
Citation: Yu, D.; Wang, H.; Cao, X.;

Wang, Z.; Ren, J.; Zhang, K. Enhancing

Autonomous Underwater Vehicle

Decision Making through Intelligent

Task Planning and Behavior Tree

Optimization. J. Mar. Sci. Eng. 2024,

12, 791. https://doi.org/10.3390/

jmse12050791

Academic Editor: Rafael Morales

Received: 11 April 2024

Revised: 30 April 2024

Accepted: 5 May 2024

Published: 8 May 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

Enhancing Autonomous Underwater Vehicle Decision Making
through Intelligent Task Planning and Behavior
Tree Optimization
Dan Yu † , Hongjian Wang *,† , Xu Cao, Zhao Wang , Jingfei Ren and Kai Zhang

College of Intelligent System Science and Engineering, Harbin Engineering University, Harbin 150001, China;
cocomomo@hrbeu.edu.cn (D.Y.); caoxu1020@163.com (X.C.); 814551366@hrbeu.edu.cn (Z.W.);
renjingfei@hrbeu.edu.cn (J.R.); promotion5@foxmail.com (K.Z.)
* Correspondence: cctime99@163.com
† These authors contributed equally to this work.

Abstract: The expansion of underwater scenarios and missions highlights the crucial need for
autonomous underwater vehicles (AUVs) to make informed decisions. Therefore, developing an
efficient decision-making framework is vital to enhance productivity in executing complex tasks
within tight time constraints. This paper delves into task planning and reconstruction within the AUV
control decision system to enable intelligent completion of intricate underwater tasks. Behavior trees
(BTs) offer a structured approach to organizing the switching structure of a hybrid dynamical system
(HDS), originally introduced in the computer game programming community. In this research, an
intelligent search algorithm, MCTS-QPSO (Monte Carlo tree search and quantum particle swarm
optimization), is proposed to bolster the AUV’s capacity in planning complex task decision control
systems. This algorithm tackles the issue of the time-consuming manual design of control systems by
effectively integrating BTs. By assessing a predefined set of subtasks and actions in tandem with the
complex task scenario, a reward function is formulated for MCTS to pinpoint the optimal subtree set.
The QPSO algorithm is then leveraged for subtree integration, treating it as an optimal path search
problem from the root node to the leaf node. This process optimizes the search subtree, thereby
enhancing the robustness and security of the control architecture. To expedite search speed and
algorithm convergence, this paper recommends reducing the search space by pre-grouping conditions
and states within the behavior tree. The efficacy and superiority of the proposed algorithm are
validated through security and timeliness evaluations of the BT, along with comparisons with other
algorithms for automatic AUV decision control behavior tree design. Ultimately, the effectiveness and
superiority of the proposed algorithm are corroborated through simulations on a multi-AUV complex
task platform, showcasing its practical applicability and efficiency in real-world underwater scenarios.

Keywords: autonomous underwater vehicles (AUVs); decision-making framework; behavior trees
(BTs); MCTS; QPSO algorithm; task planning

1. Introduction

As unmanned systems are increasingly deployed in complex domains, particularly
in expanding underwater applications [1], autonomous underwater vehicles (AUVs) [2]
have emerged as vital assets in deep-sea environments [3]. AUVs serve as mobile sentinels,
extensively utilized for tasks such as observation, orientation, detection, monitoring, and
other applications [4]. With the growing complexity of tasks in multi-AUV systems, the
AUV control system demands higher levels of sophistication. Manual design of control
systems is often impractical due to its inherent time-intensive nature and the need for
specialized expertise, especially as robotic tasks become more intricate or applications
require larger multi-robot teams [5].

J. Mar. Sci. Eng. 2024, 12, 791. https://doi.org/10.3390/jmse12050791 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse12050791
https://doi.org/10.3390/jmse12050791
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-7698-3037
https://orcid.org/0000-0003-1187-0135
https://orcid.org/0000-0002-6539-1837
https://orcid.org/0009-0004-6482-9261
https://doi.org/10.3390/jmse12050791
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse12050791?type=check_update&version=2

J. Mar. Sci. Eng. 2024, 12, 791 2 of 20

As the number of autonomous underwater vehicles (AUVs) involved in a task in-
creases, the design of different control architectures for various role tasks becomes neces-
sary. Manual design for such scenarios proves challenging in terms of implementation and
reusability. Automatic design, which has seen rapid development in recent years, offers an
effective solution for addressing these complexities [6]. In the realm of automatic control
system design, the process is transformed into an objective optimization problem, with the
optimization objectives centered around the efficiency and safety of the control system [7].
Behavior trees (BTs) [8,9] were originally developed to address issues of unclear logic and
poor interpretability in finite state machines. While initially applied to behavior control in
computer games for non-human characters [10], BTs have found widespread use in robot
control system design as well [9]. BTs excel over finite state machines (FSMs) [11], decision
trees [12], and other algorithms in terms of readability, recursiveness, and modular design
of control systems. These advantages are inherent in the construction of the behavior tree
algorithm, where the design focuses on constructing different tasks, with state serving as
a secondary consideration. In essence, a behavior tree is a directed rooted tree compris-
ing leaf nodes that assess conditions and trigger actions, along with internal nodes that
define the logical structure. The control flow within a behavior tree follows task switching,
simplifying the manual design process, particularly when compared to FSM-based control
system designs reliant on state transitions.

While behavior trees have offered a convenient solution for manual AUV control
system design, their efficiency diminishes when task switching is frequent, the number
of AUVs increases, or AUV autonomy rises. Given this context, expediting the design of
AUV control systems without compromising functionality has become a pressing concern.
Leveraging the design algorithm of automatic control systems based on optimization
objectives, the behavior tree system has been identified as a key element in maximizing
AUV action, sensor capability, communication capability, and task performance.

In this paper, we introduce a novel learning-based behavior tree construction algorithm
tailored for complex multi-AUV tasks to generate behavior trees that optimize performance
attributes. The algorithm’s core principle is rooted in the fundamental characteristic of
behavior trees as directed acyclic graphs, upon which a graph search algorithm is developed.
This algorithm employs Monte Carlo tree search (MCTS) [13] to enhance tree performance
on directed acyclic graphs efficiently and swiftly. By utilizing this search method, the
algorithm can swiftly identify the most suitable subtree.

During the optimization process, the connectivity of directed acyclic graphs facilitates
rapid dissemination of learning information. However, this feature can lead to challenges in
generalization. Drawing inspiration from previous works [2,14], we incorporate quantum
particle swarm optimization (QPSO) during subtree fusion to refine the final behavior
tree. The algorithm alternates between MCTS and QPSO, accelerating convergence and
expediting the design process of AUV control systems. Additionally, actions and states
within the AUV behavior tree are pre-grouped for distinct tasks and states, reducing
unnecessary search costs in MCTS searches.

In the current landscape of AUV intelligent decision-making systems, the following
challenges stand out as areas requiring further attention and resolution:

• Time-Intensive Manual Design: Manual design of decision control systems proves
inadequate in handling the timeliness demands posed by intricate tasks or an increased
number of AUVs.

• Balancing Safety and Efficiency: Ensuring both the safety of AUV operations and the
efficiency of task completion within complex scenarios remains a critical challenge in
decision control for AUVs.

• Enhancing Decision Structures: The utilization of reactive decision control structures
is pivotal for addressing the transformation from goal-driven behaviors to achieve
more effective decision-making processes in AUV operations.

Building upon the aforementioned challenges, this paper introduces an automatic
generation algorithm for AUV decision-making systems in complex task scenarios to

J. Mar. Sci. Eng. 2024, 12, 791 3 of 20

address the limitations of manual control system design. Through a series of experiments,
the efficacy of the proposed algorithm is validated. The key contributions of this study are
as follows:

• Establishment of Behavior Tree Search Model: A behavior tree search model based
on directed acyclic graphs is developed, serving as a foundational framework for the
design of AUV control systems.

