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Abstract: Accurately modeling the system dynamics of autonomous underwater vehicles (AUVs) is
imperative to facilitating the implementation of intelligent control. In this research, we introduce a
physics-informed neural network (PINN) method to model the dynamics of AUVs by integrating
dynamical equations with deep neural networks. This integration leverages the nonlinear expressive
power of deep neural networks, alongside the robust foundation of physical prior knowledge,
resulting in an AUV model proficient in long-term motion forecasting. The experimental results
indicate that this method is capable of effectively extracting AUV system dynamics from datasets,
exhibiting strong generalization capabilities and achieving robust long-term motion prediction.
Furthermore, a model predictive control method is proposed, using the learned PINN as the predictive
model to accurately track the closed-loop trajectory. This research offers novel perspectives on the
dynamics modeling of AUVs and has the potential to be applied in other relevant research endeavors.

Keywords: autonomous underwater vehicle; dynamics modeling; neural network; physics-informed
neural network

1. Introduction

Autonomous underwater vehicles (AUVs) are a category of oceanographic instruments
known for their versatility, advanced maneuverability, cost effectiveness, and straightfor-
ward deployment mechanisms. AUVs are increasingly utilized for a variety of tasks,
including sample collection, data acquisition, and the maintenance and repair of marine
infrastructures [1,2]. Such applications often require AUVs to make quick decisions and
carry out agile operations in uncertain and dynamically changing marine environments.
To facilitate high-accuracy tracking, observation, and execution of operational tasks, the de-
ployment of advanced control algorithms is imperative. These algorithms, in turn, depend
on the availability of robust dynamical models. In this context, the precise modeling of
AUV dynamics is paramount, especially for capturing the highly nonlinear effects caused
by hydrodynamic forces, moments, propeller interactions, and other phenomena. However,
quantifying and modeling these influences pose significant challenges due to their complex
and often unobservable nature. Thus, the development of precise dynamical models for
AUVs is essential to effective simulation analysis and the design of control strategies.

The classical modeling of AUV dynamics is primarily based on nominal methods
using fundamental physical principles. A critical aspect of accurately delineating an AUV’s
dynamic model is the determination of its hydrodynamic parameters [3]. Historically, the
initial estimations of AUV hydrodynamic parameters have employed analytical and semi-
empirical (ASE) methods. These methods utilize fluid dynamics theories, such as potential
flow theory and slender body theory, to comprehensively evaluate the underwater behavior
of AUVs comprehensively. By extrapolating the hydrodynamic coefficients from hull forms
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of analogous configurations and integrating these with supplementary methodologies,
designers can derive the essential hydrodynamic coefficients necessary for the development
of new AUV designs. Employed predominantly during the initial design phase and for
concept validation purposes, these ASE methods, while foundational, present challenges in
terms of achieving precise accuracy in their predictions [4–6].

To achieve precise hydrodynamic coefficients, researchers have utilized both com-
putational fluid dynamics (CFD) and experimental fluid dynamics (EFD) approaches.
Javanmard et al. [7] utilized CFD methodologies to determine the drag coefficient of an
AUV under the controlled conditions of a towing tank setting. The outcomes closely
aligned with the drag coefficient results derived from experiments conducted on a full-scale
AUV model. Julca Avila et al. [8] conducted forced oscillation experiments on a remotely
operated vehicle using a planar motion mechanism (PMM). They determined the vehi-
cle’s hydrodynamic parameters through system identification methodologies. Moreover,
Racine et al. [9] conducted simulations of various tests, such as the oblique-towing test, the
rotary-arm test, and the PMM test, on a flat-bodied AUV. By utilizing the overlapping grid
technique, they successfully computed the primary hydrodynamic coefficients, thereby
providing valuable insights into the dynamics modeling of AUVs.

While experimental techniques and numerical calculations have been instrumental
in determining the dynamical models of underwater vehicles by estimating their hydro-
dynamic coefficients, these methods typically require significant human and material
resources, as well as advanced computational software and hardware capabilities. The
resulting models are often limited to specific steady-state maneuvers [10]. To overcome
these limitations, recent studies have explored data-driven system dynamics modeling
approaches. These methodologies employ artificial neural networks (ANNs) to create a
nonlinear mapping function from inputs to outputs, effectively replicating the dynamic
model of the system.

