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Abstract: Folate, also known as vitamin B9, plays a crucial role in the one-carbon (1C) metabolism, a
conserved pathway from microbes to humans. The 1C metabolism, consisting of the folate and me-
thionine cycles, is essential in many biological processes such as nucleotide and protein biosynthesis,
cell proliferation, and embryonic development. Despite its functional role, little is known about the
1C metabolism in crustaceans. As part of an ongoing effort to characterize important pathways in
Calanus finmarchicus, the biomass-dominant zooplankton in much of the North Atlantic Ocean, we
identified transcripts encoding the 1C metabolism enzymes. Using an in silico workflow consisting
of a transcriptome mining, reciprocal blasts, and structural analyses of the deduced proteins, we
identified the entire set of enzymes in both cycles. The majority encoded for full-length proteins and
clustered with homologs from other species. Stage-specific expression was reported, with several
transcripts showing high expression in the naupliar stage (e.g., 10-FTHFD, SHMT2) while some
methyltransferases (e.g., BHMT, SHMT, DNMT) were more expressed in adults. Overall, this study
provides a set of genes which can be used as potential biomarkers of development and reproduction
and can be tested in other zooplankters to assess ocean health status monitoring.

Keywords: zooplankton; RNA-Seq; transcriptomic; in silico mining; developmental expression; folate
cycle; methionine cycle

1. Introduction

Folates, also known as vitamins B9 in the most oxidized form, are a group of structurally
related water-soluble nutrients composed of a pterin heterocyclic ring, a p-aminobenzoic (pABA)
acid, and a chain of mono- or poly-glutamate moieties. Plants, several microorganisms, and few
protozoans can synthesize folates de novo, whereas animals must acquire them through the
diet [1,2]. Folates play a crucial role in the one-carbon (1C) metabolism, a conserved pathway
from microbes to humans, essential for many biological processes and cellular functions such
as nucleotide biosynthesis, protein synthesis, epigenetic modification of DNA, cell prolifera-
tion, and embryonic development [3–5]. The 1C metabolism consists of two interconnected
enzymatic pathways: the folate cycle and the methionine cycle. The folate cycle starts with the
interconversion of the derivatives of tetrahydrofolate (THF), the reduced active form of folate
that acts as a cofactor in the transfer of 1C units from donors to acceptors, in a series of enzy-
matic steps involved in serine–glycine interconversion, purine and pyrimidine biosynthesis, and
protein synthesis. The methionine cycle includes the biosynthesis of methionine and turnover
of S-adenosyl-methionine (SAM), the universal methyl donor for most methyltransferases [5].

The 1C metabolic pathways and their enzymes have been thoroughly elucidated
in eukaryotes over recent decades, mainly in plants and humans [2,5]. As shown in
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Figure 1, the folate cycle in metazoans consists of 12 enzymes. The first enzyme, serine
hydroxymethyltransferase (SHMT), transfers a C1 unit to THF to produce 5,10-methylene-
tetrahydrofolate (5,10-methylene-THF). This compound is the donor substrate of the 1C
unit to the enzyme thymidylate synthase (TYMS) for the pyrimidine biosynthesis and
consequent oxidation of 5,10-methylene-THF into dihydrofolate (DHF); this latter com-
pound is regenerated in THF via the enzyme dihydrofolate reductase (DHFR). The en-
zyme C1-THF synthase (from now referred to as MTHFD1) controls the C1 unit inter-
conversion between 5,10-methylene-THF,10-formyl-THF (precursor of purine synthesis)
and THF. MTHFD1 is a tri-functional cytosolic enzyme that determines the activities of
10-formyl-tetrahydrofolate synthetase, NADP-dependent methenyl-THF cyclohydrolase,
and methenyl-tetrahydrofolate cyclohydrolase. Mammals also have a bi-functional mi-
tochondrial enzyme encoded by the nuclear gene MTHFD2, with NADPH-dependent
methylene–tetrahydrofolate dehydrogenase and methenyl-tetrahydrofolate cyclohydrolase
activities. Similar to MTHFD1, the enzyme formyl-THF dehydrogenase (10-FTHFDH)
oxidizes 10-formyl-THF back into THF. Meanwhile, the 5,10-methylene-THF is reduced by
the enzyme methylenetetrahydrofolate reductase (MTHFR) into 5-methyl-THF, which is
then transformed in THF by the enzyme MTR, which links the folate and the methionine
cycles. Other enzymes of the folate cycle include (1) methionyl-tRNA formyltransferase
(MTF), which catalyzes the transfer of the C1 unit from 10-formyl-THF to methionil-tRNA
and, thus, links the pathway to protein synthesis; (2) aminomethyltransferase (AMT) which
catalyzes the reaction production to 5-formyl-THF, a regulator of C1 metabolism; (3) the
bi-functional enzyme formimidoyltransferase-cyclodeaminase (FTCD) which regenerates
THF from 5-formyl-THF, and, lastly, (4) 5-formyl-THF cycloligase (5FCL) which converts
this intermediate back into the active form 5,10-methenyl-THF (Figure 1). The methion-
ine cycle consists of fewer enzymes: (1) 5-methyl-THF homocysteine methyltransferase
(MTR) which transfers the methyl group from 5-methyl-THF to homocysteine (Hyc), pro-
ducing methionine (Met); (2) methionine adenosyltransferase (MAT), which produces
the universal methyl group donor S-adenosylmethionine (SAM); (3) DNA methyltrans-
ferase (DNMT) which catalyzes the transfer of the methyl group to substrates, such as
DNA, generating S-adenosylhomocysteine (SAH); (4) glycine N-methyltransferase (GNMT)
which also converts SAM back into SAH, and, lastly (5) adenosylhomocysteine hydro-
lase (AHCY), which regenerates Hyc for the cycle. Alternatively, Met can be produced
from Hcy through the enzymes betaine-homocysteine S-methyltransferase (BHMT) and
homocysteine S-methyltransferase 3 (HMT) (Figure 1).