• Introduction of Optimization Algorithm: An optimization algorithm, leveraging
MCTS-QPSO, is presented for the automatic optimization of the optimal behavior tree
structure, enhancing the efficiency and effectiveness of decision-making processes.

• Enhanced Optimization Efficiency: The optimization algorithm’s efficiency is further
bolstered through the pre-grouping of actions and states, reducing unnecessary search
costs and streamlining the overall optimization process.

The paper’s organizational structure is outlined as follows. In Section 2, a compre-
hensive review of the multi-agent decision framework is presented. Section 3 introduces
the problems and hypotheses examined in this study. Section 4 delves into the intricate
details of the automatic design of AUV control structures based on behavior trees using
the QPSO-MCTS algorithm. Finally, Section 5 validates the algorithm through simulations,
assessing its effectiveness across various dimensions on the multi-AUV countermeasure
simulation platform. Furthermore, a comparative analysis of the strengths and weaknesses
of related algorithms is conducted to provide a comprehensive evaluation.

2. Literature Review

The control and decision challenges associated with AUV complex tasks necessitate
an analysis of tasks based on the intricate interconnections within the ocean’s limited
resources and complex environment [15], facilitating the acquisition of sequential task deci-
sions [16]. Numerous scholars have approached this issue through the lens of task planning.
Brito et al. [17] introduced a Markov chain for critical stage analysis, focusing on multi-
task switching and sequential decision-making processes. Wei et al. [18] explored AUV
complex task planning using heuristic algorithms, leading to enhanced task completion
efficiency. Additionally, Bhatt et al. [19] proposed an embedded aided decision framework
and illustrated its practical application in real-world tasks. These contributions underscore
the diverse perspectives and methodologies employed in tackling the challenges of AUV
decision making in complex task environments.

Multi-AUV decision making stands as a pivotal research domain within the realm of
unmanned systems. Whether operating cooperatively or in an adversarial capacity during
missions, these unmanned vehicles coexist within a shared mission environment [20]. The
decisions made by individual AUVs influence both the environment and the actions of
other agents, underscoring the necessity for AUVs to adaptively make sequential decisions
in response to environmental dynamics. In the context of decision making, scholars have
emphasized the importance of not only continuously detecting and analyzing the envi-
ronment but also incorporating predictions and estimations of other agents’ behaviors. To
address these multifaceted task requirements, various models such as partially observ-
able Markov decision processes (POMDPs) [21], interactive POMDPs [22], and interactive
dynamic influence diagrams [23] have been proposed. These predictive models enable
decision making based on anticipated environmental and agent behaviors. Alternatively, a
category of models grounded in agent behavior, including decision trees [24], finite state
machines (FSMs) [25], and behavior trees [26], offer a different approach. These models do
not necessitate extensive prior knowledge or detailed agent models but instead focus on
elucidating an agent’s behavior under specific conditions. Moreover, in many instances,
decision problems can be reframed as optimal solution challenges, providing additional
avenues for addressing complex decision-making scenarios.

Behavior trees have transcended their origins in the gaming industry and found appli-
cations in diverse fields beyond gaming [27,28]. Concurrently, significant advancements
have been made in the design of robot control systems and behavior generation and con-

J. Mar. Sci. Eng. 2024, 12, 791 4 of 20

trol [29], with their application in underwater vehicles gaining traction this year [30]. This
paper delves into the construction of an optimal behavior tree for multi-AUV complex
task control. Manual design of behavior trees becomes cumbersome as the number of
AUVs increases or their roles change due to the non-one-to-one nature of adversarial tasks.
Behavior trees operate reactively, checking states and switching tasks accordingly. As
the complexity of tasks and states grows, so does the size of the behavior tree, making
manual design increasingly challenging [31]. To address this challenge, behavior trees can
be constructed by amalgamating reactivity and target orientation with planning algorithms.
Mainstream behavior tree design and learning algorithms leverage optimization techniques
like evolutionary algorithms [32], ant colony optimization [33], genetic algorithms [34], etc.,
with variations in how they represent and construct tree structures.

To enhance AUV intelligence, behavior should encompass autonomous search and
introspection beyond simple low-level actions. Learning algorithms have emerged as
efficient tools for automatically constructing behavior trees [35–37]. Researchers have
explored various approaches, such as combining manual design with neural networks [38],
integrating reinforcement learning with behavior tree design [39], and optimizing manually
designed behavior trees using Q-learning principles [40]. While most learning-based
behavior tree construction methods focus on optimizing actions, the inherent logic of
behavior trees is sometimes overlooked. Behavior trees, as directed acyclic graphs, can
benefit from search algorithms [41,42] optimized to uphold the internal logic of the tree
structure. The Monte Carlo tree search (MCTS) algorithm [43,44] has been extensively
applied in decision-making scenarios like strategy selection. In prior research [45], MCTS
was employed to address the control decision challenges in multi-UUV pursuit tasks,
showcasing promising performance. Researchers have combined MCTS with simulated
annealing (SA) [46] to construct behavior trees for underwater search tasks [2] and proposed
fusion strategies using elastic potential fields and particle swarm optimization for AUV
target interception missions [47].

Building upon these foundations, this study introduces a behavior tree control struc-
ture for AUV countermeasures based on the MCTS algorithm in conjunction with particle
swarm optimization (QPSO). The efficacy of the proposed algorithm is validated through
practical applications in AUV adversarial tasks and performance evaluations of behavior
trees, demonstrating its superiority compared to several mainstream algorithms.

3. Problem Formulation

In an adversarial environment, multiple tasks for AUVs can be subdivided into smaller
subtasks, as illustrated in Figure 1, utilizing a behavior library in task decision making.
Task decomposition involves breaking down intricate tasks into more manageable subtasks.
In the realm of AUVs, task decomposition is crucial for enabling the vehicle to navigate
and function effectively in demanding environments. By breaking down complex tasks
into smaller subtasks, AUVs can optimize resource allocation, enhance decision-making
processes, and adjust to evolving conditions more efficiently.

From the research, we can see that conditions and actions in the behavior tree are
closely related. During the construction of the behavior tree, in order to ensure the safety of
AUV behavior and the effectiveness of the behavior tree, a number of condition judgment
nodes are needed, and relevant conditions and behaviors are pre-grouped before the design
of the control system.

J. Mar. Sci. Eng. 2024, 12, 791 5 of 20

Multi-AUV detection and

communication

Environmental information

acquisition

Multi-AUV task
Cooperative search Cooperative tracking

Target calibration Target interception

Task decision

Task planning

Task execution

Multi-AUV decision

D
ecisio

n
 &

 actio
n

E
n

v
iro

n
m

en
tal d

etectio
n

Figure 1. Multi-AUV complex task.

It can be seen from Figure 1 that the basic task of multi-AUV cooperation includes
cooperative search, cooperative tracking, cooperative calibration, and cooperative inter-
ception, and the multi-AUV decision is divided into task decision, which refers to the
decision made during the execution of the task about selecting an action plan or solving
a problem. Task decision making usually involves weighing and evaluating different
options to determine the best course of action to reach the goal of the task. Task decision
making can involve selecting appropriate strategies, adjusting execution plans, handling
unexpected situations, etc., to ensure that the task can be completed successfully. Task
planning is a set of steps and plans of basic actions made before the execution of a task,
which is used to determine how to reach a specific goal or complete a specific task. Thus,
the decision-making process of multiple AUVs is divided into task decision making, task
planning, and task execution, which is summarized in the order of upper to lower levels of
decision making.

From the above analysis of complex tasks, the cooperative search, tracking, calibration,
and tracking tasks of multiple AUVs can also be regarded as complex tasks. The difference
from the previous single task decision is that the internal logic of the task needs to be
analyzed in the complex task, and the decision also involves high-level decisions such
as task switching, priority analysis, and state prediction. The complete decision control
architecture for complex tasks is shown in Figure 2. As shown in Figure 2, unlike previous
simple tasks that only need to analyze the heading, speed, etc., to generate control com-
mands and send them to the actuator through the controller, complex tasks involve task
planning, so the decision control is divided into two levels: high-level control and low-level
control. High-level control is mainly responsible for situation estimation, task analysis, and
policy selection, while low-level control mainly includes policy-based behavior and action
output sent directly to the actuator through the controller.

