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Abstract: The multi-frequency noisy vibration of an autonomous underwater vehicle (AUV) is a
significant factor affecting the performance of shear probes mounted on the head of AUVs. Many
efforts have been made to suppress mechanical radiation noise; however, conventional noise reduction
methods have their limitations, such as mode mixing. In order to extract thorough information from
the aliasing modes and achieve multi-frequency mode targeted correction, a multi-frequency noise
reduction method is proposed, based on secondary decomposition and the multi-mode coherence
correction algorithm. Weak impulses in aliasing shear mode are enhanced, and mixing frequencies are
isolated for thorough decomposition. Noisy mechanical vibrations in the shear modes are eliminated
with the use of the acceleration modes along the identical central frequency series. The denoised
modes are used to reconstruct the cleaned shear signal, and the updated spectra are aligned with the
standard Nasmyth spectrum. Compared with the raw profiles, the variation in the dissipation rate
estimated from the corrected shear is reduced by more than an order of magnitude.

Keywords: turbulence; noise reduction; shear; mechanical vibration; multi-frequency

1. Introduction

An autonomous underwater vehicle (AUV) provides mobility and carrying capacity
for microstructure probes, making it an ideal platform for underwater applications [1].
Robust and accurate underwater measurements are significant in AUV-based turbulence
investigation [2]. However, an AUV in motion has the potential to be a noise source [3]. Dur-
ing navigation, the mechanical structures of the AUV generate multi-frequency variations
and radiated noise [4]. This can affect the detection of probes through the hull and decrease
the quality of collected data. Therefore, it is crucial to eliminate their multi-frequency
self-noise for forthcoming turbulence attribute analysis.

Recently, a lot of noise suppression approaches have been developed to remove
disturbing contamination and extract accurate information from raw signals. Basically,
there are three types of algorithms that are widely used in noise reduction.

Initially, classical noise reduction algorithms based on time–frequency analysis were
used to remove noisy oscillations; some representative methods are short-time Fourier
transform analysis (STFT) [5], the wavelet transform method [6–10], and adaptive local
iterative filtering (ALIF) [11]. STFT has the ability to extract the fixed time–frequency char-
acteristics from nonlinear data. It should be noted that the presence of noise is attributed to
various sources (Figure 1), including the propulsion unit, the attitude regulation unit, and
the buoyancy drive unit [12]. Thus, the noisy vibration observed consists of multi-frequency
components that span a wide frequency range and are not limited to a specific frequency.
Given the multi-frequency nature of contamination, updated methods have been devised
to enhance signal accuracy. Piera [13] developed a time–frequency correction algorithm
using a wavelet transform to identify turbulent patches and remove signal noise. Similarly,
Suyi [8] presented a wavelet correction technique to suppress oceanic turbulence noise.
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ALIF decomposes the records into a finite number of stable components, thereby reducing
noisy contamination. However, the prior parameters need to be selected according to the
signal characteristics, and the performance of these reduction methods is highly dependent
on these empirical settings.
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Figure 1. Microstructure probes are mainly affected by mechanical structures and hydrodynamic
noise. The machinal vibrations are induced by the attitude regulation unit, the buoyancy drive unit,
and the propulsion unit of the AUV. When the AUV moves at low speed, the induced contamination
hydrodynamic noise is generally ignorable.

A number of noise correction techniques based on decomposition and integration have
then been presented, starting with the empirical mode decomposition (EMD) method [14–17].
Huang [15] introduced a Hilbert–Huang transform that can provide multi-scale information
for the denoising procedure and utilize the multiple modes to reconstruct the effective data.
The method has been used to successfully remove noise contamination in various fields,
including engine signals [14], micro-seismic signals [16], and electrocardiogram signals [17]. It
has also been used to improve techniques such as ensemble empirical mode decomposition
(EEMD) [18], uniform phase empirical mode decomposition (UPEMD) [19], and modified
complete ensemble empirical mode decomposition with adaptive noise (MCEEMDAN) [20].
They obtain the decomposed components through iterative calculation; however, the decom-
position in these methods is often lacking in thoroughness, resulting in mode mixing during
application. Part of the useful information is hidden in the mixed mode function (MMF),
which significantly affects noise correction performance. Furthermore, the corresponding
instantaneous frequency and amplitude of modes can only be obtained based on the de-
composed variations. In other words, the decomposed modes control the corresponding
features. Variational mode decomposition (VMD) [21–23] is an adaptive time–frequency
domain decomposition method. It decomposes the signal into modes with limited bandwidth,
and each component has its specific central frequency. Furthermore, VMD has the advantage
for backtracking modes according to the central frequency series [24,25].