For instance, Song et al. [11] introduced a neural network-based strategy for predicting
pitch angles. Their method relied on neural networks to discern the mapping relationship
between variations in AUV acceleration and changes in pitch angle, facilitating the predic-
tion of pitch angles in a single step. Nonetheless, this approach was limited to forecasting
the value of a single degree of freedom (DOF) for the AUV, which proves inadequate
for comprehensive long-term forecasting across all six DOFs. Erdogan et al. [12] utilized
shallow neural networks to develop black-box models for the decoupled motion of an AUV
in terms of depth and heading. They developed two sets of decoupled models: one set
processed control and sensor signals to predict the heading angle, while the other utilized
the same categories of inputs to forecast the depth–pitch angle. These models were then
applied to simulate PID control experiments for heading motion and depth–pitch motion.
However, this methodology did not achieve long-term forecasting objectives. The decou-
pled modeling approach failed to consider the interdependencies between the various
DOFs of the AUV, thereby overlooking significant coupling effects.

The primary advantage of employing ANN modeling techniques lies in creating
a mathematical model that relies solely on the system’s input and output data. This
approach obviates the need for the costly acquisition of hydrodynamic parameters and
allows for the consideration of small, higher-order quantities, which are typically neglected
in conventional modeling efforts [13]. Nonetheless, a significant challenge encountered
with ANN models is their difficulty in accurately capturing the intricate coupling actions
among the different DOFs of an AUV, thereby limiting the method’s application and
development. To date, a comprehensive long-term predictive neural network-based model
that encompasses all the DOFs of an AUV has not been realized.

Hence, the primary objective in this study is to leverage ANNs’ nonlinear fitting
capabilities to effectively capture the dynamic features of AUVs from their navigation data.
It is recognized that there is physical prior knowledge hidden in the data; for example,
the physical quantities in the navigation data of AUVs must follow their kinematic and
dynamic equations. However, such knowledge is not leveraged in traditional machine
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learning algorithms, leading to inefficiency in information utilization. Motivated by the
growing field of physics-informed machine learning [14–16], which extensively explores the
incorporation of physical principles into neural network modeling, especially for solving
problems related to partial differential equations in different domains, the potential of this
approach for addressing ordinary differential equations, such as the spatial motion equa-
tions of AUVs, remains largely unexplored. Drawing inspiration from these developments,
we propose a physics-informed neural network (PINN) aimed at capturing the dynamic
behavior of AUVs and establishing a comprehensive 6DOF dynamical model of an AUV
with the capacity for long-term forecasting.

By incorporating physics-informed loss terms during the training phase, we ensure
that the predictions of network align with established physical laws. The PINN combines
the strengths of data-driven machine learning methods with those of physical models. This
allows for the outcomes of dynamic models that inherently adhere to the spatial motion
equations that govern AUVs [17]. This PINN-based method for modeling AUVs eliminates
the complex process of establishing the computational hydrodynamic coefficients required
for the nominal model. Additionally, it allows for the flexible application of the trained
model in various application scenarios. For instance, the PINN methodology offers a viable
solution for establishing the predictive model of model-based control algorithms, such as
model predictive control. In this paper, a trajectory-tracking method combining model
predictive control and the PINN-based AUV dynamic model is proposed. By introducing
the PINN as the predictive model for the controller, we could preliminarily demonstrate
the potential of the PINN in AUV control applications. This innovation has played a
powerful role in exploring the complex dynamic characteristics of AUVs and promoting
the implementation of intelligent control algorithms.

The following sections of this paper are structured in the following manner: Section 2
introduces the coordinate system for AUVs, alongside kinematic and dynamic equations
relevant to marine environments, and details the proposed PINN-based approach for
AUV dynamics modeling. Section 3 describes simulation data generation methods for
PINN training and evaluates the model’s predictive accuracy. In addition, the method
based on the PINN and model predictive control is preliminarily explained in this section.
Section 4 showcases the outcomes of field tests that confirm the practical utility in authentic
operational settings of the PINN model. Section 5 serves as the conclusion of this paper
and delineates potential avenues for future research.

2. Methodology
2.1. Coordinate Systems and Equations of Space Motion

Initially, we present the nominal model of AUV dynamics, which will be employed
in conjunction with the suggested physics-informed loss function. Subsequently, we
formulate the dynamics modeling issue by utilizing the PINN. For the sake of convenience
in computation and adherence to the conventions of rigid-body mechanics, this study
adopts the terminology bulletin system recommended by the International Towing Tank
Conference (ITTC) and the Society of Naval Architects and Marine Engineers (SNAME). The
coordinate systems used consist of two types of right-hand Cartesian coordinate systems: a
fixed coordinate system E − ξηζ and a moving coordinate system G − xyz.

