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Abstract: Ground objects in satellite images pose unique challenges due to their low resolution, small
pixel size, lack of texture features, and dense distribution. Detecting small objects in satellite remote-
sensing images is a difficult task. We propose a new detector focusing on contextual information
and multi-scale feature fusion. Inspired by the notion that surrounding context information can aid
in identifying small objects, we propose a lightweight context convolution block based on dilated
convolutions and integrate it into the convolutional neural network (CNN). We integrate dynamic
convolution blocks during the feature fusion step to enhance the high-level feature upsampling. An
attention mechanism is employed to focus on the salient features of objects. We have conducted a
series of experiments to validate the effectiveness of our proposed model. Notably, the proposed
model achieved a 3.5% mean average precision (mAP) improvement on the satellite object detection
dataset. Another feature of our approach is lightweight design. We employ group convolution to
reduce the computational cost in the proposed contextual convolution module. Compared to the
baseline model, our method reduces the number of parameters by 30%, computational cost by 34%,
and an FPS rate close to the baseline model. We also validate the detection results through a series
of visualizations.

Keywords: small object detection; satellite remote-sensing image processing; computer vision;
deep learning

1. Introduction

With the rapid development of optical satellite remote-sensing technology, quantitative
analysis and processing of satellite images are pivotal in the field of remote-sensing image
interpretation. Remote-sensing image object detection, which involves identifying and
locating objects of interest within images, is applied in various domains, including urban
planning, disaster assessment, precision agriculture, and environmental observation. In
recent years, high-resolution optical satellites have been able to capture sub-meter-level
images and even videos of the Earth’s surface. The total amount of data has expanded
rapidly as a result. Convolutional neural networks [1] (CNNs), which can automatically
extract image features and demonstrate strong generalization performance, have become a
mainstream research focus.

Satellite remote-sensing images exhibit distinct characteristics, including small and
densely distributed objects, the overhead perspective, complex scenes, and potential cloud
and shadow interference. Research on object detection models commonly aims to improve
the detection performance of natural images. The precision index improvement on the
COCO Benchmark [2] serves as an effective reference for enhancing these models. However,
the improvements may not work when applied to satellite images. It is specifically mani-
fested in the following situation: previous research on remote-sensing object detection has
achieved remarkable precision when dealing with common large-scale ground objects, such
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as buildings and ports; however, when it comes to small and dense objects like vehicles,
airplanes, and ships, the detection precision tends to be suboptimal.

As shown in Figure 1, satellite remote-sensing images exhibit distinct differences from
natural images. When viewed from a vertical overhead perspective, the objects of interest,
such as vehicles, airplanes, and ships, possess orientation characteristics—they can face
any direction. These ground objects have small pixel sizes, and most of them belong to
small objects, making their detection more difficult than common objects. These small
objects lack prominent appearance and texture features, and some of them appear like
mosaics. Furthermore, the dense distribution of objects brings additional challenges to
object detection.
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Figure 1. Examples of satellite images. We show the distribution of three categories of ground objects
of interest, ships, aircraft, and vehicles in satellite images.

There are two mainstream object detection frameworks: two-stage and single-stage
approaches. Due to the balance between precision and efficiency, the single-stage ‘You
Only Look Once’ (YOLO) series [3–6] object detectors have attracted the most attention
in the field of real-time object detection. YOLO directly predicts the category, location,
and confidence of objects in the input images, removing redundant predictions by non-
maximum suppression (NMS). However, YOLO is not effective at detecting small objects.

Context and multi-scale representation are the two pillars for small object detection.
Therefore, we focus on these two key points to improve YOLO detection.

If the detector only focuses on local features within the bounding box, distinguishing
ground objects from the background becomes difficult [7]. However, considering features
of context around the objects makes correct detection easier, as shown in Figure 2. The car
object within the orange bounding box is mosaic-like, with an abstract appearance and
difficult to identify. As the range expands to the red box, it can be initially inferred that
there is a car on the road within the orange box. Within the blue box, the car object can be
easily detected. Therefore, contextual features play a crucial role in detecting small ground
objects in satellite images.