In recent years, researchers have explored noise reduction through secondary decom-
position to compensate for the limitations of one-time decomposition, which would reduce
the noise residue and promote complete decomposition [26,27]. A hybrid noise reduction
approach, combining the complete ensemble empirical mode decomposition with adap-
tive noise (CEEMDAN), the minimum mean square variance criterion (MMSVC), and the
least mean square adaptive filter (LMSAF) has been introduced for underwater acoustic
signals [28]; it combines the multiple advantages of these methods to suppress mode mix-
ing and provide an appropriate parameter decision. Furthermore, a combined secondary
optimization decomposition model has been employed to suppress noisy contamination
with the use of amplitude-aware permutation entropy, dynamic interval threshold filtering,
and mutual information [29]. In addition, secondary decomposition is in its initial stages
of implementation in noise reduction in turbulence signals. It has great advantages in
detecting multi-frequency components and ameliorating the quality of records.

Considering the complexity of the turbulence shear signal, the limitations of existing
noise reduction approaches should be addressed. Therefore, we propose a novel multi-
frequency noise reduction (MFNR) method for turbulence shear signals combined with sec-
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ondary decomposition and the cross-spectral coherence correction (CSCC) algorithm. The
secondary decomposition technique is capable of identifying all relevant multi-frequency
peaks and partitioning the raw signal into thorough modes. In addition, when accompanied
by vibration modes with equivalent frequency characteristics, the multi-frequency noisy
vibration contained in the shear modes can be suppressed. Compared with the traditional
noise reduction method, it is verified that it effectively suppresses the multi-frequency
noisy contamination induced by vibration and has good performance in ameliorating the
data quality of turbulence microstructure shear signals.

The paper is structured as follows: In Section 2, a new noise reduction method com-
bined with secondary decomposition and the multi-mode coherence correction algorithm
is presented. In Section 3, the feasibility of this method is demonstrated by using turbu-
lence data obtained from a turbulence microstructure instrument, wave number spectrum
characteristics, and dissipation rate variation. The paper concludes in Section 4.

2. Methods

In general, a one-time traditional decomposition method is insufficient to thoroughly
decompose the original signal, and effective information may be hidden in the aliasing
modes. Accordingly, aliasing modes would lead to the incomplete reduction in the multi-
frequency noisy contamination and affect the measurement quality for turbulence analysis.
As a result, a multi-frequency noise reduction (MFNR) method based on secondary de-
composition and the CSCC algorithm has been developed. The overview of the proposed
MFNR method is shown in Figure 2. The proposed reduction methodology consists of first
decomposition, secondary decomposition, constrained decomposition, and multi-mode
coherence correction.
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2.1. First Decomposition

The original shear signal is composed of multi-frequency variations, and multi-
ple mode decomposition methods are generally used to separate and extract the multi-
frequency features contained in the original data. Since the variational mode decomposition
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(VMD) method provides a way to adaptively decompose a signal into modes with different
central frequencies, we chose to use it for the preliminary decomposition of the raw shear
signal (s(t)).

In order to separate the raw shear signal (s(t)) into original modes by using the VMD
algorithm, the widths of the decomposed modes (suk(t)) are required to be minimized, and
the sum of the modes (suk(t) ) is required to be equal to the original signal (s(t)). Further,
the constrained variational problem in the decomposition procedure is given as

min
{uk},{ωk}

{
∑
k

∥∥∥∂t

[(
δ(t) + j

πt

)
uk(t)

]
exp(−jωkt)

∥∥∥2

2

}
,

s.t.∑
k

suk = s(t)
(1)

where suk(t) represents the decomposed components and ωk represents the original central
frequency of the mode. Subsequently, it is transformed into an unconstrained variational
problem with the utilization of a quadratic penalty factor (α) and the Lagrange operator (λ).

