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Abstract: In the feature identification of maritime VHF radio communication signals, shipborne
VHF communication technology follows the same international technical standards formulated by
IMO, uses analog communication technology and uses the same communication channel in the same
area, and cannot effectively achieve signal feature identification by adding feature elements in the
process of signal modulation. How to effectively identify the ship using VHF radio has always been a
technical difficulty in the field of ship perception. In this paper, based on the convolutional neural
network, combined with the feasibility of CAM feature extraction and BiLSTM feature extraction in
non-cooperative signal recognition, a deep learning recognition model of shipborne VHF radio com-
munication signals is established, and the deep learning approach is employed to discern the features
of VHF signals, thereby accomplishing the identification and classification of transmitting VHF radio
stations. Several experiments are designed according to the characteristics of ship communication
scenes at sea. The experimental data show that the method proposed in this paper can provide a new
feasible path for ship target perception in terms of radio signal characteristics and identification.

Keywords: ship target perception; VHF communication; signal recognition; deep learning

1. Introduction

The development of intelligent ships promotes innovation in the field of ship sensing
technology, with maritime radio signal sensing emerging as a new research direction [1].
Ship navigation and maritime traffic management rely heavily on various radio signals,
among which ship-borne Very High Frequency (VHF) Radios are most commonly used
for navigation and traffic control purposes [2]. However, due to the utilization of analog
communication technology in maritime VHF communication and the requirement for ships
sailing in the same area to use a shared public channel for interactive communication,
effectively identifying ships using VHF radios has always been a technical challenge
within the realm of ship perception [3]. Ensuring accurate target identification during
VHF radio communications is not only crucial for enabling autonomous driving and
intelligent collision avoidance in intelligent ships but also essential for efficient water
traffic management. The realization of this technology can significantly advance practical
applications in intelligent ship development while simultaneously enhancing water traffic
safety [4,5].

The identification of VHF radio falls under the domain of Specific Emitter Identifica-
tion (SEI), which is an effective technique employed for identifying and locating sources
of radio emissions in wireless communication networks. The SEI primarily emphasizes
military scenarios, specifically the identification and classification of radar signal sources.
The identification of the signal source is accomplished through statistical analysis of fun-
damental measurable parameters of the radar signal, such as radio frequency, amplitude,
pulse width, or pulse repetition interval. Currently, hierarchical data clustering-based
classification utilizing specific attributes serves as the primary technical approach for radar
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signal source identification [6,7]. However, there is still room for improvement in classifying
identical types of radar emission sources [8].

The propagation objectives of wireless communication signals differ significantly
from those of radar signals. Traditional radio signal classification primarily relies on the
modulation characteristics of radio signals [9]. However, the likelihood-based (LB) and
feature-based (FB) methods [10] require a prior design of feature symbols in the signal
modulation process, which poses challenges for non-cooperative signals. The VHF voice
communication at sea employs analog communication technology. However, in accordance
with the international norms established by IMO, ships worldwide utilize shipboard VHF
radio systems that adhere to identical technical standards and are verified by classification
societies [11]. Unfortunately, these systems lack the capability to incorporate unique signal
features during the modulation process for radio signal identification [12], resulting in a
typical non-cooperative signal of the same type.

With the advancement of artificial intelligence-related technologies, deep learning
methods are employed to devise learning and training models for radio signal character-
istics in specific frequency bands [13], offering a novel technical pathway for perceiving
and recognizing radio signals. The crux of utilizing deep learning techniques to identify
radio signal features lies in establishing an effective mechanism for feature recognition [14].
Due to the operational mode of shipborne VHF radios, it is not feasible to construct a
feature recognition model through supervised learning with prior information [15]. In
practical maritime VHF voice communication, factors that can impact signal generation
primarily stem from the radio frequency (RF) hardware structure of shipborne VHF radio
stations on diverse vessels, the installation and operational environment within the equip-
ment’s location onboard ships, as well as the transmission environment from the feeder
line to the antenna termination point [16]. These factors contribute to distinct individual
characteristics even when VHF radio signals employ identical modulation modes.

The current radio signal feature recognition methods can be roughly divided into three
categories. The first one is based on basic machine learning methods, which usually use
classical machine learning algorithms such as support vector machine and decision tree to
extract signal features and classify them. Niranjan, R. et al. developed a decision tree algo-
rithm based on time-domain digital technology for real-time recognition and classification
of various radar intrapulse modulation signals [17]. To solve the problem of misjudgment
and confusion in the feature recognition of classified signals, a three-layer optimization
algorithm is proposed by Wang S, Wang Z et al. [18]. S. Guo, S. Akhtar, and others proposed
three kinds of RF fingerprints for radar model recognition using support vector machine,
decision tree, random forest, gradient lifting, and the MDA algorithm [16]. The utilization
of basic machine learning techniques enables the recognition and classification of diverse
wireless signal types, exhibiting a certain degree of universality. However, these methods
possess a broad focus on features and necessitate an extensive amount of labeled data for
effective model training and learning. In the context of feature recognition within signals
sharing the same modulation scheme, employing various machine learning algorithms can
enhance efficiency in this process. Nevertheless, there exists a potential risk of overfitting
identification outcomes.

