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Abstract: Nonnegative matrix factorization (NMF) is an efficient method for feature learning in the
field of machine learning and data mining. To investigate the nonlinear characteristics of datasets,
kernel-method-based NMF (KNMF) and its graph-regularized extensions have received much atten-
tion from various researchers due to their promising performance. However, the graph similarity
matrix of the existing methods is often predefined in the original space of data and kept unchanged
during the matrix-factorization procedure, which leads to non-optimal graphs. To address these prob-
lems, we propose a kernel-graph-learning-based, nonlinear, nonnegative matrix-factorization method
in this paper, termed adaptive kernel graph nonnegative matrix factorization (AKGNMF). In order to
automatically capture the manifold structure of the data on the nonlinear feature space, AKGNMF
learned an adaptive similarity graph. We formulated a unified objective function, in which global
similarity graph learning is optimized jointly with the matrix decomposition process. A local graph
Laplacian is further imposed on the learned feature subspace representation. The proposed method
relies on both the factorization that respects geometric structure and the mapped high-dimensional
subspace feature representations. In addition, an efficient iterative solution was derived to update all
variables in the resultant objective problem in turn. Experiments on the synthetic dataset visually
demonstrate the ability of AKGNMF to separate the nonlinear dataset with high clustering accuracy.
Experiments on real-world datasets verified the effectiveness of AKGNMF in three aspects, includ-
ing clustering performance, parameter sensitivity and convergence. Comprehensive experimental
findings indicate that, compared with various classic methods and the state-of-the-art methods, the
proposed AKGNMF algorithm demonstrated effectiveness and superiority.

Keywords: machine learning; nonlinear nonnegative matrix factorization; graph regularization;
adaptive kernel graph learning; joint optimization

1. Introduction

In pattern recognition, machine learning and data mining, clustering can help to
decipher the data distribution and cluster data characteristics. The key point of clustering
tasks is to find the internal structure information of the original data and make them
more discriminative [1–4]. Several methods have been developed for clustering, including
spectral clustering and k-means [5–7], which rely on the metric of data similarity [8–10].
Due to the potential clustering representation, nonnegative matrix factorization, which is an
effective method for data dimensionality reduction and feature extraction, has been widely
used in clustering tasks [11,12]. NMF expresses part-based data by finding two nonnegative
matrices whose product is close to the raw data and only allows additive combinations of
data. Differently from the interpretability limitations of other matrix-factorization methods
involving singular value decomposition (SVD) [13], independent component analysis
(ICA) [14], principal component analysis (PCA) [15], etc., with a negative decomposition
component, NMF can provide the nonnegative factorization of multivariate data [16,17].

Information 2023, 14, 208. https://doi.org/10.3390/info14040208 https://www.mdpi.com/journal/information

https://doi.org/10.3390/info14040208
https://doi.org/10.3390/info14040208
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/information
https://www.mdpi.com
https://orcid.org/0000-0002-8122-4254
https://orcid.org/0000-0002-5489-8288
https://orcid.org/0000-0002-4936-0061
https://doi.org/10.3390/info14040208
https://www.mdpi.com/journal/information
https://www.mdpi.com/article/10.3390/info14040208?type=check_update&version=1


Information 2023, 14, 208 2 of 19

NMF also offers ease of implementation and decomposition, and the interpretability of
factorization results.

Many studies show that real-world data can be considered as representations from a
nonlinear low-dimensional manifold [18–20]. Ordinary NMF [21] ignores the intrinsic man-
ifold structure of the data space. Therefore, Cai et al. [22] proposed graph regularization
NMF (GNMF) to explore the geometric relationship of the data as a graph-regularization
method for improving the performance of clustering. However, GNMF is a linear method
that fails to exploit the nonlinear characteristics of the data. In the work of Tolić et al. [23],
the nonlinear graph-regularized KNMF (KOGNMF) was further proposed, where the non-
linear properties of the manifold and its global geometric structure are induced. However,
the graph adjacency matrix employed in the KOGNMF is predefined by the k-nearest-
neighborhood (knn) or ε ball graph technique. The graph constructed by these methods
is sensitive to noise and outliers in the data [24–26]. In order to overcome this drawback,
a learning method is utilized to generate the graph similarity matrix and then regularize
the NMF method [27]. Nevertheless, graph learning and matrix factorization are still
performed as two separate steps, which leads to suboptimal performance for clustering.

Recently, Peng et al. [28] proposed a flexible NMF with adaptively learned graph
regularization (FNMFG), where the graph is jointly learned with matrix factorization.
Analogously, the adaptive graph-regularized NMF (NMFAN) method was proposed [29].
Yi et al. [30] proposed the NMF with locality constrained adaptive graph (NMF-LCAG),
which can integrate nonnegative matrix factorization and adaptive graph learning with
two locality constraints. Instead of predefined graph-based manifold regularization terms,
the unified formulations can simultaneously optimize the similarity matrix and the data rep-
resentation, resulting in better performance. To avoid situations where the non-convexity
of NMF models frequently reaches poor local solutions in the presence of noise or outliers,
Chen et al. [31] proposed sparsity-constrained graph non-negative matrix factorization
(SGNMF) to enhance robustness and eliminate noise, and sparse graph non-negative matrix
factorization was presented as a global optimization problem by applying the sum of the
different smooth functions to approximate the l0 norm. Yang et al. [32] proposed self-paced
nonnegative matrix factorization with adaptive neighbors (SPLNMFAN). Self-paced reg-
ularization is introduced to find a better factorized matrix by sequentially selecting data,
and the adaptive graph learns the data graph by selecting the local optimal neighbors for
each data point. However, since the existing graph-based NMF models are essentially
linear, they are not suitable for tasks that deal with nonlinear data.