By using the alternating direction multipliers, the original shear modes (suk), the
original central frequency (ωk), and the Lagrange operator (λ) are iterated to obtain the
corresponding optimal solution:

sun+1
k (ω) =

s(ω)−∑i ̸=k sui(ω) +
λ(ω)

2

1 + 2α(ω−ωk)
2 (2)

ωn+1
k =

∫ ∞
0 ω|uk(ω)|2dω∫ ∞

0 |uk(ω)|2dω
(3)

λn+1(ω)← λn(ω) + τ

[
s(ω)−∑

k
sun+1

k (ω)

]
(4)

suk, ωk, and λ are iteratively updated until ∑k

∥∥∥ŝun+1
k − ŝun

k

∥∥∥2

2
/
∥∥ŝun

k
∥∥2

2 < τ is satisfied.
In general, overdecomposition leads to computational redundancy and the over-

refinement of signal variation information. Therefore, energy entropy (E) [23] is introduced
to determine the optimal number of decomposed components (n) which guarantees efficient
decomposition and information preservation. Energy entropy is expressed as

E = −
n

∑
i=1

pilog pi (5)

where pi = ei/e is the energy weight, [e1, e2, · · · , en] is the energy of each mode, and e
represents the total energy of the raw signal. It is assumed that the higher the energy
entropy, the lower the proportion of mode energy, and vice versa. The optimal number
of decomposed modes is determined by the energy entropy sequence. When the original
signal is decomposed into n and n + 1 modes, we can evaluate their corresponding energy
entropy, En and En+1, respectively. If En+1 is different from En, it means that the n decom-
position is incomplete. On the contrary, if En+1 is similar to En, it means that n + 1 modes
have been overdecomposed, containing illusive components.

2.2. Secondary Decomposition

Based on the above operation, the original shear modes (suk = {su1, · · · , sun−1, sum})
and the original central frequency (ωk = {ω1, · · · , ωn−1, ωm}) can be obtained, but it
should be noted that the one-time decomposition using the VMD method usually lacks
thoroughness and leads to mode mixing [29] and multi-frequency variation fusion, which
impede efficient noise reduction. Therefore, we introduce secondary decomposition to
thoroughly extract the multi-frequency residue from the mixed mode function (MMF).
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Prior to the secondary decomposition, an attempt should be made to distinguish the
MMF and the organized mode function (OMF). Here, kurtosis (k) [9] is utilized to differenti-
ate the MMF and OMF from the original mode sequences, given as k = ∑N

i=1(xi − µ)/Nδ4.
Typically, an OMF, e.g., suk = {su1, · · · , sun−1}, has a relatively organized frequency, and
its k value is relatively small. Conversely, an MMF, e.g., suk = {sum}, contains significant
interfering frequencies, and its corresponding k value is relatively high.

Taking into account the residual components, the demodulation method is utilized
to extract the residual frequency mixed in the mode. Since the multiresolution Teager
energy operator (MTEO) is sensitive to vibration characteristics and has high temporal
resolution for concentrated vibrations at short intervals [30,31], we opted to utilize it for the
residual frequency demodulation of the MMF. The equation of discrete-time demodulation
is expressed as follows [21]:

ψ
(
sup(n)

)
=

(
sup(n)

)2 − sup(n− p)sup(n + p) (6)

where ψ[·] is the demodulation transform operator and p represents the multiresolution pa-
rameter. The differentiation operator (Dp), the integration operator (Ip), and the composite
operator (∆p) are defined to enhance noisy vibration.

Dp
(
sup(n)

)
=

(
sup(n)− sup(n− 1)

)
− · · · −

(
sup(n− p + 1)− sup(n− p)

)
(7)

Ip
(
sup(n)

)
=

(
sup(n) + sup(n− 1)

)
− · · · −

(
sup(n− p + 1) + sup(n− p)

)
(8)

∆p
(
sup(n)

)
= Dp−1

(
I1
((

sup(n)
)))

= Ip−1
(

D1
((

sup(n)
)))

= sup(n)− sup(n− p) (9)

Thus, Equation (6) can be obtained as follows:

ψp
(
sup(n)

)
=

(
∆p

(
sup(n)

))2 − sup(n)·∆p
(
∆p

(
sup(n)

))
(10)

where ∆p
(
∆p

(
sup(n)

))
= sup(n)− 2sup(n− p)− sup(n− 2p).