J. Mar. Sci. Eng. 2024, 12, 791 6 of 20

High level

control unit

Condition

estimation

Task

analysis

Task

planning
Logical

sorting
Strategy

selection

Parameter

updating

Low level

control unit

AUV

Control
Action control

Behavior control
Condition

update

Executive

mechanism

Control

output

Motor

behavior

Environmental

feedback

A
U

V
 co

n
tro

l C
en

ter

S
im

p
le

 task

C
o

m
p
le

x
 task

 d
e
cisio

n
 C

o
n
tro

l

Figure 2. AUV complex task decision control architecture.

4. Behavior Tree Learning Algorithm

BTs represent a concept and methodology for constructing control algorithms aimed
at enhancing code reusability and readability, and the simplicity of control flow design [48].
Essentially, BTs are structured as directed acyclic graphs comprising encapsulated com-
ponents. The nodes within a behavior tree can be categorized into six functional types:
Fallback, Sequence, Parallel, Action, Condition, and Decorator, as illustrated in Table 1.
The “Running” status denotes ongoing processes within the node that are not yet finalized.
The “Success” and “Failure” states indicate the outcomes following the completion of
node execution.

Table 1. The node types of behavior tree.

Node Type Success Failure Running

Fallback One child succeeds All children fail One child running
Sequence All children succeed One child fails One child running
Parallel >M children succeed N−M children fail Else
Action Upon completion Not complete During completion

Condition True False Never

Similar to other tree structures, BTs consist of root nodes, leaf nodes, and intermediate
nodes. Typically, the leaf nodes in a behavior tree represent actions and conditions. The ac-
tion executed based on the conditions yields a result that is passed back to the intermediate
node, subsequently propagating up to the root node.

4.1. Traditional Behavior Tree and AUV Control

BTs are designed to consolidate various node types, including execution nodes, control
flow nodes, and decoration nodes, to enhance the readability of the control system. Before
delving into the algorithms discussed in this article, we will provide a brief explanation of
the functions of these nodes to establish a strong foundation for the subsequent algorithms.
An AUV adversarial control behavior subtree [49] containing fundamental nodes is pre-
sented to illustrate the nodes and logic inherent in the behavior tree algorithm, as depicted
in Figure 3. In Figure 3, the square denotes the control flow node, the oval represents the
condition node, and the rectangle signifies the action node. To clearly differentiate between
the various nodes, distinct color markers are utilized.

J. Mar. Sci. Eng. 2024, 12, 791 7 of 20

→

Is_the_detection

_dangerous

Obstacle

avoidance
Obstacles

Pursue

?

→

Accelerate

Target

→

?

→ →

Not_in_range In_range

Click

Figure 3. AUV adversarial control behavior subtree.

The Execution node comprises two fundamental types of nodes: conditions and ac-
tions. The basic functions of these nodes are self-evident, as illustrated in Figure 3, where
the rectangular and oval leaf node boxes symbolize conditions and actions, respectively.
These functions are integrated into the AUV countermeasure task. In the condition evalua-
tion process depicted in Figure 3, the AUV utilizes sensors to determine if it is within the
permitted targeting range, which corresponds to the condition node. Subsequently, upon a
true evaluation, the targeting strategy is executed, representing an action node.

Control flow nodes, which are non-leaf nodes, serve to establish connections between
nodes above and below. These nodes include Fallback, Sequence, and Parallel. Figure 3
showcases a subtree containing control flow nodes and execution nodes. We will se-
quentially introduce the roles of these nodes within the AUV adversarial behavior tree
control structure.

Sequence “→”: Sequence nodes iterate sequentially until a failure is returned or all of
their children succeed. Sequential nodes are commonly employed to guarantee the secure
execution of tasks and are utilized in AUV adversarial tasks to continuously probe and
update the state of the environment and the adversary. The Algorithm 1 description and
pseudocode are provided below:

Algorithm 1 Sequence node of BTs
1. for child ∈ children do
2. status = tick(child);
3. if status = Running OR status = Failure then
4. return status;
5. end
6. end
7. return Success

Fallback “?”: The Fallback node functions in the opposite manner to the Sequence node.
Its logic is akin to the “or” operation in mathematics. When any child node within the
Fallback node is executed and succeeds, the Fallback node will receive a success signal. In
Figure 3, when the execution reaches the Fallback node, the child node assesses whether
the targeting condition is met and executes one of the actions based on the condition,
returning “success” to the Fallback node. The Algorithm 2 description and pseudo-code
are provided below.

J. Mar. Sci. Eng. 2024, 12, 791 8 of 20

Algorithm 2 Fallback node of BTs
1. for child ∈ children do
2. status = tick(child);
3. if status = Running OR status = Success then
4. return status;
5. end
6. end
7. return Failure

Parallel “⇒”: Although the Parallel node does not feature in the AUV subtree, it is a
crucial category of control flow nodes in behavior trees. Parallel nodes execute all of their
children concurrently. By default, Parallel nodes return “running” to the parent node that
initiated them. They return a success if all children return a success, or a failure if any child
returns a failure. The Algorithm 3 description and pseudo-code are outlined below.

Algorithm 3 Parallel node of BTs
1. for child ∈ children do
2. status = tick(child);
3. end
4. if ∑i statuses(i) = Success ≥ M textbfthen
5. return success;
6. end
7. if ∑i statuses(i) = Failure > N −M textbfthen
8. end
9. return failure

Decorator nodes serve as a fusion of execution flow and control flow nodes. They
define customized strategies for determining when the child node is evaluated, what the
return value should be, or both.

4.2. Behavior Tree Formal Grammar

Before delving into the behavior tree construction algorithm outlined in this paper,
let us briefly analyze the process of constructing behavior trees. The fundamental process
of building the behavior tree for a multi-AUV adversarial control system is illustrated in
Figure 4. Initially, the AUV condition and action library are established, with conditions
and actions categorized based on the analysis of the adversarial task. Subsequently, the
automatic design of the behavior trees is initiated.

Group

Group

Group

Subtree

learning

Subtree

assembly

BTs

generation

1G

2G

nG

.

.

.

Condition

library

Action

library

Decision

Figure 4. The basic process of behavior tree of autonomous underwater vehicle adversarial control
system.

The grouping of action and state is an important part of the algorithm proposed in this
paper, which can greatly reduce the search cost of the behavior tree [3]. Before grouping,
the actions and conditions in the behavior tree are associated with the basic strategy and
state of the AUV. The basic strategy set for defining an AUV is A = {a1, a2, a3, a4, a5},
where the strategy in A corresponds one-to-one to the actions in the behavior tree. The

J. Mar. Sci. Eng. 2024, 12, 791 9 of 20

state obtained by the sensor during the execution of the task corresponds to the conditions
C = [c1, c2, · · · , cn] of the behavior tree. We then group the states and actions according
to the analysis based on the actual situation in the task: g = [ag, cg] where ag ⊆ A is the
strategy set, and cg ⊆ C is conditions.

Many different subtrees can be obtained through the search of actions and condi-
tions. Designing the corresponding search algorithm to obtain the optimal subtree set
B = {b1, b2, · · · , bm} is an important part of this section. The ultimate goal is to obtain
the most efficient behavior tree through search and optimization, and use B =

⋃
b∗,b∗ ⊆ B

which satisfies B = max
b∈B

f (b) as the control system for AUV complex tasks.

As shown in the Table 2, several sets of correspondence between condition and action
are given. In other complex tasks, the correspondence between condition and action can
also be preset according to the task requirements to reduce the optimization search space
and accelerate the convergence of the algorithm.

Table 2. Examples of pre-grouped conditions and actions.