In vertebrates, alterations of the 1C metabolic network due to poor folate supply,
enzymatic dysfunction, and/or the presence of single nucleotide polymorphisms (SNPs) in
folate-coding genes have been unequivocally linked to reduced growth, neural tube defects
(NTDs), and developmental abnormalities [5–8]. Conversely, little is known about the
influence of folate-dependent metabolism in cellular and biological processes in arthropods.
Exposure of the fruit fly Drosophila melanogaster to the drug methotrexate, a synthetic folate
analog that inhibits DHFR, has been reported to induce leg and wing deformities in the
surviving progeny [9,10]. Those findings agree with early observations in Artemia sp. brine
shrimps, where blockage of the enzymes DHFR and TYMS resulted in larval teratogenesis
and abnormal embryonic development [11]. More recently, altered expression of genes
involved in the folate and methionine cycles has been associated with transgenerational
developmental defects in the crustacean copepod Calanus helgolandicus exposed to the
cytotoxic phytoplankton species Skeletonema marinoi [12]. To date, this study represents
the most complete investigation of genes involved in folate metabolism in a crustacean
however there are still open questions on the presence/absence, diversity, and role of the
folate metabolic genes in other copepod species.
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Figure 1. Schematic representation of 1C metabolism in metazoans. The top cycle represents the
methionine cycle (red) connected with the folate cycle (blue, lower panel). Enzymes are represented
in boxes and metabolites are listed by name. Abbreviations: AHCY, S-adenosyl-L-homocysteine
hydrolase; BHMT, betaine-homocysteine S-methyltransferase; GNMT, glycine N-methyltransferase;
DNMT, DNA (cytosine-5)-methyltransferase; MAT, methionine adenosyltransferase; HMT, homocys-
teine S-methyltransferase 3; Met, methionine; Hcy, homocysteine; SAH, S-adenosylhomocysteine;
SAM, S-adenosylmethionine; Sar, sarcosine; MTR, 5-methyl-THF homocysteine methyltransferase;
MTHFD1/2, methylenetetrahydrofolate dehydrogenase; 10-FTHFD, formyl-THF dehydrogenase;
MTF, methionyl-tRNA formyltransferase; AMT, aminomethyltransferase; 5FCL, 5-formyl-THF cy-
cloligase; FTCD, formimidoyltransferase–cyclodeaminase; MTHFR, 5,10-methylenetetrahydrofolate
reductase; Ser, serine; Gly, glycine; SHMT, serine hydroxymethyltransferase; DHFR, dihydrofolate
reductase; TYMS, thymidylate synthase; dTMP, thymidine monophosphate; dUMP, deoxyuridine
monophosphate.

Thus, the aim of the present study was to characterize the enzymes involved in the 1C
metabolism in the congener calanoid copepod C. finmarchicus, one of the most abundant
calanoid copepods in the North Atlantic, representing a key grazer of phytoplankton and
key prey for commercially important forage fish and shellfish, and for several critically en-
dangered marine mammals in the Gulf of Maine [13,14]. In recent decades, the availability
of high-quality molecular resources (e.g., mitochondrial genomes and transcriptomes) for
this copepod has enabled the characterization of genes involved in key processes such as di-
apause, oogenesis, lipid metabolism, and detoxification pathways [15–19]. Furthermore, for
genes involved in neurochemical signaling systems [20,21], photoreception [22], chemical
communication (chemosensory related genes) [23], and detoxification [17,24,25], relative
expression across different stages of development has also been characterized, allowing
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the prediction of their potential function in this copepod. Here, using a well-established in
silico workflow, we mined the high-quality C. finmarchicus reference transcriptome [16] to
identify transcripts encoding enzymes involved in the folate and methionine cycles. Addi-
tionally, RNA-Seq data available from six C. finmarchicus developmental stages (embryo,
early nauplius, late nauplius, early copepodite, late copepodite, and adult female) were
used to map the developmental expression of the enzymes in this species and to gain more
insight on their functions.