Generally, the motion of an AUV can be described by a set of 6DOF differential
equations. These equations are developed by using the two coordinate systems shown
in Figure 1. In the moving coordinate system, six velocity components [u, v, w, p, q, r]
are defined, representing longitudinal, lateral, and vertical velocities, as well as roll rate,
pitch rate, and yaw rate, respectively. Meanwhile, the fixed coordinate system defines the
corresponding attitudes and positions [ξ, η, ζ, φ, θ, ψ]. Symbol definitions are outlined in
Table 1.
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Table 1. Symbol definitions.

Vector x-Axis y-Axis z-Axis

Velocity u v w
Rotation rate p q r

Force X Y Z
Moment K M N

Euler angle φ θ ψ
Position ξ η ζ

To analyze the full DOF dynamic state of an AUV, we define three sets of vectors
according to the symbol definitions described in Table 1:

η1 = [ξ, η, ζ]T , η2 = [φ, θ, ψ]T

ν1 = [u, v, w]T , ν2 = [p, q, r]T

τ1 = [X, Y, Z]T , τ2 = [K, M, N]T

where η1 and η2 are vectors of position/Euler angles, respectively; ν1 and ν2 are vectors of
velocities; and τ1 and τ2 denote forces and moments acting on the AUV.

It should be noted that to avoid singularities in calculations and transformations, the
boundaries for the Euler angles are −π < φ < π,−π

2 < θ < π
2 , 0 ≤ ψ ≤ 2π.

The transformation relationship between physical quantities in the two coordinate
systems is described as follows:

.
η1 = T1(η2) · ν1 (1)

ν1 = T1
−1(η2) ·

.
η1 (2)

.
η2 = T2(η2) · ν2 (3)

ν2 = T2
−1(η2) ·

.
η2 (4)

The transformation matrix between the fixed coordinate system and the moving
coordinate system is T1(η2), where

T1(η2) =

cψcθ cψsθsφ − sψcφ cψsθcφ + sψsφ
sψcθ sψsθsφ − cψcφ sψsθcφ − cψsφ
−sθ cθsφ cθcφ

 (5)

Since T1(η2) is an orthogonal matrix, it follows that T1
−1(η2) = T1

T(η2).
The transformation matrices between angular velocity in the moving coordinate

system and Euler angular rates are T2(η2) and T2
−1(η2), where

T2(η2) =

1 sφtθ cφtθ
0 cφ −sφ

0 sφ
cθ

cφ
cθ

 (6)
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T2
−1(η2) =

1 0 −sφ
0 cφ sφcθ
0 −sφ cφcθ

 (7)

where s(·) = sin(·), c(·) = cos(·), and t(·) = tan(·).
The displacement motion equations of the AUV are as follows (where the center of

mass is located at the origin of the moving coordinate system) [3]:
m
( .
u − vr + wq

)
= X

m
( .
v − wp + ur

)
= Y

m
( .
w − uq + vp

)
= Z

(8)

The rotational equations are 
Ixx

.
p +

(
Izz − Iyy

)
qr = K

Iyy
.
q + (Ixx − Izz)rp = M

Izz
.
r +

(
Iyy − Ixx

)
pq = N

(9)

where m is the mass of the AUV, and
(

Ixx, Iyy, Izz
)

are the mass moments of inertia of the
AUV in the moving coordinate system.

2.2. AUV Modeling Method Based on PINN

The modeling method in this paper examines the motion process of the AUV from
a systematic perspective, considering it a nonlinear, time-varying dynamic system. The
system states are defined by the underwater vehicle’s attitude angles, cruising speed, and
angular velocity. The propeller’s rotation speed and rudder angle act as control variables,
while the vehicle’s six-degrees-of-freedom accelerations represent the state derivatives.
Consider an AUV dynamic system with a state denoted by S and an action input denoted
by A. To construct an equivalent AUV dynamic model, it is essential to identify a function
denoted by F, which incorporates parameter θ*, that establishes a mapping from the state
space to the space of the state derivatives:

.
S = F(S, A; θ∗) (10)

In this study, we utilize a physics-informed neural network to fit the function and
utilize the present motion states and action inputs to forecast the complete dynamic state
of the AUV. Formally, the state derivative at time step n is given by

.
Sn = FPINN(Sn, An; θ∗) (11)

where Sn and An are the current states and actions inputs of the AUV, while θ* represents
the network’s parameters. Therefore, constructing the AUV dynamic model involves
determining parameters θ* of network FPINN .

