C, H) T (R, W) T (R, H) T (W, H)
Delays 48.63 48.42 48.56 34.78 33.91 34.09

Combination Type T (C, R, W) T (C, R, H) T (C, W, H) T (R, W, H) T(C, R, W, H)
Delays 68.32 67.62 67.81 53.66 90.99
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6. Conclusions and Future Research Directions

In this research, we present a novel quantitative framework for the assessment of risk
criteria occurring in shipyard vehicle scheduling. The proposed model offers a comprehen-
sive means of evaluating the impact of such risk events on scheduling tasks by quantifying
the associated delay time. The proposed model is superior to other methods in that it
incorporates more criteria and registers the real-time delays triggered by risk criteria. The
availability of such information can enable managers to devise a wider range of strategies
to cope with potential risks.

Based on safety engineering theory and the shipyard environment, four criteria that
affect scheduling tasks are identified: vehicles, the road environment, the working envi-
ronment, and human factors. These criteria, including 12 factors and their specific content,
are described in detail. Furthermore, we conduct an in-depth exploration of the average
duration of the delays attributed to these criteria in scheduling tasks. Based on historical
occurrences of the risk events, we count the number of occurrences of each criterion, and
calculate the DC of different risk-combination times using the N-K model. In addition,
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based on information entropy theory, we calculated the DD in the risk criteria. Our analyses
reveal the following:

(1) The risk level of the system increases as the number of risk criteria increases. Therefore,
managers should avoid developing vehicle scheduling plans during times when
multiple risk criteria occur.

(2) Roadway environments and working environments have a significant and substan-
tial impact on the execution of vehicle scheduling tasks. When developing vehicle
scheduling plans, it is imperative to take into account the conditions of the roadway
environment. Given the ongoing nature of vehicle scheduling, it is advisable to recon-
sider and potentially modify the vehicle distribution plan when risk criteria manifest
in real-time.

By comparing the experimental results, we calculated the correction coefficients in
the quantitative model. The R2 values for the control groups and theoretical delay time
are 0.8886 and 0.8519, respectively, which proves that the results are reliable. This finding
has practical implications for the real-time scheduling of vehicles. Specifically, it suggests
that if a risk criterion is met, the manager should analyze the delay caused by the risk and
compare it to the potential delay resulting from adjusting the scheduling plan. For instance,
if the delay caused by the risk exceeds the impact on timeliness resulting from changing
the scheduling plan, a revised scheduling plan should be adopted. This approach can
minimize the potential consequences of the risk. Overall, this quantitative model provides
a reasonable and efficient approach to analyzing the delays in scheduling tasks due to risk
criteria, making it an effective tool for analysis of these risk criteria.

Although this study makes several useful contributions, a limitation is that the present
model is designed for shipyard scheduling; therefore, its suitability for analyzing risk in
other industries requires verification. Nevertheless, the research framework established
in this study can be used as a reference for other studies, which is a valuable contribution
of our research. Furthermore, the findings of this study can be employed to enhance the
scheduling of vehicles in shipyards. This involves developing more efficient strategies and
algorithms to systematically formulate rational plans for real-time vehicle scheduling in
response to fulfillment of risk criteria.
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