2. Materials and Methods
2.1. In Silico Mining for Transcripts Encoding Enzymes Involved in the One-Carbon
Metabolic Pathway

Searches for putative transcripts encoding enzymes involved in the folate and methio-
nine cycles in C. finmarchicus were performed using a well-established vetting workflow
that included a transcriptome mining step, a reciprocal BLAST step to confirm protein
identity, and a protein structural domain step [25,26]. Based on the reference literature, we
searched a total of 12 and six enzymes, respectively, in the folate and methionine cycles
(see Figure 1). For each enzyme, query sequences of the copepod Eurytemora affinis (eaf),
used as reference organism, were obtained from the Kyoto Encyclopedia of Genes and
Genomes (KEGG) database. The E. affinis sequences were used to mine the transcriptome
shotgun assembly (TSA) database from the National Center for Biotechnology Information
(NCBI) limiting the searches to C. finmarchicus transcriptome (PRJNA236528) (search date
October 2022). The resulting transcripts were fully translated using ExPASY (online version,
search date October 2022) and reciprocally blasted against the NCBI non-redundant (nr)
protein database (blastp algorithm). The presence of the expected protein structural domain
(based on the query sequences) was examined using SMART software [27]. In cases where
multiple transcripts were identified for the same query, amino acid sequences were aligned
using MAFFT software [28] (online version, search date January 2023), and amino acid
identity was calculated between pairs. Sequences with amino acid identity ≥95% were
considered the same protein and the longest transcript from among them was kept.

2.2. Cladogram of Calanus finmarchicus Transcripts Encoding Enzymes Involved in the Folate and
Methionine Cycles, with Other Marine Organisms

A phylogenetic analysis was performed for the C. finmarchicus transcripts identified in
this study, to confirm their annotation and to establish their relationships with each other
and other marine organisms. Unrooted phylogenetic trees were separately generated with
amino acid sequences from the folate and the methionine cycles, including sequences from
the branchiopod Daphnia pulex (water flea), the decapods Penaeus vannamei, P. chinensis,
and Homarus americanus, the amphipod Hyalella azteca, and the copepods E. affinis and
Lepeophtheirus salmonis. Sequences from D. melanogaster and Homo sapiens were included
as outgroups. All sequences were downloaded from the KEGG database. All amino acid
sequences were initially aligned using ClustalW software (Galaxy version 2.1, default
settings) and then, a maximum-likelihood phylogenetic tree was built using the evolution
model JTT+ CAT (FASTTREE, Galaxy version 2.3.2) with bootstrap values computing
bootstrapping for 10,000 samples (RapidNJ Kimura evolution model, Galaxy version 2.3.2).
Cladograms were visualized using the software FigTree (v. 1.4.4).

2.3. Expression of Calanus finmarchicus Transcripts Encoding Enzymes across Development

Relative expression of transcripts encoding for enzymes involved in the folate and
methionine cycles across the development of C. finmarchicus was examined using a pre-
existing RNA-Seq dataset [29]. The dataset included six different developmental stages:
embryos, early nauplii (NII–NIII), early copepodites (CI), late copepodites (CIV and CV),
and adult females, with three biological replicates each (except CI and CIV, with two
replicates). Briefly, adult C. finmarchicus and pre-adult CV copepodites were collected
from the Gulf of Maine (Mount Desert Rock, 2012); wild-caught females were maintained
in the laboratory to obtain the target stages: embryos, early nauplii (NII–NIII), early
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copepodites (CI), and late copepodites (CIV). All samples contained multiple individuals
ranging in number from three (e.g., adult females, CVs) to 500 (e.g., embryos). For each
stage, total RNA was extracted from three biological replicates (two for CI and CIV), and
cDNA libraries were multiplexed and sequenced on an Illumina HiSeq 2000 platform
(PE 100 bp) [29]. The expression rate was quantified by mapping each RNA-Seq library
against the C. finmarchicus reference transcriptome (NCBI: PRJNA236528) using BOWTIE
software (v.2.0.6) [30]. For all transcripts, expression was then normalized using the reads
per kilobase per million mapped reads (RPKM) method [31]. Statistical significance for
each transcript was tested using one-way ANOVA (p < 0.05) followed by a post hoc Tukey’s
test with multiple comparisons correction (Graph Pad Prism v. 10.2).