The suggested network, FPINN , demonstrated in Figure 2, consists of a fully connected
neural network (FCNN). The FCNN is composed of multiple fully connected layers. The
input layer Input = (ν1, ν2, a) includes the state variables and control variables of the AUV,
with a = [Tx, yite, yitr]T , where Tx represents the thrust, yite represents the horizontal
rudder, and yitr represents the directional rudder. Thus, the input of the network is a tensor
of shape 9 × Nbatch (where Nbatch represents the number of data contained in a batch). The
output layer Output =

( .
ν1,

.
ν2, τ1, τ2

)
contains the state change variables and the combined

external force/moment. Therefore, the output of the network is a 12 × Nbatch tensor. The
hidden layers use the hyperbolic tangent activation function as typically employed in
PINNs [14–16], while a linear activation function is utilized in the output layer.
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The PINN embeds Equations (8) and (9) into the loss function, thereby achieving a
training process constrained by the laws of physics. The loss function for enforcing physical
constraints by constructing residual terms is as follows:

LossPhy =
1

Nbatch

N

∑
i=1

6

∑
j=1

(
f j

(
ν1

i, ν2
i,

.
ν1

i,
.

ν2
i, τ1

i, τ2
i
)2

)
(12)

where
f1 = m

( .
u − vr + wq

)
− X (13)

f2 = m
( .
v − wq + ur

)
− Y (14)

f3 = m
( .
w − uq + vp

)
− Z (15)

f4 = Ixx
.
p +

(
Izz − Iyy

)
qr − K (16)

f5 = Iyy
.
q + (Ixx − Izz)rp − M (17)

f6 = Izz
.
r +

(
Iyy − Ixx

)
pq − N (18)

Nbatch represents the number of training data points in each batch.
The mean square loss function for the data-driven part is as follows:

LossData =
1

Nbatch

N

∑
i=1

(∣∣∣ .
ν1

Net
(

ν1
i, ν2

i, ai
)
− .

ν1
i
∣∣∣ 2

+
∣∣∣ .
ν2

Net
(

ν1
i, ν2

i, ai
)
− .

ν2
i
∣∣∣2) (19)

where
.

ν1
Net and

.
ν2

Net are the network’s predictions, and
.

ν1
i and

.
ν2

i are the label values.
The total loss function is the sum of the data-driven loss function and the physical constraint
loss function:

Loss = LossData + LossPhy (20)

Parameter θ∗ of the PINN is obtained by training by minimizing the loss function with
the gradient-based optimizer Adam [18]:

θ∗ = arg min
θ∗

Loss (21)

To avoid prolonged neural network training time due to differences in the magnitudes
of data, as well as inaccurate prediction results caused by gradient vanishing and exploding,



J. Mar. Sci. Eng. 2024, 12, 801 7 of 18

the input and output variables are normalized in the calculation process of the physical
constraint loss function as follows:

∼
I xx,yy,zz = Ixx,yy,zz/ 1

2 ρL5,
∼
m = m/ 1

2 ρL3

∼
ν1 = ν1/V,

∼.
ν1 =

.
ν1L/V2

∼
ν2 =

∼
ν2L/V,

∼.
ν2 =

.
ν2L2/V2

(22)

In the formula, ρ represents the fluid density; L denotes the length of the AUV, and V
signifies the characteristic velocity.

To endow the model with stable, long-term forecasting capabilities, an N-step cyclic
iterative training process is proposed, as illustrated in Figure 3. The AUV’s initial state is
input into the neural network, which then outputs the corresponding state derivatives and
loss function values. Then, the state prediction values for the next time step are obtained
by using the 4th-order Runge–Kutta method. These state prediction values, along with
the action quantities to be measured, are input into the network, iteratively outputting a
total of N times. The network’s gradient is calculated, and gradient descent is executed
after computing the weighted average of the cumulative loss function values, as outlined
in Algorithm 1.
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Algorithm 1: Multi-step iterative training

The training procedure of the model PINN-Net
Input: State values and action values
Result: A set of (sub)optimal network parameters
Step 1: randomly initialize θ∗

Step 2: while not done do
Step 3: Sample batch of dataset
Step 4: for all batchesi do
Step 5: Sample N consecutive points Dj from batchesi
Step 6: for all Dj do
Step 7: Calculate the Loss in sequential iterations using Dj in Equation (20)

Step 8: Calculate the total gradient using ∑N−1
0 Loss

(
Dj

)
Step 9: Update θ∗ with gradient descent
Step 10: end for
Step 11: end for
Step 12: end while

2.3. Design of Model Predictive Control Based on PINN

A proficiently trained PINN model can be effectively integrated into model-based
control algorithms as a predictive model. In this paper, a trajectory-tracking method
combining model predictive control (MPC) and the PINN-based AUV dynamic model
is proposed. The MPC algorithm is based on a predictive model to predict the future
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multi-step states in an open-loop manner and re-optimizes the control variables based on
errors in each control cycle. Therefore, the combination of a high-precision model with the
MPC algorithm is a natural and logical idea, which can also verify the utility of the PINN
model in practical scenarios.