Condition Action

Target is obstacles Mobile_evasion
Non-maximum velocity Accelerate
Heading is not satisfied Adjust heading

In pursue range Pursue

4.3. MCTS for Subtree Learning

We encode the behavior tree and devise a search algorithm based on Monte Carlo
tree search (MCTS). The MCTS algorithm serves two key roles in the process of behavior
tree generation: exploration and evaluation. In the context of the multi-AUV adversarial
control behavior tree, optimizing the learning of subtrees corresponds to task optimization.
For instance, the tasks of the AUV in this study encompass target search, threat estimation,
maneuvering avoidance, and target pursuing, with the tree structure designed to include
four subtrees. By quantifying the benefits of these four tasks in real-world scenarios, we
can formulate a reward function that incentivizes MCTS to optimize the search process.

The MCTS algorithm consists of four key steps: selection, expansion, simulation, and
backup, as depicted in Figure 5. In the context of the intricate AUV task, the MCTS search
process involves selecting one of the four subtrees based on the current optimal return. The
use of an isosceles trapezoid to represent subtrees in behavior trees (BTs) is common practice,
as shown in Figure 5. This study incorporates four types of subtrees: the target search
subtree (TS), threat estimation subtree (TE), maneuver evasion subtree (ME), and pursuing
target subtree (PT). The relationship between these four processes and the generation of
behavior trees is illustrated in Figure 5. Upon selecting the optimal exploration node, MCTS
conducts the search and evaluation of the behavior tree on the subtree.

An important part of the MCTS algorithm is the evaluation of nodes, which is the
basis of optimization. First, as shown in Equation (1), select the maneuver strategy with the
greatest benefit according to the upper confidence bound for tree (UCT) algorithm, where
Vi is the average return of the selection subtree si in the current state, ni is the total number
of experimental fields of the selection subtree si, and C is the super parameter used for
adjustment, which can stimulate the search tree to search for more nodes with low selected
times, so as to avoid the algorithm falling into local optimization. This step, that selecting
is not only to select the current status but also to speculate and select the most potential
node through the victory rate, lays the groundwork for subsequent selection.

UCT = Vi + C

√
ln N

ni
(1)

J. Mar. Sci. Eng. 2024, 12, 791 10 of 20

For Equation (1), we can concretize the search and evaluation of the subtree by quanti-
fying the adversarial situation. We can determine the calculation method of the draw profit
value according to the antagonism rule, as shown in Equation (2).

Vi=
NR

∑
i=1

ṽRR
i LR

i −
NB

∑
j=1

ṽRB
j LB

j (2)

where NR and NB are the number of AUVs in the detection range of the red and blue
opponents at this moment, respectively, NR (NB) is the cooperation (antagonism) value of
the ith (jth) boat, and ṽRR

i (ṽRB
j) is the survival probability (which changes in the event of

an pursuing action). The other side calculates the same way.

Selection Expansion Simulation Backup

Repeating

Subtree

Root

…
TEs

MEs

PTs

TSs

Subtree

Root

…

Subtree

Subtree

Root

…

Subtree

…

Subtree

Root

…

Subtree

Subtree

Figure 5. MCTS algorithm and BTs subtree search.

The MCTS algorithm proposed in this paper optimizes subtrees through the follow-
ing steps:

Step 1: Initialize the number of AUVs on both sides and the four-seed tree structure.
Step 2: Construct an MCTS tree and initialize the root node of the input behavior tree.
Step 3: Commence iteration, reaching the maximum number of iterations, with the

iteration process following the steps of selection, expansion, simulation, and backtracking.
Step 4: Update the subtree and optimize all the AUVs involved in the task based on

the aforementioned steps.
By following the above algorithm, the optimal subtree can be obtained. The pseudo-

code of Algorithm 4 is as follows:

J. Mar. Sci. Eng. 2024, 12, 791 11 of 20

Algorithm 4 MCTS for subtree search frame
Input: AUVs number NR, NB,
subtree number ni,
iterations IterNum,
initialized three types of subtrees: TSs, TEs, MEs, PTs
reward value Vi calculation equation
1: for i ← 1 to NR or NB do
2: Create a new tree with root node and initialize root:
3: root. N←0, root. Q←0
4: for j ← 1 to IterNum do
5: Evaluate the draw profit value;
6: while(True)
7: if p ∈ N is leaf
8: break;
9: end if
10: find the best subtree of p and its index ind;
11: p←best subtree of p;
12: end while
13: if p is not leaf node
14: Expand the node p;
15: end if
16: Simulation: Simulate returns according to the reward
17: Back up
18: end for
19: end for
Return optimized subtree
end

4.4. Optimization Algorithm for Subtree Fusion

We describe the space and state of the behavior tree in a more normative way [8].
Define the behavior tree Ti = { fi, ri, ∆t} studied in this paper. fi is the equation of state of
the behavior tree, ri is the return state after the operation of the action, and ∆t is the clock
signal of the node traversal in the behavior tree, in short, the time step. In the running
state set ri: Rn → {S,F,R}, all states belong to Rn, and different return states correspond
to different fields in Rn. i in the formula represents the subtree index. Usually, a complex
control system will evolve several different subtrees in the face of different tasks, and finally
generate a complete tree. In the above state description, all subtrees can be deduced and
evolved in the state space by defining Ti = { fi, ri, ∆t}. The integration of a tree of control
nodes to execution nodes, as described in the behavior tree formal syntax mentioned above,
also depends on these control nodes.

Definition 1. (Sequence combination of subtrees): subtrees are fused using Sequence control nodes,
and the state space of BT is described as:

Tr = Sequence(Tm, Tn) (3)

The same as the running rule of the execution node, if the subtree runs in order and the return
success is returned to the Sequence node, the return failure is returned otherwise.

This combination is often applied to the combination of sequential tasks in AUV
adversarial tasks. For example, if a BT needs to manually design a search–calibration–strike
tree with the ultimate goal of strike, the Sequence node can be used to integrate the subtree
when searching, and the target subtree and strike subtree are fused.

J. Mar. Sci. Eng. 2024, 12, 791 12 of 20

Definition 2. (Fallback combination of subtrees): subtrees are fused using Fallback control nodes,
and the state space of BT is described as:

Tr = Fallback(Tm, Tn) (4)

The process of integrating subtrees with Fallback nodes is also the same as that of connecting exe-
cution nodes. When a “success” status is returned in the subtree, the Fallback node receives “success”.

There are many inherent properties in the structural design of a behavior tree, such
as security, timeliness, and so on. After determining the functional structure of the tree,
security, timeliness, and so on also need to be considered. In order to improve the security
of AUV control, we propose a heuristic optimization algorithm to improve the robustness
of BTs’ structure with a fixed functional structure. Let us start by describing the timeliness
and security of trees. These properties are also used to evaluate the performance of the
behavior tree.

Definition 3. (Timeliness of BTs): For any starting x(0) ∈ R
′ ⊂ R of the tree, there is τ time

limit and time point τ
′
(x(0)), satisfied τ

′
(x(0)) ≤ τ, and for any t ∈ [0, τ

′
), satisfied x(t) ∈ R

′
,

then the BTs are said to be a finite time success in the neighborhood R
′
, and the time limit is used to

describe the timeliness of BTs.

Definition 4. (Security of BTs:) If for any initial state x(0) ∈ I, and time t, the non-secure domain
O ⊂ Rn is initialized, the initial domain I ⊂ R is initialized, if x(t) /∈ O is true, then BTs are safe.