The low-level feature maps represent local details in CNNs, while high-level feature
maps convey more semantic information [8]. Multi-scale feature representation combines
the local information from low-level feature maps and rich semantic information from
high-level feature maps. A series of feature pyramids [9–13] are proposed to improve
multi-scale detection. These studies focus on the cross-layer interaction of features and
the effective flow of multi-scale information. Nevertheless, feature representation inside
the layer is rarely considered. Without region proposals, the YOLO algorithm generates
feature maps in which the features of the background constitute the majority but the feature
representation of small objects is weak. Consequently, the features of small objects tend
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to disappear as the layers go deeper. The feature representation of objects is the basis of
multi-scale representation; in other words, it is necessary to pay attention to optimizing the
intra-layer feature representation. The attention-guided feature fusion can help the model
focus on features belonging to small objects and learn them effectively. Additionally, the
representation of multi-scale contextual features can also be learned better.
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Figure 2. Context-assisted object detection. As the range expands, more context is involved, making
detection easier.

In this paper, we improve the small object detector by focusing on contextual infor-
mation and multi-scale feature fusion. We integrate a context extraction module into the
backbone network to learn the reliance of objects on contextual features. We also improve
the upsampler of the feature pyramid to enhance multi-scale feature interaction. Different
from previous research, we realize that the optimization of intra-layer feature represen-
tation can not only help improve the learning of small object features, but also improve
the detection combined with multi-scale context. Consequently, we employ the attention
mechanism to guide multi-scale feature fusion. Based on the above improvements, the pro-
posed framework is named ‘Dynamic Contextual Feature Fusion’. In general, we propose a
lightweight small object detection model for satellite images, integrating the proposed Dy-
namic Contextual Feature Fusion in the YOLO framework (DCFF-YOLO), which improves
the detection precision while reducing the parameter quantity. The contributions of our
work are summarized as follows:

(1) We proposed the lightweight Context Convolution Block to extract both local features
and contextual features, using channel-wise group convolution to reduce the parame-
ters and computations. In our work, the Context Convolution Block is designed to
replace the C2f block in the YOLOv8 backbone network;

(2) We employ the DySample [9] module, a dynamic upsampler, to improve the upsample
path of the multi-scale feature fusion;

(3) To help the model focus on the features of objects and learn the intra-layer feature rep-
resentation of objects, we build the attention-guided feature fusion by integrating the
Convolutional Block Attention Module (CBAM) [10] attention in the feature pyramid;

(4) We have applied the proposed DCFF-YOLO to satellite image datasets, and the
evaluation shows that our research takes advantage of the average precision index
and efficiency.

The structure of this paper is arranged as follows: Section 2 introduces the progress of
related work; Section 3 describes the proposed method; Section 4 shows the experimental
results; Sections 5 and 6 are the discussion and conclusion of the work.

2. Related Works
2.1. Object Detection in Satellite Remote-Sensing Images

The object detection frameworks can be categorized into two-stage and single-stage
approaches. The two-stage object detector first extracts image features and generates
region proposals using the CNN backbone network. Subsequently, the two-stage detector
performs fine classification and regression within these region proposals. R-CNN [11]
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innovatively extracts image features by CNN and generates region proposals. Fast R-
CNN [12] employs ROI (Region of Interest) Pooling to obtain a fixed-length feature vector.
Faster R-CNN [13] proposed the Region Proposal Network to replace Selective Search.
FPN [14] introduced a feature pyramid network for multi-scale feature fusion. Mask R-
CNN [15] proposes ROI Align to preserve the spatial position information of feature points
in the maps. On the other hand, the single-stage object detector directly predicts the location
and category of the objects without generating explicit region proposals. Due to the need
for real-time performance, the single-stage ‘You Only Look Once’ (YOLO) series object
detection models have attracted the most attention in the field of applied research. Cross
Stage Partial Darknet [5] with 53 convolutional layers (CSPDarknet53) was designed and
modified as the backbone network of YOLOv5. YOLOX [16] proposed the decoupled head
to bring anchor-free detection to YOLO. The C2f (CSP bottleneck including 2 convolutional
layers with shortcut) block replaces the C3 convolution block in YOLOv8’s backbone. As
shown in Figure 3, the typical YOLO framework comprises 3 main structures: backbone,
neck, and head. The CSPDarknet53 is modified as the backbone network and extracts
features from the input images. Three feature branches P3, P4, and P5 of the CSPDarknet53
are designed as inputs for the FPN structure to fuse multi-scale features in the neck. Then
three detection heads corresponding to three branches decode features at different scales
and predict bounding boxes of objects.
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Figure 3. Overview of the YOLO framework. YOLO consists of three main structures: backbone
to extract features, neck for feature fusion, and head to predict the boxes. P1~P5 are repeated
convolution modules. As the layers go deeper, the corresponding receptive fields expand.