According to the above procedures, frequencies mixed in the MMF are extracted.
Here, {ωn, · · · , ωK} refers to the central frequency series that is demodulated from the
MMF suk = {sum} but ignored. This sequence is appended to the original organized
frequency series. That is, the original central frequency series, ωk = {ω1, · · · , ωn−1, ωm}, is
updated to ωk = {ω1, · · · , ωn−1, ωn, · · · , ωK}. Similarly, the residual components mixed
in the MMF suk = {sum} are extracted into isolated new modes, e.g., suk = {sun, · · · , suK}.
That is, according to the specific central frequency series, the original shear modes, suk =
{su1, · · · , sun−1, sum}, are updated to suk = {su1, · · · , sun−1, sun, · · · , suK} by secondary
VMD. Based on the secondary decomposition procedure, the complete central frequency
and the multi-frequency components can be thoroughly separated.

2.3. Constrained Decomposition

As mentioned above, raw shear data are thoroughly decomposed into a complete
mode sequence, suk = {su1, · · · , sun−1, sun, · · · , suK}, and provide an identical central
frequency series, ωk = {ω1, · · · , ωn−1, ωn, · · · , ωK}. Therefore, based on the specific
central frequency series, the vibration signal (a(t)) can be decomposed into complete
modes auk = {au1, · · · , aun−1, aun, · · · , auK} by using the VMD algorithm once.

2.4. Multi-Mode Coherence Correction

The measured shear signal is assumed to be correlated with the pure shear data and
vibration contamination [32–34]. The conventional CSCC algorithm would directly remove
coherent variation induced by vibration. However, it would mask noise contamination
caused by low-frequency vibration, as high-frequency vibration is too prominent. Therefore,
multi-mode coherence correction is improved based on the conventional CSCC method to
effectively suppress multi-frequency vibration.
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Similarly, a raw shear mode is considered to be a combination of a pure shear compo-
nent and a vibration component with identical central frequency. To improve data quality,
the useless components need to be suppressed, leaving the useful component for effective
data reconstruction. With the accompaniment of vibration modes sharing an identical
frequency band, the noisy contamination contained in the shear modes can be thoroughly
removed. The reduction equation can be expressed as follows:

suk(t) = ŝuk(t) + b∗auk(t) (11)

where suk(t) represents the raw shear modes, auk(t) represents the vibration mode of
identical central frequency, the caret ŝuk(t) denotes the pure shear mode in fluid flow,
and ∗ is the convolution. Moreover, b represents the influence of vibration exerted on the
shear mode and the weight coefficient, and it is given as b2 = ϕsa(ω)ϕ*

sa(ω)/ϕss(ω)ϕaa(ω).
ϕsa(ω) is the cross-correlation spectrum of the shear mode and acceleration mode, ϕss(ω)
represents the auto-correlation spectrum of the shear mode, and ϕaa(ω) represents the
auto-correlation spectrum of the acceleration mode.

Subsequently, the noise induced by multi-frequency vibration is suppressed in each shear
mode. We denoise the shear modes and restructure them to obtain the cleaned signal, ŝ(t).

3. Results

Here, we present experiments demonstrating the effectiveness of noise reduction by
using the proposed MFNR algorithm. An autonomous underwater vehicle (AUV) (Figure 3)
was deployed in Thousand Lake (with an average water depth of 30 m) on 18 July 2020.
We measured the time series of shear and acceleration by using an AUV equipped with a
shear probe and a three-directional acceleration probe at a sampling rate of 1024 Hz. Three
navigation patterns were recorded: the diving stage, the horizontal navigation stage, and
the upward-floating stage. The unprocessed shear variation (upper panel in Figure 4) was
contaminated by multiple sources of vibration, as indicated by the acceleration variations
(bottom three panels). Therefore, the proposed MFNR method was used to eliminate the
vibration interference.
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microstructure probes are installed on the head of the AUV, represented by the black cylinder.