The second is based on a deep learning method, which mainly uses a deep neural
network to learn complex signal feature representation, such as the convolutional neural
network (CNN), recurrent neural network (RNN), etc. This method shows superior per-
formance in tasks of object detection, recognition, and classification. Hao C, Dang X et al.
proposed a symbol detection and modulation classification detector (SDMCD) based on a
deep neural network (DNN) to complete the mixed signal detection [19], but the parameter
adjustment and optimization of the DNN model usually require some experience and
expertise, and the maritime environment will also affect the performance and accuracy
of the SDMCD model. Zhang J, Hu S proposed a digital signal modulation identification
(DSMI) method suitable for orthogonal frequency division multiplexing (OFDM) under
different multipath channels. This method can accurately detect the modulation charac-



J. Mar. Sci. Eng. 2024, 12, 810 3 of 22

teristics rather than the channel characteristics to identify the modulation type, thereby
reducing the amount of network training [20]. In the maritime VHF communication sce-
narios, the signal differences of the same modulation mode are mainly formed by the
equipment environment and channel environment, so this kind of method lacks common
attention to the signal and channel. Kim H, Kim Y-J, et al. proposed a deep signal recog-
nition network based on multi-task learning [21]. The proposed modulation recognition
model by Zha Y and Wang H aims to enhance the accuracy of recognizing high-order
digital modulation signals in low SNR conditions, thereby significantly improving their
performance [22]. Huynh-The, T. et al. focused on the application of classical neural
networks (such as CNN, RNN, and FFNN) in deep learning for modulation recognition;
Zhang, X, Wang, Y. et al.’s research focuses on the review of data sets, signal representation
methods, and deep learning-based methods in the field of modulation recognition [23].
Generally speaking, in the scenario of VHF signal recognition at sea, it is necessary to focus
on the feature recognition under the same signal modulation mode, and to describe the
features from the interaction of the signal itself and environmental variables on the basis of
deep learning, so as to improve the feature recognition of VHF signals.

The third is to combine the traditional machine learning method with the deep learning
method, and make the concerns of the recognition model have a certain characteristic
by fusing different algorithms, so as to improve the accuracy and robustness of signal
recognition. F. Liu, Z. Zhang et al. proposed a modulation recognition method based on
feature extraction and deep learning algorithms, which achieves high recognition rates
even under low signal-to-noise ratios [24]. H. Xiang, B. Chen et al. proposed a feature-to-
feature learning phase enhancement method based on 1D CNN and 2D CNN to improve
the accuracy of DOA estimation [25], CNN can effectively extract the spatial features of
signals from the marine environment, and can adapt to the complex changes of signals
in various marine environments, but the large amount of computing resources and long
training time in recognition enhancement may increase the limitations of this method in
ship communication scenarios. Lu investigated a model that combines discrete wavelet
transform and Extra Trees Classifier, and designed a model that combines continuous
wavelet transform and CNN to perform individual identification, which requires a high
computational cost and training time in terms of complexity and parameter tuning [26].
Tan, Y.; Jing, X. et al. adopted CNN to extract the features of the observed signals and built
a new two-dimensional dataset of the received signals [27]. L. Zhang used the SCF-based
dataset, combining the CNN denoising module and DNN-based classification design, H.
Liu et al. can achieve better feature extraction and classification performance, thereby
improving the signal recognition accuracy [28]. The combination of machine learning and
deep learning can provide a more effective feature recognition model for signal recognition
of specific targets, but it is also necessary to select appropriate methods for signal scene
features to cope with computational complexity and training data demand.

In summary, numerous scholars have made significant advancements and progress
in the field of signal modulation recognition. However, in the context of maritime VHF
voice communication scenarios, it is crucial to fully consider the characteristics of maritime
VHF signal recognition based on both signal modulation characteristics and the complex
conditions present in ship communication scenarios, including factors such as waves,
wind, and their impact on signal propagation. Therefore, this study initially aims to
establish a fundamental feature recognition model for VHF voice communication signals
in maritime scenarios using CNN methods. Subsequently, we attempt to incorporate Class
Activation Mapping (CAM) and Bidirectional Long Short-Term Memory (BiLSTM) feature
extraction algorithms. In the maritime scene specifically, CAM enables intuitive analysis of
spatial dimension-based feature extraction by the model while BiLSTM effectively captures
temporal evolution of signals as a timing model. This paper endeavors to combine CAM
feature extraction with BiLSTM feature extraction to enhance the effectiveness of the basic
model in identifying similar types and non-cooperative signal features. The contributions
made by this paper primarily lie within the following aspects.
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1. According to the modulation and demodulation characteristics of shipborne VHF
signals, the effects of white noise and multipath propagation on the characteristics of
VHF signals are studied.

2. Based on feature engineering and deep learning technology, a deep learning model for
extracting the features of shipborne VHF radio signals is established by integrating the
idea of a channel attention mechanism (ECANET), which can realize the recognition
of different shipborne VHF radio signals.

3. Combined with the application scenario characteristics of VHF voice communica-
tion at sea, five VHF radios with significant similarity characteristics are selected,
and the verification experiment of the correlation between communication voice
and signal recognition is designed to verify the effectiveness and accuracy of the
proposed method.

The paper is organized as follows. Section 1 analyzes the current main methods
and technical paths in radio signal feature recognition, and analyzes the rationality of the
selected method in this paper. Section 2 introduces the mathematical principles of the
model and method designed in this paper. Section 3 verifies the model and method used
in this paper by experiments. Section 4 analyzes and discusses the experimental results.
Section 5 is the conclusion of this paper.