Object detection in remote-sensing images can further help city traffic observation and
statistics of disaster damage tasks. Some studies learn the rotation-invariant features to
improve object detection in remote-sensing images [17–19]. LSK-Net [20] extracts long-
distance semantic features by large convolution kernel in remote sensing images. FFCA [21]
proposes an efficient detector for small object detection in remote-sensing images based
on YOLOv5. Zhang et al. [22] introduce few-shot learning into the remote-sensing image
object detection task to alleviate the need for annotations. Due to the scarcity of large-scale
publicly available satellite datasets, there is a relative lack of research on small object
detection in satellite remote-sensing images. YOLT [23] uses sliding window slice input to
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process large-scale remote-sensing images. YOLOS [24] adds a tiny object detection head
corresponding to the P2 feature branch based on YOLOX.

2.2. Small Object Detection, Context Extraction, and Multi-Scale Feature Fusion

Small objects are typically defined as objects smaller than 32 × 32 pixels in the image.
Due to the lack of features, small object detection is a challenging task [25,26]. In satellite
remote-sensing images, a notable characteristic is distance consistency, which means all
ground objects lie on a plane with approximately the same distance from the imaging sensor.
Consequently, small objects constitute the absolute majority and are densely distributed
in these images, significantly amplifying the difficulty of object detection in the context of
satellite remote sensing.

Due to the subsampling and pooling process, deep CNN networks generate hierar-
chical feature maps corresponding to various spatial resolutions. In shallow-layer feature
maps, small objects that are less than 32 × 32 pixels can be visible, but semantic features
are lacking in these layers, which is critical for identifying the objects. Small objects usually
exhibit lower resolutions and possess insufficient features. Consequently, the features of
small objects tend to disappear in the deep-layer feature maps through downsampling.

Context extraction and multi-scale feature representation are two key points of small
object detection. Context features can be divided into local contextual features and global
contextual features (or semantic contextual features). Local contextual features reflect
the association between objects and surrounding background pixels. On the other hand,
global contextual features refer to the dependence of an object on the surrounding scene.
Leveraging contextual features to improve small object detection is a widely adopted
practice. For instance, FD-SSD [27] employs multi-branch dilated convolution to extract
context features and improve the general detector. AC-FPN [28] develops an attention-
guided context feature pyramid, introduces the Contextual Feature Extraction Module
(CEM) into the FPN structure to extract contextual features, and the Attention guidance
Module (AM) to discard redundant contextual features. However, AC-FPN [28] just extracts
contextual in the top-level feature map of the FPN, and the multi-scale representation of
contextual features is not considered. Large-kernel convolution with a larger receptive
field is also used to extract the context reliance. LSK-Net [20] employs a set of convolution
kernels of different sizes to extract features and achieves good performance in aerial imagery
but suboptimal in satellite imagery, potentially reflecting suboptimization of small objects.
LSKA [29] proposes a lightweight large-kernel convolution based on depth convolution
and dilated convolution. The highlight of this study is the introduction of the attention
mechanism into the kernel to optimize the intra-layer feature representation.

Different categories of objects rely on context to varying degrees. To qualitatively
describe the dependence of the detection for vehicles, airplanes, and ships, we employ
the dependency coordinate system shown in Figure 4, considering both their individual
texture features and context features.

In the feature fusion step, the low-level feature maps and high-level feature maps are
fused to combine local and semantic features, and further handle multi-scale detection.
FPN [14] proposed the Feature Pyramid Network structure to fuse multi-scale feature
maps from top to bottom. PANet [30] introduces two-way feature fusion, incorporating
a bottom-up fusion way. BIFPN [31] and HSFPN [32] introduce distinctive feature fusion
blocks for weighted feature fusion. ASFF [33] and AFPN [34] modify the pipeline of
adjacent-layer fusion to achieve long-distance cross-layer fusion. Nonetheless, the above
improvements focus on cross-layer feature interaction and rarely consider the intra-layer
feature representation. The semantic features of small objects in remote-sensing images are
weak and can easily vanish from deep layers after downsampling, which potentially leads
to incorrect feature fusion. We have experimented with these fusion improvements and
obtained unexpected performance degradation. The experiment results are described in
the experiments and results section.
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Figure 4. The dependency coordinate system that qualitatively describes the dependence of the
detection for different classes. Airplanes have more prominent texture features, while the detection of
ships and vehicles relies more on contextual features. Inshore ships are difficult to distinguish from
the surrounding context, resulting in lower detection accuracy.