3. Results
3.1. Identification of Calanus finmarchicus Transcripts Encoding Enzymes in the Folate Cycle

All twelve enzymes involved in the folate cycle were found in the C. finmarchicus
reference transcriptome, using E. affinis as a reference organism. A single C. finmarchicus
transcript was identified for each enzyme (Table 1). Reciprocal BLAST confirmed the
annotation for all transcripts, with the majority returning their initial query as a top-hit
reciprocal BLAST. The other transcripts were highly similar to homologs from the Asian
lady beetle Harmonia axyridis, the barnacle Amphibalanus amphitrite, and the Chinese white
shrimp Penaeus chinensis (Table 1). All C. finmarchicus putative enzymes included the
expected structural domains, suggesting that these transcripts encoded for full-length
proteins (Tables 1 and S1). The only exception was the transcript encoding for the enzyme
methionyl-tRNA formyltransferase (MTF), which was identified as a partial sequence for
the presence of the formyl_trans_N terminal domain (PF00551) (Table S1).

Table 1. Folate cycle transcripts. Summary of searches of C. finmarchicus transcripts encoding
enzymes. For each enzyme (name and enzyme commission number EC), the resulting C. finmarchicus
transcript (NCBI commission n.), e-value of Blast-p searches (NCBI nr database), top hit species and
deduced protein length are listed. F = full length (all structural domains) and P = partial length. See
Table S1 for detailed information.

Enzyme Name E.C. NCBI Transcript # Blast-p
E-Value Top Hit Species Deduced Protein

Length

dihydrofolate reductase (DHFR) 1.5.1.3 GAXK01099950 1.55 × 10−33 Eurytemora affinis F

methylenetetrahydrofolate
dehydrogenase (MTHFD)

6.3.4.3 (I)/3.5.4.9
(II)/1.5.1.5 (III) GAXK01161413 0 Eurytemora affinis F

methylenetetrahydrofolate
dehydrogenase (MTHFD2) 1.5.1.15 GAXK01151792 4.04 × 10−131 Eurytemora affinis F

thymidylate synthase (TYMS) 2.1.1.45 GAXK01188281 1.47 × 10−92 Eurytemora affinis F
methylene-THF reductase

(MTHFR)
1.5.1.53
1.5.1.20 GAXK01056182 0 Penaeus chinensis F

serine hydroxymethyl-
transferase (SHMT1) 2.1.2.1 GAXK01188425-cit 0 Eurytemora affinis F

serine hydroxymethyl-
transferase (SHMT2) 2.1.2.1 GAXK01186194-mit 0 Eurytemora affinis F

5-methyl-THF homocysteine
methyltransferase (MTR) 2.1.1.13 GAXK01188527 0 Eurytemora affinis F

methionyl-tRNA
formyltransferase (MTF) 2.1.2.9 GAXK01158471 1.06 × 10−68 Harmonia axyridis P

formimidoyltransferase-
cyclodeaminase (FTCD)

2.1.2.5
4.3.1.4 GAXK01113306 0 Eurytemora affinis F

Aminomethyltransferase (AMT) 2.1.2.10 GAXK01044023 0 Eurytemora affinis F

5-formyl-THF cycloligase (5FCL) 6.3.3.2 GAXK01024325 1.98 × 10−61 Amphibalanus
amphitrite F

formyl-THF dehydrogenase
(10-FTHFDH) 1.5.1.6 GAXK01171303 0 Eurytemora affinis F
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All six methionine cycle enzymes were found in the C. finmarchicus transcriptome. The
enzyme glycine N-methyltransferase (GNMT) resulted in a single transcript (Table 2). Two
transcripts were identified encoding the enzymes adenosylhomocysteine hydrolase (AHCY),
S-adenosylmethionine synthetase (MAT), and DNA (cytosine-5)-methyltransferase 1 (DNMT),
and three transcripts encoding the enzyme betaine–homocysteine S-methyltransferase (BHMT)
(Table 2). Reciprocal BLAST for all transcripts confirmed their annotation, with the majority
returning their initial query as the top reciprocal BLAST hit. Two transcripts encoding the
enzyme DNMT were highly similar to those of P. chinensis and the echinoderm Anneissia
japonica and one transcript encoding MAT was highly similar to the enzyme from the isopod
Armadillidium nasatum. The expected structural domains, hallmarks of each enzyme, were found
in all translated proteins (Tables 2 and S1).

Table 2. Methionine cycle transcripts. Summary of searches of C. finmarchicus transcripts encoding
enzymes. For each enzyme (name and enzyme commission number EC), the resulting C. finmarchicus
transcript (NCBI commission n.), e-value of Blast-p searches (NCBI nr database), top hit species, and
deduced protein length are listed. F = full length (all structural domains) and P = partial length. See
Table S1 for detailed information.