In this paper, we propose a novel, graph-regularized NMF model referred to as the
adaptive kernel graph nonnegative matrix factorization (AKGNMF) model to overcome
the above limitations from a new point of view and explore the manifold structure on
nonlinear subspaces by adaptively learning the kernel similarity of high-dimensional map-
pings. Compared with traditional nonnegative matrix-factorization methods, AKGNMF
maps origin data to high-dimensional subspaces and learns global similarity through
adaptive graphs, further introducing a flexible graph regularization item that preserves
local manifold structures. This strategy is able to exploit nonlinear structural information
and obtain factorizations with efficient feature representations. In order to mine the po-
tential structural information of nonlinear data, we used the idea of subspace clustering
based on Gaussian kernels to project the original data. Specifically, we tried to acquire
the global kernel similarity between the original high-dimensional feature space and the
mapped subspace; decomposed the sample matrix of the nonlinear mapping to obtain the
feature matrix and coefficient matrix; and used the manifold structure obtained by adaptive
learning to constrain it to obtain the features under the high-dimensional nonlinear space.
Importantly, we presented a unified framework for graph learning and matrix factorization
simultaneously. The learned graph was optimized by combining the kernel matrix and the
coefficient matrix to alternate iterations jointly, so that the global structure information of
the similarity matrix and the local topology of the coefficient representation can be used
simultaneously. During the learning procedure, the factorization matrix and the similarity
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matrix negotiate with each other to find the optimal subspace that maintains the original
structure information to the greatest extent. Moreover, an efficient iterative solution was
derived to optimize our problem. The convergence of the solution is also demonstrated.
The major contributions are summarized as follows:

(1) We performed learning using an optimal graph that most closely approximates the
initial kernel matrix, and attempted to preserve the sample’s similarity. This adaptive
strategy can better accomplish manifold structure learning.

(2) Both the similarity matrix of graphs and the decomposition matrix from the high-
dimensional nonlinear mapping features of the original data can be learned in the
proposed model. All variables are reciprocally updated in an alternating iterative
optimization algorithm, and we simultaneously obtained similarity information and
valid feature representation.

(3) Our method takes non-linear mapping into consideration, meaning it is more capable
of handling both linear and non-linear data. Instead of using the previous constructed
and fixed graph-regularization term, the adaptively learned similarity preserves the
ideal local geometry structure for feature representation. Moreover, the kernel matrix
itself contains global similarity information of data points; hence, it is feasible to
conserve the overall relations by learning the graph close to the kernel.

(4) Comprehensive experiments were conducted on both synthetic and real-world datasets
to exhibit the effectiveness of the proposed algorithms and demonstrate their superiority.

AKGNMF has potential application value in real-world scenarios such as face recog-
nition, speech recognition, and biomedical engineering. From the perspective of pattern
recognition, NMF is essentially a method of dimensionality reduction and feature extrac-
tion. For the feature extraction of a face or a voice, the aim is to obtain a matrix-factorization
method with sparser decomposition results, a greater number of obvious local features,
less redundancy between data and a faster decomposition speed. These real-world data
are often nonlinear, and AKGNMF can capture the structural information of the data in
a high-dimensional space and has the potential to obtain more effective features with
higher precision. In addition, to manage the complex data in biomedicine and chemical
engineering, AKGNMF can provide efficient and fast preprocessing for the analysis of
these data. As the decomposition of NMF does not have negative values, combining the
structural information of adaptive learning to analyze the molecular sequence of gene DNA
can make the analysis results more reliable.

The rest of this paper is organized as follows: In Section 2, we briefly introduce NMF,
GNMF and similarity-preserving clustering for graph learning. In Section 3, we propose
the AKGNMF model framework and algorithm and discuss solutions. Section 4 introduces
the comparison and initial analysis of the experimental results of our method and other
nonnegative factorization clustering methods on seven datasets. Finally, conclusions are
provided in Section 5.

2. Related Work

In this work, all vectors are denoted with boldface lowercase letters and all matrices
are denoted with boldface uppercase letters. The important notation mentioned in the
following is summarized in Table 1.

2.1. Graph-Regularized Nonnegative Matrix Factorization

NMF is a matrix decomposition method under the constraint that all elements in
the matrix are nonnegative numbers. The main idea is that for any given nonnegative
matrix X, the NMF algorithm can find a nonnegative matrix W and a nonnegative matrix
H, thereby decomposing a nonnegative matrix into the left and right nonnegative matrices.
Let X = [x1, ..., xn] be a matrix with column vectors xi ≈ Rm; thus, the NMF problem can
be formulated as follows:

X ≈ WH> (1)
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where W = (w1, ..., wn) ∈ Rm×k and H = (h1, ..., hn) ∈ Rn×k are two nonnegative matri-
ces, and k is a prespecified rank parameter. The column vectors of W are called the basis
vectors, and the column vectors of H are called the encoding vectors. Two mechanisms
are proposed to estimate the quality of NMF in Equation (1). The former is based on the
Euclidean distance, and the latter is based on the divergence distance [33]. In this paper, we
focus on the former, and the corresponding objective function can be formulated as follows:

min
W,H≥0

∥∥∥X−WH>
∥∥∥2

F
(2)

where ‖·‖ denotes the Frobenius norm of a matrix.

Table 1. Notation.

Notations Definition

m the dimensionality of a dataset
n the number of data points
c the number of clusters

K ∈ Rn
n the kernel matrix

X ∈ Rn
m the input data matrix

L ∈ Rn
n the graph Laplacian matrix

Φ(·) ∈ Rn
D the nonlinear mapping function

W ∈ Rk
m the basis matrix in input space

H ∈ Rk
n the cluster indicator matrices

F ∈ Rk
n the basis matrix in mapped space

1 the all-one column vector
I the identity matrix

S ∈ Rn
n the similarity matrix

Tr(·) the trace operator of a matrix
‖·‖F the Frobenius norm

When being performed within the Euclidean space, the NMF-based method is inap-
propriate for revealing the intrinsic geometric structure of data space in common cases. Cai
et al. [22] proposed a novel graph-regularized nonnegative matrix-factorization algorithm
that, in addition to learning a parts-based representation, can also combine a geometric-
based regularizer. Thus, the intrinsic geometrical and discriminating structures of the
data space are available to be discovered. The GNMF is effective at solving clustering
problems, since the intrinsic geometrical structure is revealed by incorporating a Laplacian
regularization term.