Low-level features are also incorporated into feature fusion to enhance small object
detection. YOLOv8 provides a modified model that introduces the P2 feature layer into the
fusion neck and adds a corresponding detection head. As a result, the model parameters
and the amount of computation increase significantly. However, some categories of objects
in remote-sensing images exhibit mosaic-like patterns and lack distinct texture features, so
introducing the P2 layer features may not work.

3. Method
3.1. Overall Architecture

The overview of the proposed DCFF-YOLO framework is shown in Figure 5. We
develop a novel lightweight dynamic contextual feature fusion model for small object
detection tasks in satellite remote-sensing images. The framework consists of three main
component networks that extract complementary features for small object detection: (1) the
contextual backbone network containing the lightweight Context Convolutional Blocks,
(2) the attention-guided feature fusion neck structure, and (3) the detection head.
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Figure 5. The overview of the proposed DCFF-YOLO model architecture. The framework is mainly
comprised of the Contextual Convolution backbone, the attention-guided feature fusion neck, and
the decoupled YOLO head.

First, we propose the lightweight Context Convolution Block, which not only extracts
local and contextual features but also utilizes channel-wise group convolution to reduce
complexity. The Context Convolution Block is designed to replace the C2f block in the
backbone network. In this paper, we place the Context Convolution Block after the P3,
P4, and P5 layers, respectively. The integration of both local and surrounding context
features yields more accurate detection maps. Secondly, we employ the DySample [9]
block to replace the simple upsampling in the feature fusion neck structure. DySample,
which is an ultra-lightweight and effective dynamic upsampler, can adaptively adjust
the weight of the convolution kernel according to the high-level feature map input, and
further enhance the dense detection. Thirdly, we introduce CBAM [10] attention in the
neck structure to guide the detection head focus on potential object features. CBAM [10]
is a lightweight attention mechanism that combines spatial domain and channel domain
attention. Essentially, the attention mechanism decomposes features, further adjusting
weights to improve the representation of key features and discard redundant features.

3.2. Context Convolution Block

Dilated convolution expands the receptive field by altering the spacing of the convolution
kernel grid. In Figure 6a, a standard convolution employs a 3 × 3 convolution kernel, resulting
in a receptive field size of 3. Alternatively, Figure 6b demonstrates that dilated convolution
samples points on a broader pixel grid with a dilation rate of 2. The dilated convolution
enlarges the receptive field to a size of 5, thereby extracting contextual information.

Although dilated convolution expands the receptive field, the number of convolution
sampling points remains unchanged. In other words, dilated convolution involves sparse
sampling. Therefore, the dilation rate within a certain range may be effective, or it can
lead to discontinuity in sampling and irrelevance of long-distance sampling points. In
satellite images, a small range of surrounding context is sufficient to improve the detection
of small objects. However, an overly large receptive field may incorporate features from
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other objects, especially in scenes with densely distributed objects. Based on the above
considerations, a small and judiciously applicable expansion rate of 2 is used in this paper.
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The structure of the Context Convolution Block is shown in Figure 7. Channel-wise
grouped convolution is employed to reduce the computation. The block contains two
branches: the local branch flocal(·) uses standard convolution to extract local features and the
context branch fcontext(·) uses dilated convolution to extract surrounding context features
with a dilation rate of 2. The reliance of detection on local and contextual features is subject
to variation in feature maps with receptive fields of different scales. Therefore, the features
from both branches are concatenated to form the joint feature, which serves as the input
for the Multi-Layer Perceptron (MLP). In this step, learnable weights are allocated to both
local and contextual features.
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surrounding context extractor f context(·), joint feature extractor f joint(·), and global extractor f global(·).

By concatenating and regularizing the outputs of both branches, the joint feature
f joint(·) can be obtained.

f joint(F) = ReLU(BatchNorm( flocal(F), fcontext(F)))
= ReLU(BatchNorm(Flocal , Fcontext))

(1)

Equation (1) represents the calculation of the joint features, where Flocal and Fcontext
represent the features obtained by the local feature extractor flocal(·) and the contextual
feature extractor fcontext(·), respectively, and ReLU denotes the activation function.