On the premise of defining timeliness and security, the subtree fusion is analyzed and
calculated. The optimization objective function is given, and the optimization objective
function of the automatic generation behavior tree is designed from three perspectives,
which are task benefit Mr, behavior tree time benefit Tr, and behavior tree security benefit
Sr. The optimization objective function can be obtained as follows:

f (trsub) = Mr + Tr + Sr (5)

where Mr is related to the task type and Tr is related to the search time from the current
node to the leaf node according to Definition 3. The specific form is as follows:

Tr = ta + tc + tj (6)

where ta, tc, tj are the final action execution time, the running time of the control node in
the behavior tree, and the state judgment time, respectively. tj is the security benefit of the
behavior tree, which can be obtained according to Definition 4. Security is the maximum
requirement for the behavior tree, so tj can be obtained in the form:

Sr =

{
1 if Tree is safe
−∞ otherwise

(7)

Although the generation process of the subtree has been optimized by the MCTS
algorithm, the optimized subtree combination may not meet the performance maximization.
For this process, the QPSO [50] algorithm is proposed to fuse into the tree integration,
generate particles from the root node, take the subtree in the connection process as the
optimization path, and, finally, obtain the optimal behavior tree. Particles with quantum
behavior can appear at any position in the whole feasible solution space, and the position
of occurrence is determined by the particle updating probability; this position may have
a better fitness value than the population optimal particle in the current population, so
the algorithm can achieve the best solution in the feasible solution space. The algorithm
principle is as follows:

J. Mar. Sci. Eng. 2024, 12, 791 13 of 20

mbestk =
1

NP

NP

∑
t=1

pbestk
t (8)

Pk
t = r · pbestk

t + (1− r)gbestk (9)

Xk+1
t = Pt ± α|mbestk − Xk

t | ln(
1
u
) (10)

where Xk
t is the position of the particle at the kth iteration, mbestk is the middle position of

the particle swarm at the kth iteration, and r and u are random numbers between [0, 1]. The
optimal value of the tth particle is pbestt, and the optimal solution of the whole population
is gbest. The basic steps of the algorithm are as follows:

(1) Initialize the position information of particles and determine the particle population
size Np and particle dimension ∑ mi.

(2) Calculate the mbest value of the middle position of the particle swarm.
(3) Calculate the fitness of each particle, and select the particle with the optimal fitness

value as the optimal particle pbesti.
(4) The fitness values of all are compared, and the particle with the best fitness value is

selected as the global optimal particle gbest.
(5) For each dimension with particles, a random point is obtained between gbest and

pbesti.
(6) Obtain a new position of particle.
(7) Check whether the tth particle meets the limit condition Xk+1

t > 0, otherwise, solve
the control step and make it so that

Xk+1
t = Pt ± βt · α|mbestk − Xk

t | ln(
1
u
) (11)

and make Xk+1
t return to the feasible mixed strategy space.

(8) Repeat steps 2–7 until the algorithm reaches the accuracy standard or the maximum
number of iterations, and output the global optimal particle position and its fitness.

In summary, the subtree search learning and behavior tree integration optimization are
all completed. The design of the automatic generation algorithm of the AUV control system
behavior tree is completed through two ways of node value evaluation and behavior tree
performance calculation. Next, we will demonstrate the effectiveness of the algorithm
through simulation experiments and design control experiments to verify the superiority
of the algorithm.

5. Simulation Experiment

To validate the efficacy of the proposed algorithm for designing the control system in
AUV complex tasks, we conducted design validity verification experiments and superiority
comparative analysis experiments against existing algorithms. The simulation platform was
developed using an AUV emulation platform, operating on Ubuntu 18.04.5, ROS 1.14.11,
and Gazebo 9.19.0. Figure 6 illustrates the control flow of the multi-AUV complex task
control process verification platform in this study. The control instructions generated
based on the task-designed behavior tree are analyzed by the controller and subsequently
transmitted to the simulated AUV. Specifically, the logical structure of the behavior tree is
stored by the behavior tree structure design software Groot in ROS, and the basic functions
are completed by the function definition of the Condition node and Action node in the
behavior tree. The control instructions are sent to the AUV controller through the internal
communication of the computer. The AUV controller this study used is the incremental PID
controller, with speed controller PID parameters for Kp1 = 15, Ki1 = 1.5, and Kd1 = 1.2, and
heading controller PID parameters as follows: Kp2 =20, Ki2 = 0.2, Kd2 = 0.8, ultimately
acting through the internal communication between the controller and Gazebo, which
complete the connection.

J. Mar. Sci. Eng. 2024, 12, 791 14 of 20

 Behavior tree issues control instructions

↓
Controller parsing command

↓
Emulates the AUV to execute control instructions

Is_the_detection

_dangerous

Obstacle

avoidance
Obstacles

Pursue

?

Accelerate

Target

?

Not_in_range In_range

Click

Figure 6. Multi-AUV complex task simulation platform.

5.1. Verification of Multi-AUV Cooperative Task Effect

There are many different decision control structures under different tasks in AUV
cluster cooperation. In this summary, according to the automatic generation algorithm
of the behavior tree designed above and the scenario of the AUV cooperative task, the
optimization algorithm of the automatic generation of the behavior tree is analyzed. Based
on the cooperative task decision in the above, the multi-AUV tasks can be divided into:
cooperative search, cooperative tracking, and cooperative hunting for different task require-
ments. Taking the cooperative search task as an example, the behavior tree is designed
to meet the decision control of the AUV based on the consideration of the cooperative
relationship between AUVs.

It can be seen from the structure of the behavior tree that the optimization algorithm
of the behavior tree further optimizes the repetition of state judgment and the redundancy
of behavior actions, and improves the simplicity of the behavior tree. Quantitative analysis
is described in detail in the next section. Finally, by randomly generating the initial context
of the multi-AUV search task, the strategy control effect of the multi-AUV collaborative
search behavior tree is tested. Compared with the word “Z” search algorithm, under the
same search time, the search repetition area between AUVs is reduced by 7.82% on average,
the search coverage reaches 95%, and the average increase is 12.79%. Taking the search
coverage experiment of 6 kinds of underwater vehicles as an example, the search results in
the same area are shown in Figure 7. The different colors in the figure indicate the range of
search areas for different AUVs.

(a)Z-shaped conventional AUV search area (b) AUV region search by BTs

Figure 7. Comparative experimental results of region search.

J. Mar. Sci. Eng. 2024, 12, 791 15 of 20

5.2. Algorithm Effectiveness Analysis

In order to verify the effectiveness of the MCTS-QPSO algorithm in behavior tree
design generation, we preset the AUV against the task, manually designed a behavior tree
to meet the task requirements, and compared the performance of the manually designed
BTs with that generated by the automatic designed behavior tree algorithm in this paper.

A manually designed behavior tree for the AUV complex task is shown in Figure 8. To
envision a scenario where a threat is detected in the mission area, you must first determine
the threat type and make a choice based on the threat type and your own posture. Based
on this manually designed behavior tree, we analyze its performance and safety. As
mentioned above, time efficiency is described in terms of finite time limits. We analyze
the time efficiency of manually designed and automatically generated BTs in terms of the
control subtree of the process from discovering the target to determining the target type
to executing the action. The search signal “click” in the behavior tree is defined as time tc,
the judgment behavior in the tree: “Judge the pursue range” and “check the capacity” and
“judge target type” are, respectively, T1, T2, and T3, which condition judgment represented
as ovals in the figure, respectively, and the actions in the tree are: “evasion” and “pursue”,
whose action time is t1, t2, respectively, which defined the above times as finite constants.
As shown in Figure 8, we analyze the time limits of the labeled nodes to analyze the time
efficiency of the behavior tree generated by the proposed algorithm and the manually
established behavior tree. In this node, the threat type is determined as the AUV of the
other party, and the control flow of the pursuing strategy is executed for analysis. As shown
in Figure 8, the time limit for manually designing the behavior tree according to the above
definition is:

τm = T1 + 2T2 + T3 + 10tc + t2 (12)

The time limit of the tree generated based on the MCTS-QPSO algorithm is:

τa = T1 + 2T2 + T3 + 11tc + t2 (13)

The difference tc between the two can be obtained by comparison, but tc ≪ Ti and
tc ≪ ti can be obtained by analysis. Therefore, the behavior tree generated by the proposed
algorithm in this paper is slightly inferior to the manually generated BTs in terms of time
efficiency. However, in the actual task, the time difference can be ignored, and it can
be considered that the performance of the automatically generated behavior tree in time
efficiency meets the requirements.

Mobile_

evasion

→ →

? ?

?

PursueReturn
Mobile_

evasion

Mobile_

evasion

capacity
Out_

range

Target

In_

range

Obstacles

No-

capacity

→ → → →

Marked

→ →

?

?