The GNMF objective function based on Euclidean distance is minimized as follows:

OGNMF = ‖X−WH>‖2
F + β Tr

(
H>LH

)
(3)

where β > 0 is the regularization parameter, Tr(·) indicates the trace of a matrix and L is
the graph Laplacian which satisfies the equation L = D−W, where D is a diagonal matrix
in which the entries are column (or row, since W is symmetric) sums of W.

The aim of GNMF is to find a parts-based representation space in which two data
points are sufficiently close to each other when they are connected in the graph. The geomet-
ric information is encoded by constructing a nearest neighbor graph; however, the graph-
based methods can be easily affected by the input affinity matrix and use of Laplacian
graphs. Namely, these methods are affected by several elements such as the neighborhood
size, choices of weighting metric, etc.

2.2. Graph Learning

Recently, graph learning methods, including adaptive local structure learning and
adaptive global structure learning techniques, have been proposed to obtain the structural
information of the data automatically. To preserve the local manifold structure, adaptive-
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neighbor-based methods [34,35] have been proposed to obtain an optimal graph of input
data in several machine learning tasks.

The self-expression method is a global similarity learning approach in graph learn-
ing [36]. It assumes that each data point can be expressed as a linear combination of other
data points of the dataset. If data points xi and xj are similar to each other, the correspond-
ing weight zij (and zji) is assigned a larger value. Therefore, Z can be regarded as the
similarity matrix, and the self-expression-based graph learning problem can be formulated
as follows:

min
Z

1
2
‖X− XZ‖2

F + µρ(Z) s.t. Z ≥ 0 (4)

where µ > 0 is a trade-off parameter and ρ(Z) is a regularizer of Z. Two commonly used
assumptions about Z are low-rank and sparse assumptions, which means the learned
Z can reveal the low-dimensional structure of data and can also be robust to the data
scale. Equation (4) can be used to identify the neighbors automatically corresponding
to the optimization process and utilizes all data points to capture the global structural
information. In this way, the individual pairwise similarity information hidden in the data
is explored [34] and the graph similarity matrix can be obtained automatically from data.

The graph learning techniques lead to a better structural representation of data rela-
tionships than the traditional method in many tasks of machine learning [8]. However,
most existing methods are linear models for original data, which ignore the nonlinear
hidden structures in data.

3. Adaptive Kernel Graph Nonnegative Matrix Factorization

In this section, we propose a nonlinear adaptive graph-regularized NMF algorithm
that can jointly perform nonnegative matrix factorization with graph-similarity learning in
kernel spaces. The nonlinear relationship between input samples is also explored, which
promotes the improvement of clustering performance.

3.1. Kernel Nonnegative Matrix Factorization Review

In order to handle nonlinear data, we consider the basic idea of kernel subspace
clustering. Then, the data can be mapped into a nonlinear transformation to the higher
D-dimensional space by performing kernel tricks. We assume that Φ(xi) represents the
subspaces of the kernel space, and let K ∈ Rn

n be a kernel matrix whose elements are
computed as follows:

Kij = (Φ>(X)Φ(X))ij = Φ>(xi)Φ(xj) = ker(xi, xj) (5)

where ker : Rd ×Rd → R is the kernel function and

Φ(X) = [Φ(x1), Φ(x2), ..., Φ(xn)]. (6)

The nonlinear NMF problem aims to find two nonnegative matrices, W and H, whose
product can be used to approximate the mapping of the original matrix:

Φ(X) ≈ WH> (7)

where W is the basis in feature space and H is the clustering matrix. As Φ is derived
from the representation of high-dimensional space, it is unreasonable to decompose Φ(X)
directly [37,38]. According to [37], we use W as a linear combination of transformed input
data points to solve this problem. Thus, we assume that W lies in the column space of
Φ(X):

W = Φ(X)F (8)



Information 2023, 14, 208 6 of 19

Equation (2) can be interpreted as a representation of simple conversion to the new
basis, and the minimization problem can be generalized as follows:

min
F,H≥0

‖Φ(X)−Φ(X)FH>‖2
F. (9)

3.2. Adaptive Kernel Graph Nonnegative Matrix Factorization

To exploit the geometric structure of the data in the nonlinear feature space, the kernel-
graph-regularization term is integrated within the KNMF method. As mentioned previ-
ously, the NMF aims to identify the best-approximated basis vectors applied to the data
Φ(X) = WH>. Let hi = [hi1, ..., hik] imply the ith column of H, i.e., the hi representing
the ith data point with respect to the basis W = Φ(X)F. According to the local invariance
assumption of the graph-regularization term [39–41], for a data distribution, if there exist
two data points Φ(xi) and Φ(xj) with significant similarity in the original geometry, then
the low dimensional representations of hi and hj can retain the same relationship. This can
be measured, as shown below:

1
2

n

∑
i,j=1

∥∥hi − hj
∥∥2

FSij =
n

∑
i=1

hih>i Di,i −
n

∑
i,j=1

hih>j Si,j

= Tr
(

H>DSH
)
− Tr

(
H>SH

)
= Tr

(
H>LSH

)
(10)

where Laplacian matrix LS = DS − S, and S is a symmetric similarity matrix. S = S+S>
2 .