Enzyme Name E.C. NCBI Transcript # Blasp
E-Value Top Hit Species Deduced Protein

Length

betaine–homocysteine
S-methyltransferase (BHMT) 2.1.1.5

GAXK01169231 (a)
GAXK01064100 (b)
GAXK01101229 (c)

0
0
0

Eurytemora affinis
Eurytemora affinis
Eurytemora affinis

F
F
F

glycine N-methyltransferase
(GNMT) 2.1.1.20 GAXK01096711 1.44 × 10−166 Eurytemora affinis F

S-adenosylmethionine synthetase
(MAT) 2.5.1.6

GAXK01168224 (a)
GAXK01150749 (b)
GAXK01026996 (c)

0
1.65 × 10−89

0

Eurytemora affinis
Armadillidium

nasatum
Eurytemora affinis

F
F
F

homocysteine S-methyl-
transferase 3 (HMT) 2.1.1.10 GAXK01160528 0 Eurytemora affinis F

DNA (cytosine-5)-methyl-
transferase 1 (DNMT) 2.1.1.37 GAXK01011690(a)

GAXK01002418(b) 0 Penaeus chinensis
Anneissia japonica

F
F

Adenosylhomocysteinase
(AHCY) 3.13.2.1 GAXK01026996 (a)

GAXK01168201 (b)
0
0

Eurytemora affinis
Eurytemora affinis

F
F

3.2. Comparison of C. finmarchicus Enzymes in the 1C Metabolism with Other Marine Organisms

To validate the annotation and to examine the relationship with other marine organ-
isms, two phylogenetic analyses were generated for the enzymes involved in the folate
and the methionine cycles. Both analyses included C. finmarchicus transcripts encoding
enzymes identified in this study and sequences from decapods (P. vannamei, P. chinensis,
H. americanus), an amphipod (H. azteca), copepods (E. affinis, L. salmonis), a branchipod (D.
pulex), and from the outgroups D. melanogaster and H. sapiens. The unrooted radial tree
generated for the sequences involved in the folate cycle resulted in seven clades that were
mostly supported by high bootstrap values (bootstrap value > 70), except for one clade
for which the bootstrap value was 52 (Figure 2). For each enzymatic class, all predicted C.
finmarchicus transcripts clustered with the homologs from the other species corresponding
to their annotation. Three clades grouped only sequences belonging to a single enzymatic
class: DHFR (bootstrap value 76), FTCD (bootstrap value 90), and MTHFR (bootstrap value
96). The D. melanogaster MTHFR was excluded from this cluster. The other clades grouped
sequences from two enzymatic classes: MTF and 10-FTHFDH (bootstrap value 98), MTHFD
and AMT (bootstrap value 52). Two other clades divided from a single branch (bootstrap
value 79) and separated into two groups: 5FCL and MTR, and SHMT and TYMS. Within
the clades that included two enzymatic classes, the separation between the two groups was
highly supported, with bootstrap values > 66 (Figure 2).
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Figure 2. Cladogram of genes involved in the folate cycle in marine organisms. The analysis includes
amino acid sequences from the branchiopod Daphnia pulex (water flea), the decapods Penaeus vannamei,
P. chinensis, and Homarus americanus, the amphipod Hyalella azteca, the copepods Eurytemora affinis,
Lepeophtheirus salmonis, and C. finmarchicus (in red) (this study). Sequences from Homo sapiens and
Drosophila melanogaster were considered as outgroups. Except for C. finmarchicus, all sequences were
downloaded from the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, selecting the
one-carbon pool by folate (map00670) and the organism of interest as reference. For this analysis,
amino acid sequences were aligned using ClustalW and then, a maximum-likelihood phylogenetic
tree was built using the evolution model JTT + CAT (FASTTREE, Galaxy version 2.3.2) with bootstrap
values computing bootstrapping for 10,000 samples (Rapid NJ Kimura evolution model, Galaxy
version 2.3.2). Bootstrap values are indicated for only the major clades. Scale bars 2.0 represent
estimated substitutions per site. Enzyme abbreviations refer to Figure 1.

The unrooted radial tree generated for the sequences involved in the methionine cycle
consisted of five major clades (Figure 3). All predicted C. finmarchicus sequences clustered
with the homologs from other species corresponding to their annotation. Bootstrap values
were >86 for all clades except for the clade including AHCY enzymes (bootstrap value
62) (Figure 3). Except for one clade that grouped only sequences encoding the enzyme
MAT (bootstrap value 99), the other clades included transcripts encoding for multiple
enzymes. However, that MAT clade did not include all MAT sequences (14 out of 22),
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which were grouped in two other clusters: two MAT sequences from H. sapiens and P.
chinensis aggregated with the group DNMT and five MAT sequences (including one of C.
finmarchicus transcript) with the group AHCY (Figure 3). In the latter cluster, the separation
of the MAT sequences from the AHCY sequences was also highly supported (bootstrap
values 93 and 99, respectively) (Figure 3). Also, the sequences encoding the enzyme
DNMT were not grouped together; while most of the DNMT sequences (including the C.
finmarchicus transcripts) were grouped in one clade, there were others in the clade with
the enzyme GNMT (bootstrap value 99) (Figure 3). The separation between the DNMT
sequences and the GNMT sequences was highly supported, with bootstrap values 99 and
95 (Figure 3). Lastly, transcripts encoding for the enzyme BHMT clustered in a single
group (bootstrap value 100) but its separation was highly supported (bootstrap value 96)
(Figure 3).
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and Drosophila melanogaster were considered as outgroups. Except for C. finmarchicus, all sequences
were obtained from the Kyoto Encyclopedia of Genes and Genomes (KEGG). For the analysis, amino
acid sequences were aligned using ClustalW and then, a maximum-likelihood phylogenetic tree was
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2.3.2). Bootstrap values are indicated for only the major clades. Scale bars 2.0 represent estimated
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3.3. Relative Expression of Enzymes across Development