Mobile_

evasion

Mobile_

evasion

capacity

TargetObstacles

No-

capacity

→ →

Marked

Mobile_

evasion

?

Pursue
Out_

range

In_

range

→ →

Figure 8. The comparison between automatically generated behavior tree (left) and manually
designed behavior tree structure (right).

Next, analyze the security of the behavior tree. The definition of security can be
interpreted as that all actions can be executed by determining the security domain and the
obstacle domain before execution. As can be seen from the structure of the tree, controlling
the flow of information in the book ensures the security of the control.

J. Mar. Sci. Eng. 2024, 12, 791 16 of 20

5.3. Algorithm Superiority Analysis

The essence of the automatic generation algorithm of the behavior tree is a multi-
branch tree search. According to the analysis of the multi-branch tree, the time complexity
of the search algorithm with limited depth is O(b ∗ d), and the space complexity is O(d),
where b is the node branch tree and d is the depth of the tree. Several controlled experiments
were carefully designed to show the superiority of the algorithm. The salient feature of the
proposed algorithm is the pre-grouping of conditions and actions in the behavior tree. In
order to verify the impact of grouping behavior on the automatic design of behavior tree
algorithms, a comparison was made in the scenario without pre-grouping and benchmarked
against MCTS and QPSO.

As depicted in Figures 9 and 10, manual design impeccably aligns with established
task requirements without necessitating iterative alterations, serving as the yardstick for
evaluating optimal solutions (normalized income criteria). In Figures 9 and 10, the use of
distinct colors for ✰ aids in clear visualization. Analyzing AUVs based on the behavior
tree design for the overarching task goal reveals that only the algorithm proposed in
this study can achieve equivalent task benefits to manual design by optimizing search
iteratively. The “No-Group” control experiment yields a behavior tree structure with
comparable benefits, yet the absence of pre-grouping leads to an abundance of particles
in the solution space, escalating iteration count and hindering swift convergence. The
proposed algorithm exhibits nearly 30% faster convergence compared to similar algorithms.
The MCTS algorithm stands out for its rapid convergence by searching and amalgamating
optimal subtrees. Despite not yielding the optimal benefits, the AUV antagonism task
designed in this paper is adept at crafting control structures for simple tasks involving
multiple agents. Surprisingly, the QPSO algorithm, relying solely on random search,
also demonstrates commendable convergence speed, underscoring the pivotal role of
pre-grouping in behavior tree automatic design.

Upon task decomposition, the automatic design of AUV behavior trees for patrol and trap
roles exemplifies the algorithm’s performance when reducing tree depth. Figures 10 and 11
underscore that presetting roles streamlines behavior tree generation, with the MCTS algo-
rithm excelling in this aspect. It is evident that nearly all algorithms meet predetermined
requirements when roles are preset. Delving into the analysis of complex task reconstruc-
tion, where the control behavior tree for AUV strategy with a singular goal is designed
using four comparative algorithms, reveals intriguing insights. Upon completion of search
patrol, target tracking, and target targeting, task reconstruction becomes imperative. Given
the AUV’s solitary targeting capability, a heuristic dictates task termination post direct
capacity analysis. The performance of the four algorithms is depicted in Figure 12. In the
MCTS-QPSO, MCTS, and QPSO algorithms, actions and conditions are pre-grouped to
ensure that only essential condition analyses pertinent to actions are executed beforehand.
Consequently, only one condition analysis precedes the actions highlighted in the blue
circle. Notably, a capacity analysis conducted by the MCTS-QPSO algorithm before task
reconstruction minimizes the count of action and condition analyses from the root node to
the end node, underscoring commendable algorithm efficiency. Moreover, it is discernible
that QPSO and MCTS exhibit some shortcomings in automatic behavior tree design. In
the No-Group experiment set, the number of action nodes mirrors that of MCTS-QPSO,
with redundant condition analyses preceding actions. This further validates the necessity
of pre-grouping conditions and actions in behavior tree automatic design algorithms.

In light of the aforementioned analyses, the MCTS-QPSO behavior tree automatic search
and generation algorithm proposed in this study excels in constructing complex control
structures for AUV complex tasks. Not only does it approximate the income and structure of
manual design calculations, but it also outperforms in terms of convergence efficiency.

J. Mar. Sci. Eng. 2024, 12, 791 17 of 20

0 10 20 30 40 50 60 70 80 90 100

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
ew

ar
d
(n

o
m

al
iz

ed
)

Iterations

 No-Group

 ManualDesign

 MCTS

 QPSO

 MCTS-QPSO

Figure 9. Comparison of complete task behavior tree design algorithms.

0 5 10 15 20 25 30 35 40 45 50

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
ew

ar
d

(n
o

m
al

iz
ed

)

Iterations

 No-Group

 ManualDesign

 MCTS

 QPSO

 MCTS-QPSO

Figure 10. Comparison of patrol and tracking task behavior tree algorithms.

0 10 20 30 40 50 60 70

0.0

0.2

0.4

0.6

0.8

1.0

1.2

R
ew

ar
d

(n
o

m
al

iz
ed

)

Iterations

 No-Group

 ManualDesign

 MCTS

 QPSO

 MCTS-QPSO

Figure 11. Comparison of patrol task behavior tree algorithm.

J. Mar. Sci. Eng. 2024, 12, 791 18 of 20

0 1 2 3

0 1 2 3 1 2

0 1 2

0 1 2 3

0

1

2

3

Root node

Patrol search

Target track

Target aiming

Capacity analysis

End node

3

3

MCTS-

QPSO

No-

Group

QPSO

MCTS

Other Condition analysis

1

Figure 12. Simplified graph of behavior tree nodes.

6. Conclusions and Future Work

In this study, we have demonstrated the capability of the MCTS-QPSO algorithm to
automatically design and generate the necessary behavior tree framework for complex
multi-AUV tasks. The experiments conducted validate the three main contributions pro-
posed in this paper, providing robust support for the automatic generation of behavior trees.

By pre-grouping conditions and actions based on prior knowledge, the algorithm
effectively reduces the optimal solution space and enhances the convergence speed of
behavior tree generation optimization. The algorithm’s superiority is further substantiated
through simulation experiments. Leveraging the inherent tree structure of behavior trees,
we can readily explore the optimal structure of subtrees using MCTS to derive the most
effective subtree configurations. By optimizing the nodes of the behavior tree through the
design of task-specific reward functions, the algorithm can identify the optimal combination
of subtrees, akin to solving an optimal subtree combination path from the root of the
behavior tree. Through iterative optimization using the QPSO algorithm, a structurally
optimal behavior tree aligning with the fundamental properties of behavior trees can
be obtained.

In conclusion, the proposed algorithm facilitates the automatic generation of an AUV
control system for AUV countermeasure tasks, streamlining the workload of experimental
personnel involved in AUV strategy control design. Moving forward, our future research will
focus on optimizing the online utilization of behavior trees and refining behavior tree struc-
tures in real-world scenarios through practical experimentation to enhance their applicability.

Author Contributions: D.Y., H.W. and X.C. designed the study, performed the research, analyzed
data, and wrote the paper. Z.W., J.R. and K.Z. contributed to refining the ideas, carrying out additional
analyses, and finalizing this paper. All authors have read and agreed to the published version of
the manuscript.

Funding: This research work is supported by the National Science and Technology Innovation
Special Zone Project (21-163-05-ZT-002-005-03), the National Key Laboratory of Underwater Robot
Technology Fund (No. JCKYS2022SXJQR-09), and a special program to guide high-level scientific
research (No. 3072022QBZ0403).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Wei, W.; Wang, J.; Fang, Z.; Chen, J.; Ren, Y.; Dong, Y. 3U: Joint design of uav-usv-uuv networks for cooperative target hunting.