The PINN-based dynamic model of an AUV is defined as

St+1 = RK
(

FPINN

(
St, At ; θ*

))
(23)

where St and At represent the state and action at discrete time step t; θ* represents the
weights of the network; and RK represents the 4th-order Runge–Kutta numerical integration
function, used to integrate the state derivatives obtained by the PINN at each time step.

In the MPC framework, the N-step optimal control problem is represented as

min
x0, . . . , xN

u0, . . . , uN−1

1
2

N
∑

i=0

∼
S

T

i Qs
∼
Si +

1
2

N−1
∑

i=0
AT

i QAAi +
1
2

N−1
∑

i=0
VT

i QvVi

s.t. Si+1 = RK(FPINN(Si, Ai ; θ)), f or i = 0, . . . , N − 1
S0 = Ŝ0, g(Si, Ai) ≤ 0

(24)

where QS, QA, and QV are positive diagonal weight matrices;
∼
Si = Sdes,i − Si represents

the errors between the true state and the desired state; and Ai and Vi represents the amount
of action and the amount of change in action. The initial state is the estimate of the current
state, and Ŝ0. g(Si, Ai) ≤ 0 represents the constraint of state and input, such as actuator
or safety restraints. Therefore, the objective function calculates the difference between the
predicted state and the reference state within the prediction time step, as well as the energy
consumed for control.

Due to the strong nonlinearity and weak interpretability of neural network models, it
is difficult to use traditional convex optimization algorithms to solve controllers. Therefore,
we adopted a sample-based objective function optimization algorithm, the model predictive
path integral algorithm (MPPI) [19,20]. The MPPI algorithm simulates a large number of
possible control paths within a predetermined time range by using a system model and
then finds the optimal solution by integrating these paths based on the objective function.
A significant advantage of this method is that it is not limited by the system model and
the type of objective function, making it particularly adaptable to nonlinear systems and
unconventional cost functions. Therefore, it is very suitable for MPC optimization problems
based on neural network models. The overall control framework flowchart is illustrated in
Figure 4.
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3. Numerical Experiment
3.1. Simulation Data Acquisition Methods
3.1.1. Simulation Platform

This paper’s numerical simulation experiments are based on a high-precision AUV
dynamics simulation platform for data acquisition and the testing of the PINN modeling
method. The platform’s AUV prototype features a conventional layout with a cylindrical
configuration, as shown in Figure 1. It is equipped with a propeller, a pair of vertical
rudders, and a pair of horizontal rudders at the tail. These components are responsible for
controlling speed, heading, pitch angle, and depth, respectively. The simulation platform,
based on the standard equations of motion for submarine simulation [21], with moderate
simplifications, comprehensively considers the 6DOF motion of the AUV in an underwater
environment. This includes forward, lateral, and vertical movements, as well as roll, pitch,
and yaw. The simulation model’s related hydrodynamic parameters and definitions are
shown in Table 2, consistently with References [3,21].

In the context of the comprehensive dynamics model of the AUV in the absence of
ocean currents, the equation that delineates the forces exerted on the center of mass is
outlined as follows [3]:

M
.
v + C(v)v + D(v)v + g(η) = τ, (∗) (25)

where M represents the mass matrix with added mass; C(v) indicates the centrifugal and
Coriolis matrix; D(v) describes the damping matrix; g(η) represents the restoring force
matrix; and τ represents the moments generated by rudders, as well as the forces and
torques provided by propellers. Propeller force and moment model are given as follows:

T = KTρD4n2 (26)

Q = KQρD5n2 (27)

where D represents the propeller diameter; ρ is the fluid density; KT and KQ are the thrust
coefficient and the torque coefficient, respectively.

Based on this framework and the hydrodynamic parameters in Table 2, the simula-
tion platform was constructed as depicted in Figure 5. In the simulation platform, the
inputs consist of the control variables and the initial state, while the outputs are the state
derivatives (in a MIMO structure). The fourth-order Runge–Kutta method is utilized to
numerically integrate the state derivatives, given by the Equation (25), and the parameters
from Table 2.
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Table 2. Some of the main hydrodynamic coefficients in the AUV simulation platform.