DS is a diagonal matrix whose elements are the column sums of S. Then, we can obtain the
following KNMF model with graph regularization, as follows:

min
F,H
‖Φ(X)−Φ(X)FH>‖2

F + β Tr
(

H>LSH
)

s.t. H ≥ 0, F ≥ 0. (11)

The fixed similarity matrix in Equation (11) is predefined by the original input data,
which may be sub-optimal for the embedded representation H. We also note that the
representation matrix H is computed from the nonlinear feature space of input data, but the
graph is obtained from the original input data space. To exploit the nonlinear graph
information of input data in kernel spaces, we induce the self-expression-based, global
graph-learning term to solve Equation (11) in the kernel spaces. Then, our objective function
is formulated as follows:

min
H,F,S

‖Φ(X)−Φ(X)FH>‖2
F + β Tr

(
H>LSH

)
+ γ‖Φ(X)−Φ(X)S‖2

F + µ‖S‖2
F

s.t. H ≥ 0, F ≥ 0, S ≥ 0 (12)

where γ is a trade-off parameter. In this way, we unified the graph similarity learning and
NMF in nonlinear space. We noticed that the graph similarity in Equation (12) considers
both the nonlinear mapping feature Φ(X) and the embedded representation H, which
leads to a much more flexible regularization for the first error term. By substituting the
quadratic terms with a kernel matrix, Equation (12) can be further transformed to the
following formulation:

min
H,F,S

Tr
(

K− 2KFH> + FH>KHF>
)
+ β Tr

(
H>LSH

)
+ γ Tr

(
K− 2KS + S>KS

)
+ µ‖S‖2

F

s.t. H ≥ 0, F ≥ 0, S ≥ 0 (13)

where Tr(·) is the trace operator and K is the kernel matrix of dataset X. The graph similarity
matrix S can be optimized jointly by performing matrix factorization. The linear relations
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among the data in the high-dimensional space are recovered through this model, which is
equivalent to discovering the nonlinear characteristics of the original data. Considering
that the kernel matrix K itself contains the similarity information of data points, the graph S
is expected to be close to K [8]; i.e., the graph S’s learning will benefit from the preservation
of manifold geometric structures in kernel space. Mathematically, we can optimize the
following objective function:

max
S

< K, S >⇔ max
S

Tr(KS)⇔ min
S
−Tr(KS). (14)

By introducing a coefficient θ > 1, we combined Equations (13) and (14); formally, our
proposed objective function is as follows:

min
H,F,S

Tr(K)− 2 Tr
(

FH>K
)
+ Tr

(
FH>KHF>

)
+ β Tr

(
H>LSH

)
+ γ Tr

(
K + S>KS

)
− 2θ Tr(KS) + µ‖S‖2

F

s.t. H ≥ 0, F ≥ 0, S ≥ 0 (15)

where β, γ, θ and µ are the parameters to balance the representation structure, data global
structure, kernel similarity and regularization, respectively. We refer to the model satisfying
Equation (15) as AKGNMF. Since representation matrix H and similarity matrix S are used
for extracting features and capturing the data structure, respectively, the proposed approach
performs matrix factorization and graph-structure learning simultaneously. In the next
section, we propose a novel algorithm to solve Equation (15) and optimize its objective
function with alternating rules.

3.3. Optimization

Solving Equation (15) to provide each variable with an optimized solution at once
is challenging, since all the variables in the loss function are coupled together. Here, we
develop an alternating iterative algorithm to solve Equation (15) efficiently.

3.3.1. Update H and F

We fix S, and Equation (15) becomes

min
H,F
−2 Tr

(
FH>K

)
+ Tr

(
FH>KHF>

)
+ β Tr

(
H>LSH

)
s.t.H > 0, F > 0. (16)

Although the optimization problem of Equation (16) is convex in H only or F only, it
is not convex if both variables are used together, which means that the algorithm can only
converge to a local minimum. To solve the problem of Equation (16), a two-step iterative
strategy can be adopted to alternatively optimize (F and H). Meanwhile, the kernel matrix
K ∈ Rn×n is defined as K ≡ Φ>(X)Φ(X) [42]. Ψ =

[
ψij
]

is defined as the Lagrange
multiplier for constraint H ≥ 0, as Ψ =

[
ψij
]

gives the KKT condition [43] ψijHij = 0.
The Lagrange multiplier matrix for constraint F ≥ 0 is defined in the same way. By re-
peatedly adopting the same iterative procedure to fix the matrices F and H alternatively,
the multiplicative update rules of F and H can be obtained as follows:

Hij ← Hij

(
KF> + βSH

)
ij(

KFF>H + βDH
)

ij
, (17)

Fjl ← Fjl
(KH)jl(

KHH>F
)

jl

. (18)
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3.3.2. Update S Given H and F

The subproblem for updating S is denoted as follows:

min
S

γ Tr
(

K + S>KS
)
− 2θ Tr(KS) + µ‖S‖2

F + β Tr
(

H>LSH
)

s.t. S ≥ 0. (19)

When H is fixed, we use the equality ∑i,j
1
2

∥∥hi − hj
∥∥2

FSij = Tr
(
H>LH

)
. We donate

dij =
∥∥hi − hj

∥∥2
F, and di = ∑n

j=1
∥∥hi − hj

∥∥2
F. Then, Equation (19) can be reformulated

column-wise as follows:

min
Si

γS>i KSi − 2θKi,:Si + µS>i Si + βd>i Si s.t. Si ≥ 0. (20)

The closed-form solution is presented as follows:

Si = (γK + µI)−1(2θKi,: − βdi). (21)

We summarize the detailed updating procedure of AKGNMF in Algorithm 1.

Algorithm 1 Adaptive kernel graph nonnegative matrix factorization (AKGNMF).

Input: X ∈ Rm×n, number of clusters c, parameters β, γ, µ, θ.
Output: H, F, S.