2. Materials and Methods
2.1. General Framework

The model consists of three core parts, which are VHF signal analysis, model optimiza-
tion, and output, as shown in Figure 1. In the initial stage of signal processing, the model
measures and identifies the propagation characteristics of VHF signals in different channel
environments and the unique features of their modulation modes. Subsequently, it is input
into the model optimization module, based on the CNN architecture. The model combines
CAM and BiLSTM feature extraction methods and ECANET technology to deeply learn
the time and frequency characteristics of signals, extract signal features, and achieve the
accurate identification of various complex signals through training and optimized network
parameters. Finally, the model outputs the recognition result of the signal to complete the
whole process and achieve the accurate recognition of the input radio signal.
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2.2. VHF Signal Analysis

Signal identification for marine VHF is achieved by channel detection of marine VHF
frequency band, which is able to collect and analyze the signals of the whole channel of ma-
rine VHF, and on this basis, extract the individual radio frequency fingerprint information
of each module through feature engineering and deep learning; that is, by collecting and
analyzing the characteristics of radio frequency signals. These characteristic parameters
may include amplitude, phase, frequency, etc. of the signal. Due to the differences in the RF
hardware and the influence of the communication environment, the radio signals received
at the receiving end still have typical characteristics in the radio signals generated by the
same modulation mode and RF hardware structure. By analyzing and comparing these
characteristic parameters, the identity information can be determined. The RF fingerprint
bound with the ship identity is constructed to distinguish the hardware differences of
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different shipborne VHF RF transmitting modules, and the identification and tracking of
the shipborne VHF radio signal fingerprint are realized.

For communication emitters in practical application scenarios, the emitted RF signals
need to be transmitted through the channel and demodulated before they can become
available data sets. The modulation and demodulation part of the signal is to perform
a certain operation on the original time domain signal to generate a signal of another
frequency suitable for transmission in the channel; that is, to convert it into a form suitable
for transmission, while the subsequent signal identification algorithm is to analyze the
received signal. If there is an error or distortion in the modulation and demodulation
process, the subsequent signal identification algorithm may be affected. As a result, the
signal cannot be correctly identified or decoded, thus affecting the accuracy and reliability
of identification. Therefore, after the acquisition equipment is used to complete the VHF
signal acquisition, the signal demodulation processing should be carried out, and the
analysis results should be stored in the database. The VHF signal received by any radio
can be expressed as

S(n) = Acos[wcn + φ(n)] (1)

where A is the signal amplitude, wc is the carrier angular frequency, and φ(n) is the
instantaneous phase:

S(n) = Acos
(

wcn + K f ∑ f (n) + φ0

)
(2)

Orthogonal decomposition of the signal, the in-phase branch, is multiplied by cos(wcn)
and the quadrature branch is multiplied by sin(wcn), and decimated and low-pass filtered
to obtain the in-phase and quadrature components.

Performing an arctangent operation on the quadrature component and the in-phase
component:

φ(n) = arctan[
X0(n)
X1(n)

] = K f ∑ f (n) + φ0 (3)

The modulated signal f (n) is then obtained by differencing the obtained phases and
scaling them appropriately.

f (n) = φ(n)− φ(n − 1) (4)

That is, the required original signal. Thus, the demodulation of the VHF signal
is completed.

The quality of maritime VHF communication is affected by many factors, such as the
harsh environment of the sea, the transmission loss of sea reflection, and the transmission
loss of free space. Therefore, considering the change of signal-to-noise ratio and the
fading characteristics of the channel, it is necessary to preprocess the received shipborne
VHF signals.

Firstly, different levels of Gaussian white noise are introduced, which can simulate
the noise interference in the real environment and enhance the robustness and reliability
of the signal data. Then, the Rayleigh channel function operation is employed, which
can optimize the transmission characteristics of the signal and make it more suitable for
subsequent analysis, identification, or transmission tasks.

(1) White noise is a random signal with a constant power spectral density. Ideal
white noise has infinite bandwidth, so its energy is infinite, which is impossible in the real
world. In fact, if the spectral width of a noise process is much larger than the bandwidth of
the system on which it acts, and its power spectral density is essentially constant in this
bandwidth, then it can be treated as white noise.

The amplitude of Gaussian white noise is subject to Gaussian distribution, and the
power spectral density is uniformly distributed. Because Gaussian white noise can reflect
the noise situation in the actual communication channel, it can better simulate the unknown
real noise [29], and can be expressed by a specific mathematical expression, which is suitable
for analyzing and calculating the anti-noise performance of the system.
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Usually, the signal we obtain is discrete, and the power of the signal can be
calculated directly.