The shear data were sampled over 120 s (red rectangle in Figure 4) to differentiate the
overlapping characteristic frequencies from a total of 204 min of records. The frequency
spectrum of original shear data (black line in Figure 5b) showed only the clear recognition
of 25 Hz. However, other vibration frequencies, previously observed in experiments,
could not be easily identified and distinguished. As a result, the proposed algorithm
was implemented to extract these mixed frequencies. The optimal number of separated
modes for the first decomposition procedure was determined by using energy entropy. The
number of separated modes was iteratively increased, and we evaluated the corresponding
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energy entropy variation of each mode at each decomposition step. When we decomposed
the original shear signal into six modes, we discovered that they had energy entropy values
that were extremely similar to those found when they were decomposed into five modes
(see Table 1). That is, when the original signal was decomposed into six modes, it was
overdecomposed, and there were illusive components in these decomposed modes.
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Consequently, the optimal number of modes to decompose the signal into was five,
and the shear signal was decomposed into five modes in the first decomposition procedure.
Figure 5a presents the decomposition of the five shear modes. Figure 5b displays the
frequency spectrum of the corresponding mode components. It is clear that only {su1, su5}
were successively isolated, while {su2, su3, su4} were modes mixed at 25 Hz. Therefore, the
vibration features contained in {su2, su3, su4} were unclear for the denoising process due
to this significantly mixed frequency. Then, the k criterion was required to differentiate the
MMF from the ambiguous modes, and we applied the MTEO to it to separate these mixed
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frequencies. The corresponding k curve of the modes is depicted in Figure 6. su5 had the
highest k value, yet its central frequency exceeded 150 Hz, posing a considerable deviation
from the cut-off frequency. Therefore, the MMF was identified as the su3 with the highest k
value in the lower frequency range. The MTEO demodulation method was then applied to
suppress strong disturbances and enhance weak impulses.

Table 1. The energy entropy variation.

Decomposition
Number

Energy Entropy

E1 E2 E3 E4 E5 E6

2 0.3037 0.1573
3 0.3032 0.1567 0.0015
4 0.2667 0.3515 0.3045 0.0013
5 0.2665 0.3508 0.3042 0.1887 0.0013
6 0.2661 0.3508 0.3042 0.1867 0.0013 0.0011
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The above procedures effectively extracted the hidden frequencies from the residual
mode. A comparison of the original time–frequency spectrum and the demodulating
time–frequency spectrum is shown in Figure 7. The multi-frequency variations were
mixed in the original shear variation, so we could not directly distinguish all of these
hidden variations based on the time–frequency spectrum (Figure 7a), except for these
extremely obvious variations, such as the 4 Hz and 25 Hz variations (red lines at the bottom
of Figure 7a). However, these multi-frequency mixing variations could be thoroughly
extracted by using the secondary decomposition procedure. Figure 7b shows the central
frequency series that was completely isolated. The original central frequency series was
updated to ωk = [4, 25, 90, 110, 130], which represents the total information mixed in the
shear signal. Based on the updated central frequency series, the shear and vibration modes
with identical frequencies were then backtracked and constructed. Figure 8 shows the
backtracked shear modes and their corresponding frequency spectra. All mixing modes
were successively isolated to promote the following denoising procedure, which suppressed
multi-frequency vibration contamination.

The raw shear mode is assumed to be correlated with the pure shear component and
coherent noise induced by vibration. Thus, multi-mode coherence correction was applied
to each pair of shear and acceleration modes to eliminate the vibration-induced inference
contained in each shear mode. The original shear modes (black solid curves), the cleaned
shear modes (green, purple, and blue solid lines), and the acceleration modes (gray dotted
lines) are shown in Figure 9. For simplicity, only the first three modes and their outcomes
are presented. The original shear mode peaks induced by variation are clearly suppressed
in the corresponding cleaned shear modes.
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Figure 9. The noise reduction results of the raw shear modes. The original acceleration modes are
depicted by gray dotted lines. The cleaned shear modes are presented by green, purple, and blue
curves. For the sake of simplicity, their corresponding original shear modes, which exhibit the same
magnitude and the same development tendency, are represented by black solid curves.

Subsequently, these cleaned modes were reconstructed to examine the turbulence charac-
teristics. Assuming Taylor’s frozen hypothesis [35], the dissipation rate of turbulent kinetic
energy is a crucial parameter for scrutinizing the turbulence properties [36]. Furthermore, the
Nasmyth spectrum is assumed as a standard criterion for evaluating shear spectra [37].

Figure 10 shows the raw shear spectrum and the cleaned shear spectra processed by
using both the proposed MFNR method and the exclusive CSCC algorithm. It is important
to note that the raw shear spectrum (represented by the solid black line) exhibits two
distinct peaks caused by vibration. These peaks cannot be effectively eliminated through
the exclusive utilization of the CSCC algorithm. While the peak at 25 Hz shows some slight
attenuation, the peak around 50 Hz remains unchanged. On the contrary, the proposed
MFNR method could effectively remove the two prominent peaks, as shown in the cleaned
spectrum. The corrected spectrum obtained by the proposed method closely matched
the standard Nasmyth spectrum, and the corresponding dissipation rates decreased from
5.42× 10−8 WKg−1 to 4.3× 10−9 WKg−1.