Surge X .
u = −0.000418 Xu = −0.00574 Xu|u| = −0.00188

Sway Y .
v = −0.004584 Yv = −0.01648 Yv|v| = −0.02683

Heave Z .
w = −0.004339 Zw = −0.016897 Zw|w| = −0.09094

Roll K .
p = −0.00584 Kp = −0.001914 Kp|p| = −0.01241

Pitch M .
q = −0.002042 Mq = −0.005209 Mq|q| = −0.00251

Yaw N .
r = −0.002061 Nr = −0.001832 Nr|r| = −0.00281

3.1.2. Simulation Dataset

The method of collecting training data employed a practical and safety-oriented
strategy. It used a PID controller with rough tuning to perform dynamic attitude angle
tracking. This method enables the real-time collection of PWM signal values for the
propulsion motor and steering servos, along with the corresponding angular acceleration,
linear acceleration, linear velocity, and angular velocity data, all while ensuring engineering
safety. To meet the practical needs of engineering, both the control signal transmission
frequency and the data storage frequency were set to 1 Hz. Our data refresh rate was
20 Hz, which is significantly higher than the control interval. This approach ensures
that the stored sensor data are aligned with the control signals, facilitating the online
validation of control algorithms. Moreover, this practice ensures the consistency and real-
time nature of data collection, providing high-quality and practically valuable data for
training neural networks. Consequently, it enables the trained models to better approximate
actual engineering requirements and predict the dynamic behavior of the vehicle.

The dataset comprised 20 different trajectories, each spanning a navigation duration
of 200 s. The trajectory categories consisted of composite sinusoidal trajectories comprising
various frequencies, along with linear and spiral trajectories. All the trajectories involved
combinations of various axes, speeds, and accelerations. We uniformly distributed the
scale of all data components to ensure that the PINN assigned equal weight to each data
component. Ultimately, a set of 10 navigation trajectories was chosen at random for training
purposes, while the remaining 10 trajectories were reserved for testing.

3.2. Convergence Experiments

In this section, we will initially illustrate the impact of both the network size and the
number of internal iteration steps on the convergence of training for the PINN. For this
purpose, we trained the PINN with a time step of 1 s for 2000 epochs. The impact of network
size during the training process was evaluated in this experiment. More particularly, we
utilized comparative trials to confirm the convergence of training when adjusting the
depth and width of the PINN. Figure 6 (on the left) demonstrates the outcomes obtained
by altering the width parameter while maintaining a fixed depth of d = 2 layers. We
observed that increasing the width from 10 to 64 reduced both training and test errors.
However, further increasing the width led to an increase in errors. In addition, Figure 6
(right) illustrates the outcomes obtained by varying the depth parameter while maintaining
the width at a constant value of w = 100. It is evident from the results that the optimal
configuration, leading to minimized training and test errors, was achieved when the depth
was configured to include eight hidden layers.

The impact of the number of iteration steps during the training process was also inves-
tigated, as presented in this section. More particularly, we utilized the previously validated
network size (to mitigate the influence of network size) to confirm the convergence of
training when adjusting the number of cyclic iterations in the neural network. Figure 7
illustrates the results when we varied the number of iterations (N) (with fixed dimensions
of d = 8 and w = 64). We observed that increasing the number of iteration steps from 1
to 7 reduced the training error. However, further increasing the number of iterations led
to an increase in training error. On the other hand, we observed that the test error was
minimized when the number of iteration steps was set to n = 7.
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3.3. Predictive Performance

We randomly selected trajectories from the test set and input the initial states and
rudder angle sequences of each trajectory into the PINN, obtaining long-term motion
forecast results for the AUV. We implemented the network architecture as an FCNN with
eight hidden layers, each of size 64. Each layer of the network was equipped with a tanh
activation function. We trained the PINN on a simulation dataset for 10,000 epochs by using
the Adam stochastic gradient descent algorithm, batches of 128 samples, and a constant
learning rate of 10−4. We used mean squared error (MSE) as the evaluation metric to guide
the optimization direction of the model. In this study, the PINN was implemented by using
the TensorFlow framework. The training process for the models used in the experiments
was conducted on a laptop equipped with an Nvidia 3080 graphics card and an Intel
i7 CPU.

We utilized the coefficient of determination between the actual values and the pre-
dicted values as the evaluation metric:

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (28)

where yi is the observed value, ŷi is the predicted value by the model, and yi is the mean of
the observed data.