Calculate Kernel matrix K.
repeat

Update H by solving Equation (17).
Update F by Equation (18).
For each i, update the ith column of S according to Equation (21).

until Stopping criterion is met.

3.4. Convergence Analysis

Here, we investigate the convergence of the proposed algorithm on a feasible solution
and conclude with the following theorem:

Theorem 1. For H ≥ 0, F ≥ 0, the objective in Equation (16) is non-increasing under the
updating rules in Equations (17), (18) and (21); hence, it converges.

Detailed proof of the above theorem is illustrated in Appendix A. The proof derives
from the viewpoints in Lee’s [21] and Cai’s [22] papers for NMF and GNMF.

3.5. Complexity

The updating of H, F and S dominantly decides on the main computational cost of
Algorithm 1. For updating H, the complexity is O(kn2). Updating F has the same complex-
ity as H. Both H and F involve the matrix inverse, which requires O(kn2). To update S,
the computational complexity magnitude of matrix inverse operation (i.e., (γK + µI)−1) is
O(n3). Therefore, the whole run-time complexity is equal to O(t(kn2 + n3)) for clustering
n data points into k clusters, where t is the number of iterations.

4. Experiment

In this section, the performances of the proposed AKGNMF algorithm in clustering
tasks on both synthetic and real-world datasets is presented and compared with the perfor-
mances of classical approaches.
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4.1. Datasets and the Evaluation Metrics

We conducted our experiments with seven datasets, including UCI, corpus and face
datasets for clustering experiments. The UCI datasets were Soybean [44], Dermatology [45],
Glass [46] and Vehicle [47]. The corpus dataset was the NIST Topic Detection and Tracking
(TDT2) corpus [48]. YALE [49] and JAFFE [50] are face databases, in which the images of the
same person correspond to the same cluster. Divergent factors such as time, illumination
condition and with/without glasses, lead to various facial expressions or configurations
illustrated by each image. The YALE face database has 165 grayscale images of 15 indi-
viduals, and the JAFFE face database contains 213 images of 7 facial expressions posed by
10 Japanese females. The specification of these datasets is listed in Table 2, including the
numbers of instances and features and the number of clusters.

Table 2. Description of the datasets.

Datasets Instances Features Classes

Soybean 47 35 4
Dermatology 366 33 6

Glass 214 10 6
Vehicle 846 18 4
YALE 165 1024 15
JAFFE 213 676 10
TDT2 653 36,771 10

The clustering tasks were used to verify the performance of our proposed method.
The effectiveness of our method in clustering tasks was quantitatively evaluated using
the following three widely used metrics: accuracy (ACC), normalized mutual information
(NMI) and Purity.

The calculation of accuracy stands for the percentage of data points that are correctly
clustered with respect to the external ground-truth labels. For each data point xi, let gi and
ci be the clustering results and the ground truth cluster label, respectively. Then, the ACC
is defined as follows:

ACC =
∑n

i=1 δ(ĝi, f(ci))

n
where n suggests the overall amount of data points, and f(·) is the best permutation
mapping function that maps each clustered index to a true class label based on the Kuhn–
Munkres algorithm. The Kronecker delta function δ is defined as follows:

δ(gi, ci) =

{
1 : gi = f (ci)

0 : gi 6= f (ci)
.

The NMI is intended to assess the quality of clustering. p(l) and p(l̂) can be induced
from the joint distribution p(l, l̂), as the marginal probability distribution functions of two
sets of clusters L and L̂. H(·) is the entropy function. Then, the NMI can be defined as
follows:

NMI(L, L̂) =
∑l∈L,l̂∈L̂ p(l, l̂)log( p(l,l̂)

p(l)p(l̂)
)

max(H(L), H(L̂))
.

The Purity represents the most common category in each cluster. The purity of the
clusters can be calculated as a weighted sum of the purity values of each cluster, which is
defined as follows:

Purity =
c

∑
i=1

ni
n

P(Ci), P(Ci) =
1
ni

maxj(n
j
i)

where ni is the number of points in cluster Ci, nj
i represents the total number of points

assigned to the j-th cluster for the i-th input group and c is the number of clusters.
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4.2. Comparison Methods

To investigate the performance of our clustering method, we compared our method to
eight recent clustering approaches with significant performances. In general, these methods
can be classified into direct clustering approaches of (graph/kernel) nonnegative matrix
factorization-based clustering methods.

• K-means [51]. The most famous and commonly used clustering algorithm is based on
Euclidean distance. It is widely used among all clustering algorithms because of its
simplicity and efficiency.

• Nonnegative matrix factorization (NMF) [21]. As a classical multivariate analysis
method, it incorporates extra constraints, such as locality, which can be shown to im-
prove decomposition performance, while identifying better local features or providing
a more sparse representation.

• Graph-regularized nonnegative matrix factorization (GNMF) [22]. In this method,
an affinity graph is constructed to encode the geometric information and provide
greater discriminating power than with the standard NMF algorithm.

• Kernel-based nonnegative spectral clustering methods KNSC-Ncut and KNSC-Rcut [23].
The kernel matrix under the kernel-based NMF multiplicative update rules refers to
the nonlinear graph affinity matrix in Ncut and Rcut spectral clustering.

• Clustering with adaptive neighbor (CAN) [34]. Based on adaptive local structure
learning, CAN constructs the classic similarity graph.

• Kernel-based orthogonal graph-regularized NMF (KOGNMF) [23]. By incorporating
the graph constraint into the nonlinear NMF framework, this method formulates
kernel-based graph-regularized orthogonal nonnegative matrix factorization.

• Clustering with similarity preserving (SPC) [8]. Single kernel learning based on
similarity-preserving clustering methods.

• AKGNMF. Our proposed non-negative matrix-factorization method explores the
graph’s structure in the nonlinear feature space, and the similarity matrix is automati-
cally learned from the nonlinear mapping data. The similarity matrix can be learned
jointly with matrix decomposition.