The variation in dissipation rate magnitude estimated from the original shear velocity
spectra was approximately in the range from 10−6 WKg−1 to 10−8 WKg−1 (represented
by black solid circles in Figure 11). Moreover, the dissipation rate variation obtained with
the exclusive use of the CSCC algorithm (represented by green solid circles) displayed a
less notable difference from the original profile. However, the corrected dissipation rates
(represented by blue solid circles) obtained with the proposed MFNR method exhibited
a significant decrease of over one order of magnitude. To verify the effectiveness of our
method, the standard records were synchronously measured by the MicroRider instrument
(manufactured by the Rockland Scientific International (RSI), Victoria, BC, Canada) and
were also used to evaluate the dissipation rates (red solid circles). The dissipation rate
variation calculated by the MFNR method aligned well with that obtained from standard
records in the strong disturbance range (0–11 m) and was only slightly higher than the red
profile in the weak disturbance range (11–30 m). This signifies that the proposed MFNR
method is efficient in eliminating multi-frequency contamination induced by vibration and
that it provides a purified shear signal for subsequent turbulence analysis.
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Figure 10. The wavenumber spectra of the original shear signal and the cleaned shear data. The raw
shear spectrum is indicated by a black solid curve, and the standard Nasmyth spectrum is denoted
by a red dotted line. The cleaned shear spectrum, obtained by the proposed method, is depicted with
a red solid curve, and the cleaned shear spectrum obtained by using only the CSCC algorithm is
shown with a grey curve. The cut-off frequency is marked by a black dotted line.
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4. Conclusions

In this work, an MFNR method based on secondary decomposition and the multi-
mode coherence correction algorithm is proposed to suppress the noisy contamination
contained in shear data, and the effectiveness of the proposed MFNR method is verified
by the experimental measurements collected by using an AUV in Thousand Lake. The
mechanical structure of AUVs causes multi-frequency noisy vibrations during turbulence
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measurements, obstructing the exploration of turbulence mechanisms. Conventional cor-
rection methods can only detect a part of prominent vibration features, and mixing modes
still degrade data quality. Therefore, the thorough extraction of vibration information is
critical for targeted noise suppression.

Turbulence measurements are complex nonlinear signals. Decomposing turbulence
data into multi-frequency modes and conducting targeted correction is considered an
effective way to suppress noisy contamination. Based on the results of frequency spectrum
analysis, weak frequencies are amplified and isolated. Therefore, the complete central
frequency series is obtained, providing identical frequency intervals to separate the raw
measurements and the vibration signal, refining the vibration causality. Accompanied by
acceleration modes in identical central frequency bands, the raw shear components allow
for targeted correction. The vibration peaks in the wavenumber spectrum are obviously
suppressed. Further, the cleaned shear spectrum, denoised by the MFNR method, agrees
well with the standard Nasmyth spectrum, improving the quality of shear data. Practical
applications show that dissipation rates evaluated from denoised shear spectra are reduced
by almost an order of magnitude compared with the original profiles. The method proposed
in this paper performs well in both strong and weak disturbance ranges.

As a consequence, the proposed noise correction method has the following dominant
advantages: (1) Secondary decomposition extracts the residual information from the MMF
and provides thorough multi-frequency information. (2) Secondary decomposition sepa-
rates the shear and acceleration signals into several pairs of shear and acceleration modes
with the same central frequencies based on the complete multi-frequency information.
(3) Shear modes and acceleration modes with identical central frequencies provide the raw
signal and its corresponding vibration-induced signal at the specific frequency. (4) The
idea of multi-mode coherence correction is applied to each pair of shear and acceleration
modes in identical frequency bands, which allows for targeted noisy vibration suppression.
The result of the experimental analysis proves the superior performance of the proposed
approach in suppressing the multi-frequency mechanical noise contained in the original
shear signals. For future study, the proposed approach provides an optimal perspective on
multi-mode noise correction for complicated turbulence data in the marine environment.
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