Compared with focusing on reducing errors during the training process, using R2 in
the test phase provides a macro-assessment of the model’s performance. R2 measures the
degree of correlation between the model’s predictions and the actual values, reflecting the
proportion of variance in the predicted results to the total variance. In order to visually
demonstrate the predictive performance of the modeling method we proposed, we com-
pared the predictions of the PINN on a test set lasting 1000 s with the ground truth, as
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illustrated in Figure 8. The experimental data are depicted by the blue line, while the pre-
diction generated by the PINN is illustrated by the red dashed line. The PINN clearly has a
strong capability to reconstruct AUV dynamics. Moreover, the PINN also demonstrates
strong generalization ability in the test set, accurately predicting unknown trajectories.
Significantly, the number of training data available is limited, suggesting the potential to
construct a dynamic model of the AUV by utilizing a small dataset and attaining rapid
convergence. The statistical results of the model across all test sets are shown in Figure 9.
From a statistical perspective, the mean value of the 6DOF fitting coefficients is greater
than 0.8, indicating that the PINN model can be well generalized, effectively simulating the
AUV motion trajectories.
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3.4. Ablation Studies

The PINN incorporates various elements to enhance its predictive accuracy and
generalization capabilities. Ablation studies were conducted to evaluate the influence
of different network components. Specifically, the studies involved the removal of two
key components: (a) the significance of multi-step iterative training and (b) the impact
of physics-informed loss on training performance. For all models in the ablation studies,
we maintained the same model architecture to ensure a fair comparison. As detailed in
Table 3, while each component plays a crucial role, certain components exhibit greater
influence than others. Notably, the most substantial contribution stems from the imposition
of constraints on network training by the physics-informed loss function. In the absence of
this component, errors tend to accumulate significantly for FCNNs that do not integrate
physical constraints, leading to divergent prediction outcomes.

Table 3. Ablation studies.

Multi-Step Iterative Training PINN-Loss MSE R2

✔ ✔ 0.0007 0.9152
✔ ✘ 0.0067 −4.9098
✘ ✔ 0.0035 0.6153
✘ ✘ 0.0141 −78.4603

3.5. Closed-Loop Trajectory-Tracking Performance

We employed the MPC formulated in Section 2 and the well-trained PINN model to
conduct spatial dynamic trajectory-tracking tests on the simulation platform. The MPC
controller was developed with Python. The MPC’s prediction horizon was set to 10 time
steps, employing the MPPI algorithm with 1000 samples in each control step. To verify
the control performance, we designed experiments for tracking three-dimensional helical
trajectories and zigzag trajectories. The trajectory-tracking performance results in the
simulation environment are shown in Figure 10. The findings indicate that the developed
PINN dynamic model can be seamlessly integrated with the MPC algorithm as a predictive
model. This MPC-PINN method led to favorable trajectory-tracking outcomes in various
scenarios, including steady-state turning and dynamic maneuvering.
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4. Field Test
4.1. Experimental Setup

To further evaluate the effectiveness and universality of our method, we utilized a
micro-AUV to collect data in a towing tank for modeling and control tests. The actual
AUV platform, as depicted in Figure 11, weighed 22.5 kg and was 1.43 m long. The
actuators of the system included a main thruster, two vertical rudders, and two horizontal
rudders. The sensor equipment consisted of an inertial navigation unit and a depth
gauge. The navigation control board utilized Beaglebone Black, equipped with a Jetson
Xavier NX module that featured a high-performance GPU for deploying neural network-
related algorithms. Limited by sensor accuracy and environmental constraints, in authentic
navigational experiments shown in Figure 12, we only tested the modeling effect of the
PINN on angular velocity and its application in attitude control. Based on the characteristics
of the vehicle and the capabilities of the actuators, we present the relevant constraints for
the controller in Table 4, with the control frequency set to 1 Hz.

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 19 
 

 

The navigation control board utilized Beaglebone Black, equipped with a Jetson Xavier 

NX module that featured a high-performance GPU for deploying neural network-related 

algorithms. Limited by sensor accuracy and environmental constraints, in authentic nav-

igational experiments shown in Figure 12, we only tested the modeling effect of the PINN 

on angular velocity and its application in attitude control. Based on the characteristics of 

the vehicle and the capabilities of the actuators, we present the relevant constraints for the 

controller in Table 4, with the control frequency set to 1 Hz. 

 

Figure 11. (a) Experimental platform. (b) Operating mechanism. (c) Jetson Xavier NX module. 

 

Figure 12. AUV sailing test in the tank. 

  

Figure 11. (a) Experimental platform. (b) Operating mechanism. (c) Jetson Xavier NX module.



J. Mar. Sci. Eng. 2024, 12, 801 15 of 18

J. Mar. Sci. Eng. 2024, 12, x FOR PEER REVIEW 15 of 19 
 

 

The navigation control board utilized Beaglebone Black, equipped with a Jetson Xavier 

NX module that featured a high-performance GPU for deploying neural network-related 

algorithms. Limited by sensor accuracy and environmental constraints, in authentic nav-

igational experiments shown in Figure 12, we only tested the modeling effect of the PINN 

on angular velocity and its application in attitude control. Based on the characteristics of 

the vehicle and the capabilities of the actuators, we present the relevant constraints for the 

controller in Table 4, with the control frequency set to 1 Hz. 