Psignal =
1
n

n

∑
k=1

s2
k (5)

With the signal power, if you want the signal-to-noise ratio (SNR) of the sample after
adding the noise to be SNR, you can calculate the power of the noise from these two:

Pnoise =
Psignal

10
SNR

10
(6)

(2) Different from the wired channel whose transmission carrier is physical wire, the
propagation environment of a shipborne VHF signal is more complex and changeable in
the process of propagation on the radio channel. There are a lot of factors that affect the
propagation of electromagnetic wave signals in the radio propagation environment, mainly
the scatterers in the radio propagation environment, such as clouds, water, and so on.
These factors restrict the transmission quality of electromagnetic wave signals. When the
transmitted signal arrives at the receiver through different paths, the multipath propagation
will lead to different time and direction, and the random amplitude and phase of different
multipath components will cause the change of signal strength, resulting in small-scale
fading and signal distortion, affecting the quality of communication. The propagation
mode of electromagnetic waves in the radio propagation environment is shown in Figure 2:
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Therefore, in the research of radio communication, the primary task is to model the
channel. Considering the influence of Doppler frequency shift caused by the relative
movement of the transmitter and receiver on the channel in the actual situation of maritime
communication, statistical modeling is more suitable for outdoor channels. The Clarke
model is a commonly used radio channel model, which is suitable for the scenario of slow
mobile speed. The amplitude distribution and phase distribution are random and meet the
Gaussian distribution. Due to the wide applicability of the Clarke model, the Clarke model
can better simulate the channel characteristics in the complex maritime communication
environment with high computational efficiency. The Clarke model can be used as a
statistical modeling of the Rayleigh channel.

Assuming that the multipath scattering components of the signal are uniformly dis-
tributed and the average power of the signal in each path is the same, the in-phase and
quadrature components of the channel are generated by two branches, respectively. Firstly,
a complex Gaussian noise signal is generated on each branch of the model, and the two
complex Gaussian noise signals are guaranteed to be independent of each other. These
random signals are then shaped in the frequency domain by using a Doppler shaping
filter to adapt to the variable environment of signal propagation. Subsequently, the two
filtered signals are subjected to inverse Fourier transform as the in-phase component and
the quadrature component of the received signal, respectively. Considering that the output
of the Fourier transform is a real signal, the time domain signal of one of the branches
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needs to be rotated by 90 degrees to meet the requirement of orthogonal components.
Finally, the two signals are superposed to obtain the output fading signal. The maximum
Doppler frequency shift of the output signal is the bandwidth of the shaping filter, and the
expression is

h(n) = hI(n) + jhQ(n) = lim
N→∞

N

∑
n=1

cnexp(2π fdn + θn) (7)

where N is the number of propagation paths; cn is the attenuation coefficient; fd is the
maximum Doppler shift; θn is the Doppler phase, which follows the uniform distribution of
[−π,π]; as N approaches infinity, h(n) approaches a zero-mean complex Gaussian process,
whose amplitude envelope follows the Rayleigh distribution according to the central
limit theorem.

2.3. Foundation Model

CNN is a feed-forward neural network [30]. The application of CNN in signal recogni-
tion usually takes the original signal as the input, such as IQ signal, which is essentially a
mapping from input to output, and can learn the mapping relationship between input and
output [31], without precise mathematical expression, and automatically extract features
and classify them through the training process. The training process includes two phases:
the first phase is the forward propagation phase, in which the input is gradually trans-
formed into a higher-level feature representation through convolution, activation function,
pooling, and other operations, as shown in the following formula. The purpose of forward
propagation is to calculate the prediction result of the network and compare it with the true
label to calculate the loss function, which is used to measure the gap between the prediction
result and the true result.

Convolve to convolutional layers:

zl+1
i ∑

s
al

s ∗ wl+1
i,s + bl+1

i (8)

al+1
i = sigmoid

(
zl+1

i

)
(9)

Convolutional layer to pooling layer:

apl
i = pooling

(
al

i

)
(10)

Pooling layer to fully connected layer:

zl+1
s = ∑

i
apl

iw
l+1
s,i + bl+1

s (11)

The second stage is the backpropagation stage, where the gradient of the parameters
in each layer is calculated by the chain rule and the gradient descent algorithm is used to
update the parameter values. In this way, the network fine-tunes the parameters according
to the gradient of the loss function in each training iteration to gradually optimize the
predictive power of the model.

Fully connected layer error:

δL ≡ ∂C
∂aL σ′(zL) (12)

Error propagation from fully connected layer to pooling layer:

∂C
∂apl

i
= ∑

s
wl+1

i,s δL
s (13)



J. Mar. Sci. Eng. 2024, 12, 810 8 of 22

Error propagation from pooling layer to convolution layer:

δl
i = upsample(

∂C
∂apl

i
) σ′

(
zL
)

(14)

Error propagation between convolutional layer:

δl
s = resize

(
δ
)l+1

i ∗ rot180◦
(

w
)l+1

i,s σ′(zl
s
)

(15)

Gradient of model parameters:

∂C
∂wl+1

i,s

= al
s ∗ interpolationd

(
δl+1)

i (16)

When the signal is processed by the CNN, the convolutional layer automatically
extracts features from the data. Through different filters, the convolution operation can
capture the spatial correlation and characteristics of the signal, so that the input signal can
be represented more abstractly after the convolution layer. These extracted features are
then passed to the fully connected layer, which is responsible for learning a higher-level
abstract representation of the signal and mapping it to the corresponding output category.
Ultimately, the CNN outputs the recognition result to determine which category the input
signal belongs to. This process realizes the end-to-end automatic recognition from the
original signal to the final classification result, and realizes the automation and efficiency of
signal recognition through machine learning. The model architecture of the CNN requires
very little data preprocessing, so it is considered to be a robust deep learning method for
the successful application of a truly multi-level network architecture [32]. This model can
achieve or exceed the traditional classification method which relies on experts to extract
features, and at the same time, because it does not need to extract features manually, the
model has greater flexibility in expanding new signals.