IEEE Trans. Veh. Technol. 2023, 72, 4085–4090. [CrossRef]
2. Lin, C.; Cheng, Y.; Wang, X.; Yuan, J.; Wang, G. Transformer-based dual-channel self-attention for uuv autonomous collision

avoidance. IEEE Trans. Intell. Veh. 2023, 8, 2319–2331. [CrossRef]
3. Scheide, E.; Best, G.; Hollinger, G.A. Behavior tree learning for robotic task planning through monte carlo dag search over a

formal grammar. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China,
30 May–5 June 2021; pp. 4837–4843. [CrossRef]

http://doi.org/10.1109/TVT.2022.3220856
http://dx.doi.org/10.1109/TIV.2023.3245615
http://dx.doi.org/10.1109/ICRA48506.2021.9561027

J. Mar. Sci. Eng. 2024, 12, 791 19 of 20

4. Yu, D.; Wang, H.; Li, B.; Wang, Z.; Ren, J.; Wang, X. Prometheebased multi-auv threat assessment method using combinational
weights. J. Mar. Sci. Eng. 2023, 11, 1422. [CrossRef]

5. Ligot, A.; Kuckling, J.; Bozhinoski, D.; Birattari, M. Automatic modular design of robot swarms using behavior trees as a control
architecture. PeerJ Comput. Sci. 2020, 6, e314. [CrossRef] [PubMed]

6. Birattari, M.; Ligot, A.; Bozhinoski, D.; Brambilla, M.; Francesca, G.; Garattoni, L.; Ramos, D.G.; Hasselmann, K.; Kegeleirs, M.;
Kuckling, J.; et al. Automatic off-line design of robot swarms: A anifesto. Front. Robot. AI 2019, 6, 59. [CrossRef] [PubMed]

7. Francesca, G.; Birattari, M. Automatic design of robot swarms: Achievements and challenges. Front. Robot. AI 2016, 3, 29.
[CrossRef]

8. Masek, M.; Lam, C.P.; Kelly, L.; Wong, M. Discovering optimal strategy in tactical combat scenarios through the evolution of
behaviour trees. Ann. Oper. Res. 2023, 320, 901–936. [CrossRef]

9. Sprague, C.I.; Özkahraman, Ö.; Munafo, A.; Marlow, R.; Phillips, A.; Ögren, P. Improving the modularity of auv control systems
using behaviour trees. In Proceedings of the 2018 IEEE/OES Autonomous Underwater Vehicle Workshop (AUV), Porto, Portugal,
6–9 November 2018; pp. 1–6. [CrossRef]

10. Colledanchise, M.; Gren, P. How behavior trees generalize the teleoreactive paradigm and and-or-trees. In Proceedings of the
2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Republic of Korea, 9–14 October
2016; pp. 424–429. [CrossRef]

11. Malviya, V.; Reddy, A.K.; Kala, R. Autonomous social robot navigation using a behavioral finite state social machine. Robotica
2020, 38, 2266–2289. [CrossRef]

12. Yan, Y.; Ma, W.; Li, Y.; Wong, S.; He, P.; Zhu, S.; Yin, X. The navigation of mobile robot in the indoor dynamic unknown
environment based on de- cision tree algorithm. Comput. Intell. Neurosci. 2022, 2022, 3492175. [CrossRef]

13. Browne, C.B.; Powley, E.; Whitehouse, D.; Lucas, S.M.; Cowling, P.I.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis, S.;
Colton, S. A survey of monte carlo tree search methods. IEEE Trans. Comput. Intell. Games 2012, 4, 1–43. [CrossRef]

14. Shen, G.; Lei, L.; Zhang, X.; Li, Z.; Cai, S.; Zhang, L. Multi-uav cooperative search based on reinforcement learning with a digital
twin driven training framework. IEEE Trans. Veh. Technol. 2023, 72, 8354–8368. [CrossRef]

15. Pandey, P.; Pompili, D.; Yi, J. Dynamic collaboration between networked robots and clouds in resource-constrained environments.
IEEE Trans. Autom. Sci. Eng. 2015, 12, 471–480. [CrossRef]

16. Perera, L.P.; Carvalho, J.P.; Guedes Soares, C. Intelligent ocean navigation and fuzzy-bayesian decision/action formulation. IEEE
J. Ocean. Eng. 2012, 37, 204–219. [CrossRef]

17. Brito, M.P.; Griffiths, G. A markov chain state transition approach to establishing critical phases for auv reliability. IEEE J. Ocean.
Eng. 2011, 36, 139–149. [CrossRef]

18. Abbasi, A.; MahmoudZadeh, S.; Yazdani, A. A cooperative dynamic task assignment framework for cotsbot auvs. IEEE Trans.
Autom. Sci. Eng. 2022, 19, 1163–1179. [CrossRef]

19. Bhatt, E.C.; Howard, B.; Schmidt, H. An embedded tactical decision aid framework for environmentally adaptive autonomous
underwater vehi- cle communication and navigation. IEEE J. Ocean. Eng. 2022, 47, 848–863. [CrossRef]

20. Pan, Y.; Ma, B.; Tang, J.; Zeng, Y. Behavioral model summarisation for other agents under uncertainty. Inf. Sci. 2022, 582, 495–508.
[CrossRef]

21. Chang, Y.; Garcia, A.; Wang, Z.; Sun, L. Structural estimation of partially observable markov decision processes. IEEE Trans.
Autom. Control 2023, 68, 5135–5141. [CrossRef]

22. Doshi, P.; Zeng, Y.; Chen, Q. Graphical models for interactive pomdps: Representations and solutions. Auton. Agents Multi-Agent
Syst. 2009, 18, 376–416. [CrossRef]

23. Pan, Y.; Ma, B.; Zeng, Y.; Tang, J.; Zeng, B.; Ming, Z. An evolutionary framework for modelling unknown behaviours of other
agents. IEEE Trans. Emerg. Top. Comput. Intell. 2023, 7, 1276–1289. [CrossRef]

24. Ostonov, A.; Moshkov, M. On complexity of deterministic and nondeterministic decision trees for conventional decision tables
from closed classes. Entropy 2023, 25, 1411. [CrossRef] [PubMed]

25. Yan, Y.; Deng, H.; Yue, J.; Chen, Z. Model-erence adaptive control of finite state machines with respect to states: A matrix-based
approach. IEEE Trans. Circuits Syst. II Express Briefs 2023, 70, 2171–2175. [CrossRef]

26. Gugliermo, S.; Schaffernicht, E.; Koniaris, C.; Pecora, F. Learning behavior trees from planning experts using decision tree and
logic factorization. IEEE Robot. Autom. Lett. 2023, 8, 3534–3541. [CrossRef]

27. Nicolau, M.; Perez-Liebana, D.; Neill, M.O.; Brabazon, A. Evolutionary behavior tree approaches for navigating platform games.
IEEE Trans. Comput. Intell. AI Games 2017, 9, 227–238. [CrossRef]

28. Dortmans, E.; Punter, T. Behavior trees for smart robots practical guidelines for robot software development. J. Robot. 2022, 2022,
3314084. [CrossRef]

29. Abiyev, R.H.; Akkaya, N.; Aytac, E.; Ibrahim, D. Behaviour tree based control for efficient navigation of holonomic robots. Int. J.
Robot. Autom. 2014, 29, 44–57. [CrossRef]

30. Bhat, S.; Stenius, I. Controlling an underactuated auv as an inverted pendulum using nonlinear model predictive control and
behavior trees. In Proceedings of the 2023 IEEE International Conference on Robotics and Automation(ICRA), London, UK, 29
May–2 June 2023; pp. 12261–12267. [CrossRef]