Expression of C. finmarchicus transcripts encoding enzymes involved in folate and
methionine cycles was enzyme-specific and changed significantly across the different
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developmental stages, except in the 5FCL transcript (ANOVA, p > 0.05) (Figure 4). Most
of the transcripts in the folate cycle showed relative expression ≤ 50 RPKM at all stages;
exceptions were transcripts encoding for 10-FTHFDH (260 RPKM in early nauplius [EN]),
MTR (140 RPKM in copepodite 1 [C1]), SHMT1 and SHMT2 (from 95 to180 RPKM in
embryo [E], early nauplius, copepodite 1, adult female [AF]), and TYMS (125 RPKM in
adult female) (Figure 4). The less expressed transcripts (<15 RPKM) in all stages were
those encoding for MTHFD2, DHFR, MTHFR, and 5FCL (Figure 4). The enzymes showed
markedly different inter-stage expression patterns; MTHFD2 and DHFR had significantly
higher expression in the embryos compared with all other stages. In contrast, in MTHFR
and 5FCL, the expression in the embryos was lower compared with the other stages
(ANOVA, p < 0.05) (Figure 4J–M). Relative expression of the transcripts encoding for
10-FTHFD, SHMT2, and FTCD was significantly higher in the naupliar stage compared
with the other developmental stages (ANOVA, p < 0.01) (Figure 4A,D,G). In contrast, a
significantly higher peak of expression was found in the copepodite 1 stage for transcripts
encoding for MTR and AMT (ANOVA, p < 0.0001) (Figure 4B,H); copepodite stages 1, 4
[C4], and 5 [C5] together with early nauplius also showed significantly higher expression
of the transcripts encoding for MTHFR and MTHFD1 (ANOVA, p < 0.05) (Figure 4I,L).
Lastly, the relative expression of transcripts encoding for SHMT1, TYMS and MTF was
significantly higher in adult females compared with the other stages (ANOVA, p < 0.0001)
(Figure 4). Interestingly, the embryo stage showed relative expression of many transcripts
comparatively more similar to the female than to the naupliar stage (e.g., 10-FTHFD, SHMT1
and 2, FTCD, MTHFD2, DHFR, and MTHFR). Meanwhile, early nauplius and copepodite
stages (C1, C4 and C5) showed, at times, similar intra-transcript relative expressions (e.g.,
TYMS, MTF, MTHFD1 and 2, DHFR, and MTHFR) (Figure 4).

Transcripts encoding enzymes involved in the methionine cycle had comparatively higher
relative expression with respect to those of the folate cycle, with MATa (GAXK01168224) being by
far the most expressed transcript (200–800 RPKM), followed by BHMTa (GAXK01169231), and
BHMTb (GAXK01101229) (260–570 RPKM). The remaining isoforms of both transcripts had very
low expression levels at all stages (≤4 RPKM) (Figure 5). The other methyltransferase-encoding
transcripts, GNMT and DNMT, showed relative expression ≤ 50 RPKM at all stages; lastly, the
transcript for AHCY had a very low expression level (<4 RPKM) (Figure 5). Significant changes
in expression across development were found for all enzymes of the cycle. The transcript
encoding for MATa showed increased expression from embryos to copepodite 1 and then a
steady decrease toward the female (ANOVA, p < 0.0001) (Figure 5A). A somewhat similar
trend was observed for transcripts encoding BHMTa and BHMTc, although this latter isoform
was poorly expressed; both transcripts showed very low expression in embryos, higher in
all copepodite stages and with a reduction in females (ANOVA, p < 0.0001) (Figure 5C,E).
Interestingly, an opposite pattern was observed for BHMTb, with maximum expression in the
female, very high in the embryo, and minimum in the naupliar–copepodite stages (ANOVA,
p < 0.0001) (Figure 5D). Lastly, significantly higher expression in early nauplius was observed
for GNMT (ANOVA, p < 0.01), and in females for DNMTa and b (ANOVA, p < 0.0001), with
respect to the other stages (Figure 5).
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Figure 4. Relative expression of Calanus finmarchicus transcripts encoding for enzymes involved in the
folate cycle (A–M) across development. Relative expression normalized by length (RPKM) across six
developmental stages: embryos (E), early nauplii (EN), copepodites 1, 4, and 5 (C1, C4 and C5), and
adult females (AF). Bars are mean standard deviation (n = 3 replicates, n = 2 C1 and C4). Letters on
top of the bars indicate statistical significance obtained using one-way ANOVA (p < 0.05) followed by
a post hoc Tukey’s test with multiple comparisons correction (Graph Pad Prism version 10.2). Enzyme
abbreviations refer to Figure 1.
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Figure 5. Relative expression of Calanus finmarchicus transcripts encoding for enzymes involved in
the methionine cycle across development (A–I). Relative expression normalized by length (RPKM)
across six developmental stages: embryos (E), early nauplii (EN), copepodites 1, 4, and 5 (C1, C4 and
C5), and adult females (AF). Bars are mean standard deviation (n = 3 replicates, n = 2 C1 and C4).
Letters on top of the bars indicate statistical significance obtained using one-way ANOVA (p < 0.05)
followed by a post hoc Tukey’s test with multiple comparisons correction (Graph Pad Prism version
10.2). Enzymes abbreviations refer to Figure 1.