2.4. Model Optimization

In this paper, an improved CNN model is used to recognize VHF signals, which
combines CNN, CAM, and BiLSTM feature extraction technology, and incorporates the
idea of a channel attention mechanism (ECANET) to enhance the adaptive learning ability
of the network to the importance of channels. The depth feature extraction and fusion of
VHF signal data are realized, and the basic structure of the model is shown in Figure 3.
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The diagram is divided into three main sections, each of which represents a different
block, and each of which has a different hierarchy and operation. Each block starts with
“Input” and then passes through multiple layers, ending up with “Output”. First, the Block1
part consists of three sequentially identical structures, each of which contains a convolution
layer (CN), followed by a ReLU activation function and a batch normalization (BN) layer.
After these three sets of operations, the output of Block1 is obtained. Block2 is similar to
Block1, but with an increased number of convolution kernels per convolution layer. The
input data in the BlockSE module first pass through several convolution layers (Conv),
normalization layers (BN), and activation layers (ReLU), and finally through a channel
attention mechanism layer (CAM), which can correlate the feature maps in the neural
network with the classification results, thus helping to understand the classification basis of
the network. The feature map is formed by multiplying and adding the parameters (weight
matrix W) of the last fully connected layer and the final output feature map set; that is, the
display model is based on which feature maps for decision classification. The extraction of
CAM generally occurs in the convolution layer, especially in the last convolution layer.

CAM uses the principle of superposition of feature map weights to obtain the thermo-
dynamic map, and the formula is as follows:

Lc
CAM = ∑

k
wc

k Ak (17)

where A represents the size of the output of the last convolutional layer of the network, w
represents the weight of the fully connected layer, and C is the category of classification.

Channel attention mechanism is a method used to enhance the neural network to learn
feature representation between different channels, which can improve the effectiveness
of feature representation by assigning different weights to different channels [33]. This
mechanism has been widely used in Squeeze-and-Excitation Networks (SENet) and has
been proved to significantly improve the performance of various computer vision tasks.
In the traditional channel attention mechanism, the feature representation of different
channels is usually adjusted by calculating the weight of each channel. Although this
method can improve the network performance, it still has some limitations; for example, it
may ignore the correlation between channels, resulting in information loss. This feedback
connection allows the network to transfer information between different layers, so as to
make better use of the correlation between channels. This feedback connection can help
the network to better capture the dependence between specific channels, and improve
the representation ability and generalization performance of the model. The improved
CAM model is applied to the improved CNN model, as shown in Figure 4, which further
improves the performance of the neural network in feature learning and representation.
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BiLSTM is a long and short-term memory network (LSTM) with forward and backward
connections [34]. BiLSTM processes the input through two independent LSTM layers,
one in chronological order and the other in reverse chronological order, capturing the
characteristics of the input sequence from the forward and reverse directions, respectively.
Specifically, the forward LSTM processes the input sequence from left to right in time
steps, and the hidden state ht and the cell state ct at each time step are calculated by the
following formulas:

it = σ(Wixxt + Wihht−1 + bi) (18)

ft = σ
(

W f xxt + W f hht−1 + b f

)
(19)

ot = σ(Woxxt + Wohht−1 + bo) (20)
∼
c t = tanh(Wcxxt + Wchht−1 + bc) (21)

ct = ft ⊙ ct−1 + it ⊙
∼
c t (22)

ht = ot ⊙ tanh(ct) (23)

where it, ft, ot and
∼
c t are the input gate, forget gate, output gate, and candidate state

representing the current information, respectively, and σ and tanh are the Sigmoid and
tanh functions, respectively. Similarly, the reverse LSTM processes the input sequence from
right to left in time steps, and the hidden state h′t and the unit state c′t for each time step
can be calculated by similar formulas. Eventually, the output of BiLSTM is stitched from
the hidden states in both directions: yt = [ht; h′t].

Through CAM feature extraction, the model can associate the feature map with the
classification results, which enhances the classification ability of VHF signals, while BiLSTM
feature extraction helps to capture the temporal information in VHF signal data [35].
Ultimately, deep feature fusion enables the improved CNN model to understand VHF signal
data more comprehensively, thus improving the accuracy and robustness of recognition
and classification.

In the original model structure, the convolution kernel size of a fixed scale is used,
which may lead to the model unable to effectively capture the features of different scales
in the input data. In order to improve the capability of feature extraction and target
recognition in different scales, the multi-scale convolution module is introduced to make
the model consider the information of different scales at the same time, so that the model
can better adapt to targets of different scales. A common multi-scale convolution method is
to use convolution kernels of different sizes for parallel convolution operations, and then
splice the resulting feature maps in the channel dimension. As shown in Figure 5, two
convolution kernels can be used to convolute the input image at the same time, and then
the resulting feature maps can be spliced in the channel dimension. Multi-scale convolution
can help the model to extract features at different scales, thus improving the recognition
ability of the model for targets at different scales. Therefore, EBlock1 and EBlock2 are used
instead of Block1 and Block2 in the improved CNN model structure.
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3. Results
3.1. Experimental Design
3.1.1. Experimental Scenario