We further present the computational complexity of other competing methods, as shown
in Table 3.

Table 3. Comparison of computational complexity.

Methods Complexity Methods Complexity

K-means O(n2) NMF O(kmn)
GNMF O(kmn) CAN O(kn2)

KNSC-RCut O(kn2) KNSC-NCut O(kn2)
KOGNMF O(kn2) SPC O(kn3)
AKGNMF O(n3 + kn2)

Concerning the parameters of the comparison methods, we tuned the key parameters
meticulously for a fair comparison. To achieve the best performance of each method, we
used the grid-search method to obtain the parameters for the compared algorithms.

4.3. Results
4.3.1. Clustering Results on Synthetic Data

To verify the performance of our method more intuitively, we visualize the clustering
results of two synthetic datasets in Figures 1 and 2. The test dataset in Figure 1 was
generated with 200 points, which are distributed in the pattern of two moons. Points
belonging to each moon formed a cluster. In Figure 2, a 4-cluster dataset with 200 points is
produced. From Figures 1 and 2, AKGNMF can process the data well with nonlinearity.
Significantly, AKGNMF separates the nonlinear clusters with higher clustering accuracy
compared with other methods.
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Figure 1. The two-moon dataset clustering results.
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Figure 2. The 4-cluster dataset clustering results.

4.3.2. Clustering Results on Real Data

For each of the compared methods, we followed the recommended parameter range in
the original paper and used the optimal parameter group. We present the best performance
and the mean value after 20 independent runs.

Figure 3 compares the accuracy results of kernel-based clustering methods on all
datasets. AKGNMF can achieve the best accuracy in most datasets, showing its advantages
in capturing nonlinear manifold structures. Table 4 records results of all methods on all
datasets using the evaluation metrics of accuracy, NMI, and purity. The best results for
every dataset are highlighted in boldface, and the average performances are shown in
parentheses. AKGNMF outperformed other methods in most cases, as follows.

(1) In all the experiments except that with the JAFFE dataset, AKGNMF performed better
than the other NMF-based and graph-based clustering approaches. For the JAFFE
dataset, AKGNMF also presented competitive clustering accuracy.

(2) For NMF and GNMF, the accuracy of AKGNMF on the Glass dataset increased by
39.72% and 15.42%, respectively. Accuracy also improves by 45.48% and 28.94% for
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the TDT2 dataset. Hence, this demonstrates the ability of graph learning to adaptively
capture structural information.

(3) With respect to k-means and the recently proposed kernel-based non-negative spectral
clustering methods KNSC-Ncut and KNSC-Rcut, the improvement is promising.
When comparing these three methods, the accuracy of AKGNMF for all datasets was
found to be the highest.

(4) Instead of directly constructing linear graph adjacency matrix in KOGNMF, AKGNMF
obtains the optimal similarity matrix in the same nonlinear feature space as matrix
factorization. A better graph structure boosts the data-representation performance
of KNMF, which leads to better clustering performance of the AKGNMF method.
For example, compared with KOGNMF, in TDT2, Glass and YALE datasets, the best
accuracy of AKGNMF was found to improved by 11.02%, 7% and 6.06%, respectively.

(5) In terms of similarity preservation, CAN mainly focuses on local similarity, which
may ignore global similarity and lead to suboptimal results. The global structural
information obtained using the AKGNMF method from high-dimensional maps is
more advantageous on most datasets. Compared with SPC, we learned the nonlinear
graph structure combined with the inherent potential features of NMF, and con-
sidered both the kernelized input data and the factorized representation, thereby
realizing better performance of the proposed method in clustering tasks. As the
results show, the best performance of AKGNMF in the dermatology dataset was
improved by 16.94%, 18.19%, and 16.40% in terms of accuracy, NMI, and purity met-
rics, respectively; and the average performance was improved by 11.62%, 14.59%,
and 11.8%, respectively.

0 50 100 150 200 250 300

Number of iterations

20

30

40

50

60

70

80

90

100

A
c
c
u
ra

c
y

dermatology

AKGNMF

SPC

KOGNMF

KNSC-Rcut

KNSC-Ncut

0 50 100 150 200 250 300

Number of iterations

20

25

30

35

40

45

50

55

A
c
c
u
ra

c
y

glass

AKGNMF

SPC

KOGNMF

KNSC-Rcut

KNSC-Ncut

0 50 100 150 200 250 300

Number of iterations

10

20

30

40

50

60

70

80

90

A
c
c
u
ra

c
y

JAFFE

AKGNMF

SPC

KOGNMF

KNSC-Rcut

KNSC-Ncut

0 50 100 150 200 250 300

Number of iterations

5

10

15

20

25

30

35

40

45

50

55

A
c
c
u
ra

c
y

YALE

AKGNMF

SPC

KOGNMF

KNSC-Rcut

KNSC-Ncut

0 50 100 150 200 250 300

Number of iterations

25

30

35

40

45

50

55

60

65

70

75

A
c
c
u
ra

c
y

soybean

AKGNMF

SPC

KOGNMF

KNSC-Rcut

KNSC-Ncut

0 50 100 150 200 250 300

Number of iterations

15

20

25

30

35

40

45

50

A
c
c
u
ra

c
y

vehicle

AKGNMF

SPC

KOGNMF

KNSC-Rcut

KNSC-Ncut

0 50 100 150 200 250 300

Number of iterations

10

20

30

40

50

60

70

80

A
c
c
u
ra

c
y

TDT2

AKGNMF

SPC

KOGNMF

KNSC-Rcut

KNSC-Ncut

Figure 3. The clustering accuracy of kernel methods for the independent number of iterations on
7 datasets.
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Table 4. Clustering results measured on benchmark datasets.