Finally, f global(·) assigns learnable weights to local and contextual features by employ-
ing a pooling layer and two fully connected layers to refine the joint feature of both local
features and the surrounding context features. The weighted feature is computed as:
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fweighted(F) = MLP2(AvgPool(ReLU(BatchNorm( flocal(F), fcontext(F)))))
= W1W0(ReLU(FAvg

local , FAvg
context))

(2)

where W0 and W1 denote the weights of the two fully connected layers, and FAvg
local and

FAvg
context denote the output of Flocal and Fcontext, respectively, after average pooling.

The global feature is computed as:

fglobal(F) = f joint(F) + fweighted(F) (3)

Instead of using the 1 × 1 pointwise convolution following depthwise convolution,
we introduce an additional branch involving pooling and MLP layers to adjust the weight
of local features and context features. In our experimental validation, 1 × 1 convolution
can transmit information between channels, thereby breaking the independence of local
features and surrounding context features and resulting in suboptimal detections.

3.3. Attention-Guided Feature Fusion

The FPN [14] and PAN [30] are combined as the feature fusion neck structure com-
monly known as PA-FPN in YOLO. An overview of the YOLO framework with the PA-FPN
structure is shown in Figure 8.
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pler are asymmetrical in the PA-FPN structure.

A series of structural diagrams, similar to Figure 8, conceals the asymmetry between
the low-level feature downsampling and high-level feature upsampling processes. Specif-
ically, the downsampler is learnable and relatively complex, whereas the upsampler is
parameterless and very simple.

When focusing on the PA-FPN network, we observe that the low-level feature map
undergoes size reduction through two repeated layers: Convolution+Batch Normaliza-
tion+Activation Function. The layer is named Convolution Block Layer, abbreviated as
CBL, which is a learnable layer. Upsampling is about modeling geometric information of
images or feature maps. Notably, the PA-FPN network employs a straightforward nearest
upsampling function to enlarge the scale of feature maps. This upsampling function is a
simple linear mapping function.

Given an image, a binary function can be used to represent the mapping of pixel
coordinates to pixel values:
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v = f (x, y) (4)

where v denotes the pixel value, (x,y) denotes the position of pixel, f (·) denotes the pixel
value distribution.

When the image is upsampled by the ratio of s, the enlarged image is mapped to:

v = f (
[

x′

s

]
,
[

y′

s

]
) (5)

where (x′,y′) denotes the position of pixel in the enlarged image, and [·] denotes the
rounding operator.

During the nearest upsampling process, the position and texture information of the
feature points is partially lost. In the feature fusion step, it may lead to the misalign-
ment of high-level semantic features and low-level local features, impeding the feature
representation of small objects.

Dynamic upsampler is employed in the feature map upsampling process to adjust
the upsampling parameters for the input feature map. This helps improve feature rep-
resentation while maintaining an acceptable computational cost. DySample [9] is an
ultra-lightweight and effective dynamic upsampler commonly used for image amplifica-
tion. We introduce the DySample block to replace the naive upsampling function in the
feature fusion step. The structure of DySample is shown in Figure 9.
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denotes the grid sampling point coordinates, and O denotes the point position offsets generated by
the dynamic sampling point generator.

Based on point sampling theory, DySample achieves dynamic convolution by ad-
justing the position offset of the sampling point, which is different from the kernel-based
upsampler. At a complexity close to linear interpolation, it is designed to enhance the
feature representation.

CBAM [10] (Convolutional Block Attention Module) is a lightweight and general
attention module that combines channel and spatial attention mechanisms. Figure 10
shows the structure of CBAM attention. We integrate CBAM attention into the fusion neck
for adaptive feature refinement.

The contextual convolution backbone extracts both local and contextual features, and
transfers features into the fusion neck hierarchically. A sequence of layers in the depth of
the network corresponds to spatial receptive fields of different scales, which means that
detection at various levels relies on distinct dependencies related to contextual features and
local features. The CBAM [10] attention assists in learning the importance weights of these
contextual and local features, thereby helping the model to focus on the salient features
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of objects. In this paper, CBAM is placed at the fusion neck, following the C2f module, as
shown in Figure 5.
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tion and spatial attention. The channel attention is globally applied, while the spatial attention
focuses locally.

For channel attention, the input is dimensionally reduced through pooling in the
spatial dimension, and then the channel attention is learned by the fully connected layer.