In this experiment, four groups of experiments are carried out to collect the VHF sig-
nals with the same audio and different frequencies from five VHF interphones in the indoor
experimental point X and outdoor experimental point Y, and the signals are recognized by
using the improved CNN model. Very high frequency (VHF) radio is used most frequently
when the ship is sailing in the channel. The characteristics of a VHF signal propagation
environment in the sea channel mainly include the shelter of ship superstructure, water en-
vironment, and different ship radio installation and application environments. The greater
the difference of these environments, the greater the difference of signal characteristics. In
order to better verify the feasibility of the method in this paper, in the design of the experi-
mental scene, based on the simulation of the scene of ship communication in the channel,
the impact of environment and equipment on signal characteristics is minimized. In the
experimental scene of this paper, five hand-held VHF walkie-talkies of the same model
and old and new degree are selected as VHF communication equipment. The straight-line
distance between the transmitting point and the experimental point Y in the experimental
scene is about 100 m, and there are some buildings and lakes in the transmission path. At
the same time, the weather of the outdoor experimental point Y is overcast and rainy. The
experimental scene environment can be matched with the environment of ship communi-
cation in the channel. The following analogy can be made in order to make experiments
performed indoors reliable for use in the marine environment.

1. Signal propagation characteristic:

In the indoor environment, signal propagation is affected by buildings, walls, and
other obstacles, which may lead to signal attenuation, multipath effect, and other problems.
It can be analogized that in the marine environment, signal propagation will be affected
by seawater, ships, and other objects, which may lead to problems such as seawater
reflection and multipath propagation. At the same time, the multipath propagation model
is introduced, and the signal propagation characteristics are studied in depth to better
understand the signal propagation mechanism in the marine environment

2. Interference sources:

There may be interference signals from electrical equipment, radio networks, etc.
In the indoor environment, this affects the quality of the received signal. In the marine
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environment, ships, radar, and other equipment may produce interference signals, which
interfere with the identification of radio reception signals.

3. Weather conditions:

In the indoor environment, the weather conditions are stable and are not affected
by meteorological factors. In the marine environment, weather conditions may change,
such as wind and waves, rain, and snow, which affect signal transmission and reception.
Therefore, an experiment is designed for comparison in the outdoor rainy environment
of experimental point Y. The straight-line distance between point Y and the receiving
equipment is about 100 m, and there are also problems such as multipath propagation
and interference.

4. Equipment:

The experiment is to collect VHF signals of the same type and batch of new walkie-
talkies in the same environment for identification, and the difference between equipment
and environment is very small. Considering the complexity and uncertainty of the marine
environment, it is expected that in the marine environment, with different batches of equip-
ment and VHF signals in different environments, the recognition rate of the experimental
method may be further improved, which further verifies the feasibility of the experiment.

The purpose of the experiment is to verify the feasibility of the proposed method
of feature identification and VHF radio classification. According to the analysis, the
signal differences of ship-borne VHF radio are mainly reflected in the frequency domain
(modulation) and time domain (propagation environment), in which the environmental
impact and ship motion can increase the difference of signal characteristics. The purpose
of the experimental scenario design in this paper is to simulate the lowest characteristic
difference scenario in the ship communication scenario of the channel, including using
the same type of walkie-talkie to obtain the lowest difference between devices. In the
experimental scenario, there are buildings and water surfaces in the transceiver path to
simulate the characteristics of the ship communication scenario, which can better verify the
feasibility of this method.

3.1.2. Experimental Process

Firstly, respectively, data were acquired of the same audio frequency and different
audio frequency signals sent by an interphone in an indoor environment and an outdoor
environment by utilizing a signal acquisition equipment; secondly, the acquired audio
frequency data were preprocessed, possibly comprising the steps of denoising, feature
extraction and the like, modulating signals, and converting into an IQ data set. The size
of 2 × 128 (I and Q) is used in the experiment to form a sample as the input layer of the
CNN. Samples are used to train the model for audio signal recognition tasks, and then
the accuracy of the model is verified to evaluate its performance in the recognition of the
same audio and different audio signals, as shown in Figure 6. The models trained in the
indoor environment are applied to the recognition tasks of the same audio and different
audio signals in the outdoor environment to evaluate their generalization ability. Through
experiments in indoor and outdoor environments, the performance of the model in different
environments is compared, which can evaluate the robustness and generalization ability of
the model more comprehensively, and provide more reliable reference and support for the
application of the model in the marine environment in the future.
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3.1.3. Parameter Selection

In the experiment, the above improved CNN model is concretized, and the structure of
the model will directly affect the number and complexity of the parameters of the model. At
the same time, by choosing reasonable parameters, the performance, generalization ability,
and efficiency of the model can be optimized, so that the model can better adapt to specific
tasks and data sets. In addition, the CNN extracts local features through a convolution
kernel, and the model updates the convolution kernel parameter matrix through training,
so that the convolution kernel can better extract features according to the purpose of the
model. The number of convolution kernels determines the number of output feature maps
of the layer. By adjusting the scale and number of convolution kernels, the dimension
of feature maps and the expressive power of the network can be controlled. Therefore,
the convolution kernel size of the Block1 convolution layer in the model structure is set
to 68, and 68 convolution kernels are selected to effectively capture the characteristics of
the input data without causing overfitting. In general, a smaller number of convolution
kernels means that the model is simpler, easier to train, and may have better generalization
ability. In Block2, the increase to 128 convolution kernels is to increase the representation
capability of the network. As the network layer deepens, it is usually necessary to increase
the number of convolution kernels to extract more abstract and complex features, based on
further optimization of network performance and the need to capture more complex data
patterns. In the improved multi-scale convolution module, different sizes of convolution
kernels are used to increase the perception range of the neural network to the input data.
In this paper, two sizes of convolution kernels, 3 × 3 and 5 × 5, are used. The size 3 × 3
is a smaller convolution kernel, which is mainly used to capture local details, while 5 × 5
is a larger convolution kernel, which is able to cover a wider area and thus extract more
global feature information. At the same time, in practice, these two convolution kernels are
widely used in deep learning models, and have achieved remarkable results. They show
good performance and generalization ability in many visual tasks, providing a reliable
basis for the optimization and application of the model.