 

Figure 11. (a) Experimental platform. (b) Operating mechanism. (c) Jetson Xavier NX module. 

 

Figure 12. AUV sailing test in the tank. 

  

Figure 12. AUV sailing test in the tank.

Table 4. Related constraint parameters of the controller.

Unit Minimum Maximum Maximum Rate of Change

Elevator deg −40 40 10

Rudder deg −40 40 10

Heading angle deg −40 −40 5

Pitch angle deg −40 10 5

Depth m 0 12 0.1

4.2. Predictive Performance

Similar to the simulation test, we pre-generated multiple sets of sinusoidal excitation
targets. This enables the AUV to autonomously execute path-tracking programs by using
a simple proportional controller to gather navigational data for the training dataset. To
assess the predictive capabilities of the PINN, we intentionally constructed distinct target
trajectories during the collection of the test dataset, deviating significantly from the patterns
observed in the training dataset. These alternative trajectories may take the form of a ladder
curve, a polyline, or a high-frequency sine curve, as shown in the red wireframe in Figure 12.
The dataset we ultimately used contained 10 sets of data, each with an average duration of
2 min.

It is worth noting that due to the limited internal space of the micro-AUV, it was not
possible to install a Doppler acoustic odometer, and thus we could not obtain linear velocity
data. For the PINN that requires complete state input, the unmeasurable variables u, v, and
w make it challenging to establish the mapping relationship between network inputs and
outputs. In order to test the predictive performance of the PINN under realistic conditions,
we removed the unattainable linear velocity terms from the network inputs and eliminated
linear acceleration from the output terms. In the simplified PINN used in the field test, the
inputs consisted of angular velocity and AUV actions, while the outputs included angular
acceleration and torque. Correspondingly, the physics-constrained loss function consisted
only of Equations (16)–(18). Based on the simplified PINN model, we tested its predictive
performance on AUV attitude, as shown in Figures 13 and 14.

Taking heading angles as an example, the angles were derived by integrating the long-
term forecasted angular velocity from the PINN through the utilization of Equation (3),
as illustrated in Figure 13. The PINN model, which was trained by using training data
derived from tracking sinusoidal trajectories, demonstrates effectiveness in extrapolating
to test trajectories that exhibit notable variations. This is evidenced by the strong alignment
observed between the model’s predicted outcomes and the corresponding actual values.
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As illustrated in Figure 14, the coefficient of determination for the PINN model in relation
to the angles is predominantly observed to be above 0.64, while for angular velocities, it is
primarily distributed above 0.78.
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4.3. Attitude Control Performance

To confirm the efficacy of the MPC-PINN approach in practical scenarios, preliminary
tests were carried out to evaluate its ability to track reference trajectories. Consistent
with the methodology outlined in Section 3.5, the initial phase involved employing the
PINN model as the controlled system, with the controller being fine-tuned offline based on
predetermined control objectives. Subsequently, the controller was implemented directly
on the vehicle for a trajectory-tracking task, with real-time optimization managed through
the onboard control system. Constrained by the capacity of the towing tank and the
capabilities of the sensors installed on the experimental vehicle, our study focused solely
on implementing trajectory-tracking control for the vehicle’s heading and pitch attitudes,
as illustrated in Figure 15. The test outcomes indicate that the MPC controller, optimized
through PINN tuning, exhibits effective control capabilities, achieving control errors below
1 degree once the AUV reaches stabilization.
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5. Conclusions

In this research, the PINN methodology was initially introduced for the purpose
of determining the dynamic model of AUVs. Instead of relying solely on data-driven
deep learning methods, we employed a physics-driven deep learning method to model
AUV dynamics. By embedding the spatial maneuvering motion equations of the AUV
into the loss function, we ensured that the network’s predictions are consistent with
physical priors. Comprehensive tests were conducted on both a simulation platform and
a physical AUV to validate our method. The results demonstrate that the AUV dynamic
model established based on the PINN possesses stable and accurate long-term forecasting
capabilities, along with good generalization ability. Furthermore, the PINN model can be
easily integrated into model-based control algorithms, providing broad prospects in the
intelligent control field. In the upcoming research, we are planning to integrate the ocean
current disruptions into the model, expanding the applicable scope of the PINN-based
AUV dynamics modeling method.
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