Datasets Kmeans NMF GNMF CAN KNSC-RCut KNSC-NCut KOGNMF SPC AKGNMF

(a) Accuracy (%)
Soybean 72.34 72.34 89.36 74.46 100 (73.82) 85.10 (72.02) 100 (75.10) 97.87 (76.59) 100 (79.78)

Dermatology 94.26 72.95 81.97 95.36 95.90 (84.04) 93.44 (77.19) 95.90 (85.64) 80.60 (78.94) 97.54 (90.56)
Glass 54.21 22.42 46.72 51.40 52.80 (43.06) 48.59 (46.98) 55.14 (43.01) 52.33 (45.46) 62.14 (47.78)

Vehicle 45.27 38.41 45.03 40.54 45.86 (45.48) 43.97 (41.01) 46.09 (45.75) 40.30 (39.00) 51.77 (47.28)
YALE 38.18 42.42 50.30 42.42 61.21 (51.69) 52.12 (45.66) 58.18 (52.18) 60.60 (53.12) 64.24 (55.87)
JAFFE 84.04 82.62 96.71 96.71 96.24 (84.27) 93.42 (74.24) 96.71 (84.88) 97.65 (87.53) 97.18 (87.46)
TDT2 50.38 41.19 57.73 14.24 80.55 (66.09) 50.38 (48.95) 75.65 (66.97) 71.97 (70.82) 86.67 (71.15)

(b) NMI (%)
Soybean 71.08 71.56 81.49 71.38 100 (71.30) 76.02 (67.72) 100 (72.90) 73.67 (73.63) 100 (77.28)

Dermatology 89.47 82.30 85.31 91.18 91.79 (86.80) 87.96 (84.51) 92.33 (86.38) 74.40 (71.41) 92.59 (86.00)
Glass 36.41 2.88 35.53 30.85 32.33 (27.87) 27.76 (23.88) 32.77 (29.15) 33.07 (20.75) 31.75 (22.41)

Vehicle 18.14 10.60 17.25 15.52 18.86 (18.55) 19.47 (15.36) 19.71 (19.22) 12.87 (12.57) 20.91 (18.42)
YALE 45.07 48.41 53.01 45.60 62.12 (55.21) 54.16 (50.04) 61.38 (55.65) 58.62 (54.99) 63.56 (58.89)
JAFFE 88.13 85.03 96.23 96.23 95.52 (87.74) 91.77 (79.53) 96.23 (87.94) 96.43 (91.81) 96.23 (89.96)
TDT2 44.98 35.48 51.80 3.62 71.66 (60.75) 46.66 (41.04) 69.58 (61.00) 74.16 (68.48) 67.71 (61.30)

(c) Purity (%)
Soybean 78.72 78.72 89.36 78.72 100 (79.46) 85.10 (76.38) 100 (79.78) 97.87 (76.59) 100 (83.72)

Dermatology 94.26 84.70 85.79 95.36 95.90 (91.07) 93.44 (85.90) 95.90 (91.17) 81.14 (79.53) 97.54 (91.33)
Glass 58.41 38.78 53.27 54.20 60.74 (58.20) 49.53 (47.71) 61.21 (58.92) 57.00 (46.23) 65.31 (49.15)

Vehicle 45.27 38.77 45.03 41.25 45.86 (45.48) 46.80 (41.57) 46.09 (45.75) 40.30 (39.23) 51.77 (47.28)
YALE 40.00 44.24 52.12 44.24 61.81 (52.69) 53.93 (47.66) 58.78 (53.18) 61.21 (54.63) 64.84 (57.33)
JAFFE 85.91 84.97 96.71 96.71 96.24 (86.94) 93.42 (77.34) 96.71 (86.90) 97.65 (89.57) 97.18 (89.38)
TDT2 52.67 43.95 58.80 14.85 80.55 (67.31) 50.38 (50.17) 75.80 (68.13) 74.42 (72.62) 86.67 (72.37)

The best results for every dataset are highlighted in boldface, and the average performances are shown in
parentheses.

4.4. Parameter Analysis

The AKGNMF algorithm’s multiplicative rules involve the following five parameters:
β, γ, µ, θ and a Gaussian kernel with σ. In the adopted method, we used the Gaussian kernel
and defined it as K(Xi, Xj) = exp(−‖xi − xj‖2/σ2), where σ is the kernel width. To choose
an appropriate value of the parameter σ, a grid search was performed for 40 values of σ in
the range of [0.1, 4] with a step size of ∆σ = 0.1 for datasets Dermatology, Glass, Soybean,
JAFFE and YALE. For the Vehicle and TDT2 datasets, the process is in the range σ = [10, 100]
with ∆σ = 10 (step size). For the trade-off parameter γ, we also used the grid search in
the range of [0.001, 100] in the same way. The important parameters mainly analyzed and
discussed are θ, β and µ. As mentioned previously, θ represents the similarity-preserving
capability, β corresponds to the graph regularization and µ is a trade-off parameter for the
regularization term of S. Take the JAFFE dataset as an example, which demonstrates the
sensitivity of our model to the parameters shown in Figure 4, which works well over a
relatively wide range of values.

4.5. Convergence Study

The proposed updating rules for minimizing the objective function of AKGNMF are
essentially iterative. We performed a theoretical analysis to prove the convergence of the
proposed optimization algorithm. In this subsection, we investigate some examples to
further empirically prove this.