3.1.4. Experimental Steps

Here are the specific steps of the experiment:
1⃝ Use the IC-M73 VHF walkie-talkie as shown in Figure 7a to transmit the signal

carrying audio on channel 10.
2⃝ Use the sampling equipment as shown in Figure 7b for sampling. The center frequency

of the sampling equipment is set as 156.5 MHz, and the bandwidth is set as 100 KHz;
that is, the equipment collects signals from 156.45 MHz to 156.55 MHz of the VHF
band, and can capture various VHF signals within this range. The sampling frequency
is set to 100 × 103 and the sampling time is 5 s. The same and different audio signals
of five IC-M73 walkie-talkies A\B\C\D\E at location X and location Y (location
Y is farther from the receiving equipment than location X) are collected in turn as
training samples.

3⃝ The samples for training are manually labeled as the signal samples sent by which
walkie-talkie, and then the improved CNN model is selected for training, with
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100 generations of training each time and automatic testing every three generations.
Check the accuracy, loss, and test results of the model after training.

4⃝ The same and different audio signals of five IC-M73 walkie-talkies at X and Y are
collected in turn as test samples.

5⃝ Select the test samples without manual labelling and use the trained improved CNN
model to identify the signals.

6⃝ Check the final identification result.
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3.2. Experiment 1: Compare the Recognition Rate of the Same Audio and Different Audio Samples
at Point X

At point X, the same audio samples used for training and testing in the experiment
are the digital voice broadcast samples of “74084506519174599376115120” sent by five
walkie-talkies, and the different audio samples for testing are the voice broadcast of
different numbers.

The model is first trained using the samples, and the experimental results of the
training are shown in Figures 8 and 9, with fold line 1 showing the accuracy and loss of
training the model with the same audio samples at point X, and fold line 2 showing the
accuracy and loss of training the model with different audio samples at point X.
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From the image of model accuracy, the accuracy of “Line 1” rises rapidly at the
beginning of training, then reaches an inflection point at about 20 iterations, and the
accuracy begins to rise slowly and fluctuates around 0.9. “Line 2” is less accurate than
“Line 1” from the beginning, but there is also an inflection point at about the same iteration
of 20 times, after which the accuracy rises rapidly and reaches a plateau near 0.8. The
reason for the inflection point may be that in the early stage of training, the model can
often quickly learn some useful patterns from the data, resulting in a rapid increase in
accuracy. As the training continues, the model may approach the upper limit of its ability,
and it is difficult to further improve the accuracy significantly, resulting in the emergence
of inflection points. At the same time, because “Line 2” is trained with different audio
samples, it may cause the model to need more time to generalize different data features,
resulting in fluctuations or delays in the process of increasing accuracy; in the loss diagram
of the model, the model shown by “Line 1” declines faster in the early stage, which may
mean that it learns faster. At a later stage, “Line 2” decreases slowly, but its loss value
decreases to a similar level as “Line 1”, indicating that the two methods may eventually
have similar performance. The confusion matrix of the test results shows that the test effect
of different audio is better and the recognition degree is higher.

After 10 test sample recognition experiments, the average accuracy of the compar-
ison test is close to the accuracy of the training, which shows that the model has good
performance and generalization ability, and can reliably predict or classify tasks in practical
applications. The accuracy of recognition results is shown in Figure 10.

3.3. Experiment 2: Compare the Recognition Rates of the Same Audio Samples at Points X and Y

The same audio samples used for training and testing in the experiments at points X
and Y are the digital voice broadcast samples of “74084506519174599376115120” emitted by
five walkie-talkies.

First, the model is trained using samples. The experimental results of the training are
shown in Figure 11. The broken line 1 is the accuracy and loss of training the same audio
sample model at point X, and the broken line 2 is the accuracy and loss of training the same
audio sample model at point Y.
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From the fluctuation of the fold line, we can see that the learning of the model is
fluctuating throughout the training process, which is due to the fluctuation brought by the
gradient update, or the model is trying to learn more complex patterns in the training set. It
can be seen from the figure that when the same audio is trained, the accuracy of the model
is high when it is close to the receiving point. It is possible that the signal may experience
more attenuation or interference because point Y is farther away from the receiving device,
resulting in a decrease in the quality of the input data, thus affecting the effect of model
training. However, the overall difference is not significant, and the final “Line 2” loss
is small.

The accuracy results of the recognition experiment for 10 test samples are shown
in Figure 12.

3.4. Experiment 3: Compare the Recognition Rates of Different Audio Samples at Points X and Y

In the experiment of point X and Y, different audio samples are used to train and test
the voice broadcast of different numbers from five walkie-talkies.