4. Discussion

Folate-mediated 1C metabolism has been well characterized in mammals, including
humans, where functional deficiency related to dietary conditions, drugs, or germline
genetic mutations has been reported to induce pathological conditions such as neural
tube defects (NTDs), hyperhomocysteinemia, cardiovascular diseases, and cancer [4,5].
Despite its fundamental role in the proper functioning and development of an organ-
ism, to date, little is known about how vitamin B9 is used by aquatic organisms. Earlier
studies reported that in several fish species [32–34] and in the crustaceans Peanaeus mon-
odon [35] and Eriocheir sinensis, the dietary addition of folic acid led to enhanced immunity
responses, antioxidant capacity, growth, and survival. In contrast, another study suggested
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that aquatic animals do not need folate supplementation to support high growth and a
healthy condition, due to a bacterial-associated synthesis of folate in the gut of several
fish and macrocrustacean species [36]. In a more recent study, Asai and coauthors [12]
suggested that folate-metabolism in the calanoid copepod Calanus helgolandicus could be
associated with reproduction and maternal-mediated embryonic development. These
conclusions were based on the differential regulation of genes involved in the folate and
methionine cycles reported in females in response to a natural toxin that impaired egg
production, embryogenesis, and hatching success. However, the study did not characterize
all the transcripts involved in the 1C metabolism and did not provide any data on other
developmental stages.

Planktonic copepods play an important role in regulating global biogeochemical
cycles [37] and serve as the key link between the lower and higher trophic levels, sup-
porting fishery production in the early stages of life [38]. In recent years, efforts have
been made to identify genes that could be potential indicators of the physiological state
of copepods [23,25]. The use of these biomarkers to assess the “health” of a marine or-
ganism is useful to understand environmental adaptations (e.g., responses to starvation
and stress) that can be used on a broader scale to assess changes and make predictions
at population and community levels. Despite their global importance, there is only one
published whole-genome assembly for a calanoid copepod Eurytemora carolleeae (formerly
E. affinis) [39] and five mitochondrial genomes within the genus Calanus (National Center
for Biotechnology). In recent years, the availability of several Calanus transcriptomes has
improved the characterization of many gene families, expanding the potential to better un-
derstand copepod physiology [15,17–21,23,25,26]. Here, following this ongoing effort, we
have focused on the identification of the transcripts encoding proteins involved in the folate
and methionine cycles in Calanus finmarchicus, the biomass-dominant zooplankton in much
of the North Atlantic. These genes could serve as potential physiological biomarkers within
the reproductive and developmental processes in copepods. To the best of our knowledge,
our study is the first in silico identification of all transcripts involved in folate-mediated
1C metabolism and the first report of the developmental expression of those genes in a
marine crustacean.

Using a well-vetted in silico workflow, we identified all expected Calanus transcripts
encoding homologs in both cycles. Within the methionine cycle, we confirmed for the
enzymes BHMT, MAT, and DNMT the same gene duplication found in E. affinis, confirming
the completeness and the high coverage of the C. finmarchicus transcriptome.