Figure 5 shows the convergence curves of AKGNMF on all datasets. For each figure,
the y-axis is the value of the objective function, and the x-axis denotes the iteration number.
It can be observed that the objective function indeed decreases its value and the objective
value sequences tend to converge within about 100 iterations on most datasets, which
verifies the convergence and effectiveness of the proposed AKGNMF method.
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(a) θ = 1

(b) θ = 10

Figure 4. The influences of parameters on the JAFFE dataset.
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5. Conclusions

In this paper, we proposed a novel kernel graph regularized nonlinear nonnegative
matrix-factorization method, termed adaptive kernel graph nonnegative matrix factoriza-
tion (AKGNMF). We formulated a novel framework to jointly learn an optimal graph simi-
larity matrix and perform nonnegative matrix factorization in the kernel space. The learn-
ing process could effectively help to discover the nonlinear characteristics of input data.
Moreover, an efficient iterative algorithm to solve the problem was developed. Extensive
experiments were conducted on seven benchmark datasets, and the results demonstrate
the superior performance of AKGNMF compared with the state-of-the-art methods.

There are many research issues worthy of exploration in future work. For example,
considering the high computational complexity of graph-learning operations, it is worth
trying to further enhance the efficiency. In addition, we will consider combining graph-
learning-based NMF with deep neural networks for improved performance in the nonlinear
representation of data.
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Appendix A

Apparently, the closed form solution of Equation (21) can be solved as described in
Section 3.3; thus, the value of the objective function of AKGNMF needs to be proved to be
non-increasing under the alternative iterative updating steps in Equations (17) and (18). We
used the auxiliary function method [52], following [37,53]. The convergence of AKGNMF
can be proven in a similar way. We first introduced the definition of the auxiliary function.

Definition A1. A(h, h′) is an auxiliary function for B(h) when the following conditions are
satisfied:

A(h, h′) ≥ B(h), A(h, h) ≥ B(h). (A1)

The auxiliary function is useful because of the following lemma.

Lemma A1. If A is an auxiliary function of B, then B is non-increasing under the updating formula

h(t+1) = arg min
h

A
(

h, h(t)
)

. (A2)

Proof. B
(

h(t+1)
)
≤ A

(
h(t+1), h(t)

)
≤ A

(
h(t), h(t)

)
= B

(
h(t)
)

.

Next, we will show that the updating rule for H in Equation (17) is exactly the same as
the update formula in Equation (A2) with a proper auxiliary function.
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The objective function of AKGNMF can be rewritten as Equation (16) and only consid-
ers the related items of H and F as follows:

‖Φ(X)−Φ(X)FH>‖2
F + β Tr

(
HLH>

)
=

D

∑
i=1

N

∑
j=1

(
Φ(x)ij −

K

∑
k=1

wikhjk

)2

+ β
K

∑
k=1

N

∑
j=1

N

∑
l=1

hjkLjlhlk. (A3)

Considering any element hab in H, we use Bab to denote the part of the objective
relevant to hab. Then, we can gain

B′ab =
(

2F>KFH− 2F>K + 2βHL
)

ab
(A4)

B′′ab =
(

2F>KF + 2βL
)

ab
. (A5)

Since the multiplicative update rules are essentially element-wise, it is sufficient to
show that each Bab is non-increasing under the update step given in Equation (17).

Lemma A2. Function

A
(

h, h(t)ab

)
= Bab

(
h(t)ab

)
+ B′ab

(
h(t)ab

)(
h− h(t)ab

)
+

(
2F>KFH + 2βHD

)
ab

ht
ab

(
h− h(t)ab

)2
(A6)

is an auxiliary function for Bab, a part of Equation (15), which is only relevant to hab.

Proof. Obviously, we have A(h, h) = Bab(h) by the above equation; thus, we only need to
show that A

(
h, h(t)ab

)
≥ Bab(h). In this respect, we compare the auxiliary function given in

Equation (A7) with the Taylor expansion of Bab(h):

Bab(h) = Bab

(
h(t)ab

)
+ B′ab

(
h− h(t)ab

)
+
[
F>KF + βL

]
ab

(
h− h(t)ab

)2
(A7)

to find that A
(
h, ht

ab
)
≥ Bab(h) is equivalent to(

F>KFH
)

ab + β(HD)ab

ht
ab

≥
(

F>KF + βL
)

ab
. (A8)

We can get

(
F>KFH

)
ab

=
k

∑
l=1

(
F>KF

)
al

ht
lb ≥

(
F>KF

)
aa

ht
ab (A9)

and

(βHD)ab = β
N

∑
l=1

ht
alDlb ≥ βht

abDbb ≥ βht
ab(D− S)bb. (A10)

Then, we have the following inequality:(
F>KFH + βHD

)
ab

ht
ab

≥ 1
2

B′′ab. (A11)

Thus, Equation (A10) holds and A
(
h, ht

ab
)
≥ Bab(h).

From Lemma 2, we know that A
(
h, ht

ab
)

is an auxiliary function of Bab(hab). We can
now demonstrate the convergence of Theorem 1.
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Appendix B

Proof of Theorem 1.

Proof. Replacing A
(

h, h(t)ab

)
in Equation (A2) by Equation (A6) results in the update rule:

A
(

h(t+1)
ab

)
= h(t)ab − h(t)ab

B′ab

(
h(t)ab

)
(
F>KFH

)
ab + β(HD)ab

= h(t)ab

(
F>K + βHS

)
ab(

F>KFH + βHD
)

ab
. (A12)

Since Equation (A6) is an auxiliary function, Bab is non-increasing under this update rule.

The proof of convergence for the F update in Equation (18) can be derived by following
Proposition 8 from [37]. The auxiliary function for our objective function as a function of F
is as follows:

A
(
F, F′

)
=−∑

i,k
2
(

KH>
)

i,k
F′i,k

(
1 + log

Fik
F′ik

)
+ ∑

i,k

(
KF′HH>

)
i,k(Fi,k)

2

F′i,k
. (A13)

The proof that this is an auxiliary function of L(F) is given in [37], with the change in
notation F = W, H = G> and Φ(X) = X. This auxiliary function is a convex function of F,
and its global minimum can be derived with the following update rule:

Fab ← Fab

(
KH>

)
ab(

KFHH>
)

ab

. (A14)
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