First, use samples to train the model. The experimental results of the training are
shown in Figure 13. Fold line 1 is the accuracy and loss of training different audio sample
models at point X, and fold line 2 is the accuracy and loss of training different audio sample
models at point Y.
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The figure shows that both “Line 1” and “Line 2” increase sharply with the increase
of model accuracy evaluation, and then tend to be stable, but the accuracy of Line 1 is
higher than that of Line 2, and shows some fluctuations in the stable period. The inflection
point occurs at the moment when the accuracy of the model is low, which may be due to
the rapid learning of the basic patterns in the data at the beginning of the model training
when the learning rate is high, resulting in a rapid increase in accuracy. As the model
continues to train, the improvement in accuracy slows down, indicating that the model is
beginning to reach some saturation point in its performance, at which point further tuning
of parameters or more complex model structures may be needed to continue to improve
accuracy. Meanwhile, the loss of Line 1 is also lower than that of Line 2, which indicates
that compared with the signal close to the receiving device, the signal far away may cause
more noise or distortion, making it difficult for the model to learn and predict accurately.

The accuracy results of the recognition experiment for 10 test samples are shown
in Figure 14.

3.5. Experiment 4: Compare the Recognition Rate of the Same Audio and Different Audio Samples
at Point Y

At point Y, the same audio samples used for training and testing in the experiment
are the digital voice broadcast samples of “74084506519174599376115120” sent by five
walkie-talkies, and the different audio samples used for testing are the voice broadcast of
different numbers.

First, the model is trained by using samples. The experimental results of the training
are shown in Figures 15 and 16. Fold line 1 is the accuracy and loss of training the same



J. Mar. Sci. Eng. 2024, 12, 810 18 of 22

audio sample model at point Y, and fold line 2 is the accuracy and loss of training different
audio sample models at point Y.
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Line 1 rises rapidly in the early iteration, then gradually stabilizes, and finally stabilizes
at a higher accuracy level, which shows that the learning effect of the model on the training
set is gradually saturated. Line 2 also shows an upward trend, but the accuracy rate
increases more slowly, and the final accuracy rate is lower than that of Line 1. Line 2 means
that different audio samples are used for training. In the case of complex experimental
conditions (such as interference conditions), the accuracy of the model is naturally lower,
reflecting the generalization ability of diverse data.

The experiment of receiving radio signals at sea will face many challenges, such as
signal fading, noise interference, multipath effect, and so on. This may explain the low
accuracy of Line 2: because the model needs to recognize signals in more diverse and com-
plex environmental conditions, it puts forward higher requirements for the generalization
capability of machine learning models.

The accuracy results of the recognition experiment of 10 test samples are shown in
Figure 17, which shows that radio signals can be recognized even at a long distance.
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4. Discussion

Combining all the experimental results, it can be found that the model shows the
characteristics of rapid learning in the early stage of training, and quickly learns the basic
pattern from the data. With the progress of training, the accuracy of the model eventually
tends to be stable and fluctuates at a relatively fixed level, indicating that the model can
adapt to different data samples and environmental conditions to a certain extent and
achieve certain recognition performance.

However, the accuracy of the model has a certain degree of fluctuation in the training
process, and the amplitude and stability of this fluctuation are affected by the experimental
conditions. Experiments 1 and 2 involve the same audio samples and different audio
samples, and the model trained by the same audio samples has higher accuracy at the
beginning of training and reaches a stable state faster, while different audio samples may
need more training and adjustment to achieve similar accuracy levels. Experiment 3 and
Experiment 4 involve different environmental conditions. It is found that the model in
Experiment 4 needs more training and adjustment to improve its performance in the face
of complex environments.

To sum up, the model shows some similarities and differences in the face of different
data samples and environmental conditions, as shown in the following Table 1.
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Table 1. Experimental information summary.

Experiment Average Accuracy Average Loss Recognition Result

Experiment 1 82.60% 0.434 86.48%

Experiment 2 85.29% 0.418 80.34%

Experiment 3 82.14% 0.434 80.13%

Experiment 4 81.61% 0.451 90.64%

Through four groups of the same and different audio recognition experiments in
different environments, and by comparing the average accuracy, average loss, and average
accuracy of the final recognition results of the model in different experiments, it is found
that although there are differences in the performance of the model in different experi-
ments, it can still achieve certain recognition performance through reasonable training
and adjustment, which indicates that the model has certain applicability and feasibility in
the task of maritime radio signal feature recognition. Effective signal identification and
communication can be realized.

5. Conclusions

In this study, a deep learning recognition model for shipborne VHF wireless signal
features is established by integrating a convolutional neural network with CAM feature
extraction and BiLSTM feature extraction. To validate the effectiveness of the proposed
method in non-cooperative signal feature recognition and signal source classification for
the same type of signals, an experimental scenario simulating marine ship communication
is designed using five VHF radios of identical model and parameters. These experiments
provide a novel technical approach towards ship target perception.

Due to the inherent randomness and discreteness of ship communication scenes,
obtaining a large-scale dataset for training VHF communication signals is challenging.
Therefore, this paper selects hand-held VHF radios to acquire a substantial amount of
training data. Additionally, the experimental scene focuses on a limited dataset consisting
of five targets with low computational complexity. Future research will delve deeper
into perceiving actual ship VHF signals, collecting a wider range and larger volume of
ship VHF signal data, integrating AIS data and VHF voice data for annotation purposes,
and establishing dynamic training models to validate their feasibility in diverse maritime
business scenarios.
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