The roles of the enzymes involved in the folate and methionine cycles in C. finmarchi-
cus are currently unknown. Our investigation of relative expression of transcripts across
six developmental stages (embryo, early nauplius [NII–NIII], early copepodite [C1], mid
copepodite [C4], pre-adult [C5], and adult [CVI]) suggests that, regardless of the functions
of the enzymes, there is stage-specific regulation in this species. Significant expression
differences across development were found for eleven out of twelve transcripts encoding
enzymes involved in the folic cycle and for all transcripts in the methionine cycle. Within
its life cycle, C. finmarchicus undergoes multiple molts characterized by intense cellular and
tissue proliferation, signaling, and lipid synthesis [15,16,20,40–42]. Thus, since folate is an
essential requirement for growth and development, it is therefore not surprising that high
expression was reported for many of the transcripts in the early nauplius and the early
copepodite (C1) stages. In this study, we found that C. finmarchicus transcript encoding
for 10-FTHFDH, SHMT2, FTCD, and GNMT had significantly high expression in the early
nauplius (NII–NIII) compared with the other stages. In zebrafish embryos, knock-out of the
gene 10-FTHFDH, which is involved in the replenishment of the active form of folate THF,
induces a delay in development that is probably due to the obstruction of morphogenetic
movements [43]. In mouse embryos, knock-out of the gene SHMT2, which transfers a C1
unit to THF in the mitochondrial pathway, induced signs of mitochondrial respiration de-
fects and growth retardation [44]. Taken together, our results suggest that these genes may
play an important role in copepod development. As for the other larval stages, copepodite
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1 represents a key transition in the copepod body plan and the switch from a naupliar
morphotype to the final copepod-like shape. Higher expression of chemosensory-related
genes in copepodite stage 1 compared with the other stages was recently reported [23],
confirming the occurrence of elevated transcriptional activity in this developmental stage.
In our study, we found significantly high expression in the early copepodite stage for
transcripts encoding the enzymes MAT, MTR, and AMT involved, respectively, in the
folate and methionine cycles. To date, the specific functional role of these three enzymes
in copepods is unknown. MAT catalyzes the synthesis of S-adenosylmethionine (SAM),
the universal donor for epigenetic methylation of DNA and histones; for this reason, the
activity of MAT can influence the epigenetic regulation of gene expression, which is a
determinant factor during development.

The other stage showing comparatively higher expression in many transcripts was
the adult female. Specifically, almost all those encoding for the methyltransferase enzymes
(BHMT, SHMT, DNMT), along with the TYMS and MTF coding transcripts, were among the
most expressed. This could be related to the high investment in protein and nucleotide syn-
thesis, as well as transcriptional regulation of maternal genes, required by the reproductive
program of the female stage (germline development, oogenesis, egg maturation) [45]. In
addition to that, a few female-specific transcripts also showed similar relative expression in
the embryo (SHMT1, MTHFD2, DHFR, MTHFR, BHMTb), suggesting a maternal influence
on the embryonic expression of these genes. This finding confirms the early observation
by Asai et al. [12], who reported altered expression of several folate and methionine genes
in C. helgolandicus females exposed to the harmful diatom S. marinoi. Specifically, those
authors proposed that the dysregulation of MTHFR, DHFR, and BHMT gene expression
in females could be responsible for the observed malformation and low viability of the
developing embryo. In agreement with that, mouse embryos with increased expression of
MTHFR showed congenital malformations [46]; also, polymorphic variants of this gene are
associated with NTD in humans [8].

In conclusion, we provide the first in-depth description of the enzymatic pathways
centered on folate interconversion and the methionine metabolism in a marine arthropod.
We do not know whether the folate substrates that sustain the cycle are acquired through
the diet or via direct synthesis. In the literature, it is reported that few insects can synthesize
folates and many require it from the diet. In Drosophila melanogaster, folate can be synthe-
sized by bacterial symbiont(s) to support growth and development [47]. Similarly, in the
tsetse fly (Diptera: Glossinidae), the ancient and obligate mutualism with the gammapro-
teobacterium Wigglesworthia morsitans supports folate biosynthesis that contributes to the fly
host fitness [48]. Considering that marine copepods can be mass-cultivated in high-volume
systems [49], if they are able to synthesize folates de novo, they may represent a future
important sustainable folate resource both for aquaculture and human nutrition. Clearly, at
present, this is all speculation on the potential roles of the identified C. finmarchicus tran-
scripts. The genes presented here can be used as biomarkers for future studies evaluating
ecosystem health and organism–environment interactions and can be tested not only in
other copepods but also other zooplankters. In the future, ad hoc gene-knock-out studies
should be carried out to confirm the role played by female-, larval-, and embryo-specific
genes in the reproductive physiology and differentiation of C. finmarchicus and in copepods
in general.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/jmse12050786/s1, Table S1: Summary of the in silico workflow results for C.
finmarchicus transcripts encoding genes involved in the folate and methionine cycles. Using E. affinis query
transcripts were first searched in the C. finmarchicus transcriptome (tblastn), then translated into amino
acids and blasted against the nr database (NCBI) (blastp). The resulting sequences were examined for
the presence of structural domains. For each transcript, the Enzyme Commission number (EC), NCBI
accession number, tblast e-value (1st step), blasp e-value, top hit species, its accession number (second
step), and structural domains (Pfam accession numbers) (third step) are provided. For the Pfam domain,
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red indicates domains that were present only in E. affinis query sequences, and green the ones that were
present also in C. finmarchicus.
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