31. Iovino, M.; Scukins, E.; Styrud, J.; Ögren, P.; Smith, C. A survey of behavior trees in robotics and ai. Robot. Auton. Syst. 2022, 154,
104096. [CrossRef]

http://dx.doi.org/10.3390/jmse11071422
http://dx.doi.org/10.7717/peerj-cs.314
http://www.ncbi.nlm.nih.gov/pubmed/33816965
http://dx.doi.org/10.3389/frobt.2019.00059
http://www.ncbi.nlm.nih.gov/pubmed/33501074
http://dx.doi.org/10.3389/frobt.2016.00029
http://dx.doi.org/10.1007/s10479-021-04225-7
http://dx.doi.org/10.1109/AUV.2018.8729810
http://dx.doi.org/10.1109/IROS.2016.7759089
http://dx.doi.org/0.1017/S0263574720000259
http://dx.doi.org/10.1155/2022/3492175
http://dx.doi.org/10.1109/TCIAIG.2012.2186810
http://dx.doi.org/10.1109/TVT.2023.3245120
http://dx.doi.org/10.1109/TASE.2015.2406115
http://dx.doi.org/10.1109/JOE.2012.2184949
http://dx.doi.org/10.1109/JOE.2010.2083070
http://dx.doi.org/10.1109/TASE.2020.3044155
http://dx.doi.org/10.1109/JOE.2022.3159234
http://dx.doi.org/10.1016/j.ins.2021.09.039
http://dx.doi.org/10.1109/TAC.2022.3217908
http://dx.doi.org/10.1007/s10458-008-9064-7
http://dx.doi.org/10.1109/TETCI.2022.3229308
http://dx.doi.org/10.3390/e25101411
http://www.ncbi.nlm.nih.gov/pubmed/37895532
http://dx.doi.org/10.1109/TCSII.2022.3227728
http://dx.doi.org/10.1109/LRA.2023.3268598
http://dx.doi.org/10.1109/TCIAIG.2016.2543661
http://dx.doi.org/10.1155/2022/3314084
http://dx.doi.org/10.2316/Journal.206.2014.1.206-3788
http://dx.doi.org/10.1109/ICRA48891.2023.10160926
http://dx.doi.org/10.1016/j.robot.2022.104096

J. Mar. Sci. Eng. 2024, 12, 791 20 of 20

32. Scheper, K.Y.W.; Tijmons, S.; de Visser, C.C.; de Croon, G.C.H.E. Behavior Trees for Evolutionary Robotics. Artif. Life 2016, 22,
23–48. [CrossRef] [PubMed]

33. Kuckling, J.; Ligot, A.; Bozhinoski, D.; Birattari, M. Behavior trees as a control architecture in the automatic modular design of
robot swarms. In Swarm Intelligence; Springer International Publishing: Cham, Swizerland, 2018; pp. 30–43.

34. Yao, J.; Wang, W.; Li, Z.; Lei, Y.; Li, Q. Tactics exploration framework based on genetic programming. Int. J. Comput. Intell. Syst.
2017, 10, 804–814. [CrossRef]

35. Colledanchise, M.; Parasuraman, R.; Ögren, P. Learning of behavior trees for autonomous agents. IEEE Trans. Games 2019, 11,
183–189. [CrossRef]

36. Venkata, S.S.O.; Parasuraman, R.; Pidaparti, R. Kt-bt: A framework for knowledge transfer through behavior trees in multirobot
systems. IEEE Trans. Robot. 2023, 39, 4114–4130. [CrossRef]

37. French, K.; Wu, S.; Pan, T.; Zhou, Z.; Jenkins, O.C. Learning behavior trees from demonstration. In Proceedings of the 2019
International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 7791–7797. [CrossRef]

38. Sprague, C.I.; Ögren, P. Adding Neural Network Controllers to Behavior Trees without Destroying Performance Guarantees. In
Proceedings of the 2022 IEEE 61st Conference on Decision and Control (CDC), Cancun, Mexico, 6–9 December 2022; pp. 3989–3996.
[CrossRef]

39. Hólzl, M.; Gabor, T. Reasoning and Learning for Awareness and Adaptation. In Software Engineering for Collective Autonomic
Systems; Springer International Publishing: Cham, Swizerlalnd, 2015; pp. 249–290. [CrossRef]

40. Dey, R.; Child, C. Ql-bt: Enhancing behaviour tree design and implementation with q-learning. In Proceedings of the 2013 IEEE
Conference on Computational Inteligence in Games (CIG), Niagara Falls, ON, Canada, 11–13 August 2013; pp. 1–8. [CrossRef]

41. Hoffman, M.; Song, E.; Brundage, M.; Kumara, S. Online Maintenance Prioritization Via Monte Carlo Tree Search and Case Based
Reasoning. J. Comput. Inf. Sci. Eng. 2022, 22, 041005. [CrossRef]

42. Chiu, T.-Y.; Ny, J.L.; David, J.-P. Temporal logic explanations for dynamic decision systems using anchors and monte carlo tree
search. Artif. Intell. 2023, 318, 103897. [CrossRef]

43. Seiler, K.M.; Palmer, A.W.; Hill, A.J. Flow-achieving online planning and dispatching for continuous transportation with
autonomous vehicles. IEEE Trans. Autom. Sci. Eng. 2022, 19, 457–472. [CrossRef]

44. Swiechowski, M.; Godlewski, K.; Sawicki, B.; Mandziuk, J. Monte carlo tree search: A review of recent modifications and
applications. Arti Ficial Intell. Rev. 2023, 56, 2497–2562. [CrossRef]

45. Yu, D.; Wang, H.; Huang, W.; Huang, S. Application of extended game in multi-uuv pursuit-escape task. In Proceedings of the
Ocean, Offshore and Arctic Engineering, Melbourne, VIC, Australia, 11–16 June 2023; Volume 5. [CrossRef]

46. Dorling, K.; Heinrichs, J.; Messier, G.G.; Magierowski, S. Vehicle routing problems for drone delivery. IEEE Trans. Syst. Man
Cybern. Syst. 2017, 47, 70–85. [CrossRef]

47. Sun, B.; Ma, H.; Zhu, D. A fusion designed improved elastic potential field method in auv underwater target interception. IEEE J.
Ocean. Eng. 2023, 48, 640–648. [CrossRef]

48. Ögren, P.; Sprague, C.I. Behavior trees in robot control systems. Annu. Rev. Control. Robot. Auton. Syst. 2022, 5, 81–107. [CrossRef]
49. Özkahraman, O.; Ögren, P. Combining control barrier functions and behavior trees for multi-agent underwater coverage missions.

In Proceedings of the 2020 59th IEEE Conference on Decision and Control, Jeju, Republic of Korea, 14–18 December 2020;
pp. 5275–5282. [CrossRef]

50. Fu, Y.; Ding, M.; Zhou, C. Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional
route planning for UAV. IEEE Trans. Syst. Man Cybern.-Part A Syst. Hum. 2011, 42, 511–526. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1162/ARTL_a_00192
http://www.ncbi.nlm.nih.gov/pubmed/26606468
http://dx.doi.org/10.2991/ijcis.2017.10.1.53
http://dx.doi.org/10.1109/TG.2018.2816806
http://dx.doi.org/10.1109/TRO.2023.3290449
http://dx.doi.org/10.1109/ICRA.2019.8794104
http://dx.doi.org/10.1109/CDC51059.2022.9992501
http://dx.doi.org/10.1007/978-3-319-16310-9_7
http://dx.doi.org/10.1109/CIG.2013.6633623
http://dx.doi.org/10.1115/1.4053408
http://dx.doi.org/10.1016/j.artint.2023.103897
http://dx.doi.org/10.1109/TASE.2020.3039908
http://dx.doi.org/10.1007/s10462-022-10228-y
http://dx.doi.org/10.1115/OMAE2023-109449
http://dx.doi.org/10.1109/TSMC.2016. 2582745
http://dx.doi.org/10.1109/JOE.2023.3258068
http://dx.doi.org/10.1146/annurev-control-042920-095314
http://dx.doi.org/10.1109/CDC42340.2020.9304151.13
http://dx.doi.org/10.1109/TSMCA.2011.2159586

	Introduction
	Literature Review
	Problem Formulation
	Behavior Tree Learning Algorithm
	Traditional Behavior Tree and AUV Control
	Behavior Tree Formal Grammar
	MCTS for Subtree Learning
	Optimization Algorithm for Subtree Fusion

	Simulation Experiment
	Verification of Multi-AUV Cooperative Task Effect
	Algorithm Effectiveness Analysis
	Algorithm Superiority Analysis

	Conclusions and Future Work
	References