Attentionchannel(F) = sigmoid(MLP(AvgPool(F)) + MLP(MaxPool(F)))
= sigmoid(W1(W0(Fc

avg)) + W1(W0(Fc
max)))

(6)

Equation (1) represents the calculation procedure of channel attention, where F denotes
the input features, AvgPool and MaxPool denote the average and maximum pooling layers,
and MLP denotes the fully connected layer, whose weights are denoted as W1 and W0.

When it comes to spatial attention, the input features are dimensionally reduced
through average pooling and maximum pooling in parallel, and then are concatenated as
the input of a convolution layer. The spatial attention is computed as:

Attentionspatial(F) = sigmoid( f [AvgPool(F), MaxPool(F)])
= sigmoid( f [Fs

avg, Fs
max])

(7)

where f (·) denotes a convolution operation and sigmoid(·) denotes the activation function.
The two attention modules, channel and spatial, focus on different aspects: ‘what’ and

‘where,’ respectively. In this paper, the spatial-channel sequential process is designed to
highlight features of small objects while suppressing redundant features.

4. Experiments and Results
4.1. Metrics

Precision, recall, and mean average precision (mAP) are usually used as the accuracy
indexes. Precision is computed as:
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P =
TP

TP + FP
(8)

where P denotes the precision index, TP denotes the number of true-positive samples, and
FP denotes the number of false-positive samples. True-positive refers to objects correctly
detected by the model, while false-positive denotes samples that are incorrectly recognized
as objects by the model but actually belong to the background in the ground truth.

Recall is computed as:

R =
TP

TP + FN
(9)

where R denotes the recall index and FN denotes the number of false-negative samples.
False-negative refers to the missed objects.

We can obtain the precision-recall curve of the detection results. The average precision
(AP) is computed as:

AP =
∫ 1

0
P(R)dR (10)

The computation of mAP (mean average precision) of multiple category detection is
given as:

mAP =
1
N

N

∑
k=1

APk (11)

where N denotes the number of categories.
In YOLO, the running time of the object detection neural network mainly consists of

three parts: image preprocessing time tpre, inference time tinference, and post-processing time
tpost. The preprocessing refers to the algorithm program decoding images into tensors and
assigning grids to input images. Inference time refers to the inference time of the neural
network. Post-processing mainly takes time in the NMS process.

td = tpre + tin f erence + tpost (12)

Frame Per Second (FPS) is commonly used to reflect the average operating efficiency
of the object detection neural network in processing the images of the current dataset. It is
defined as the ratio of the number of images to the total running time or as the reciprocal of
the mean running time for each image:

FPS =
N

N
∑

i=1
ti
d

=
1

Avg(td)
(13)

where N denotes the number of images, ti
d refers to the running time corresponding to the

ith image, and Avg(td) refers to the mean running time of each image.

4.2. Implementation Details and Dataset

The experiments are implemented on the platform with 4 NVIDIA 3090(24 G) GPUs
and Intel® Xeon® Platinum 8260 CPU @ 2.40 GHz, 96 cores, 192 threads. The system
version is Ubuntu 18.04 LTS. We conduct the experiment in a virtual environment with
PyTorch 2.2.1 and CUDA 12.1. The input image size is 800 × 800 pixels and the batch size
of the training data is 16. We employed the stochastic gradient descent (SGD) function
as the optimizer to train the model. The hyperparameters of SGD are set to 0.937 of the
momentum, 0.01 for the initial learning rate, and 1 × 10−4 for the final learning rate. Every
training process lasts 300 epochs. The intersection over union (IoU) threshold for NMS
during validating is set to 0.5. Considering the substantial disparity between natural images
and satellite images, we refrain from utilizing pre-trained weight initialization parameters,
so as to minimize any unwarranted interference at the beginning of the model training
process.
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The xView dataset is a large-scale public satellite object detection benchmark, including
846 large-scale satellite images, covering an impressive area of over 2000 square kilometers
on the Earth’s surface. The original xView dataset contains not only small objects, but
also larger objects such as windmills, bridges, and airports. We processed the format
of annotations and removed the annotations of larger-sized objects. After processing
the dataset, a total of 9296 images are obtained, containing 445,473 objects. We have
reconstructed the labels of the objects into three categories: vehicle, ship, and airplane.
Table 1 shows the number of objects in these categories and the mean pixel size of the
bounding boxes.

Table 1. Statistics of the processed xView dataset.

Class Objects Quantity Mean Size

Vehicle 442,636 12.4
Ship 1606 14.1

Airplane 1231 27.9

The mean sizes of objects in all selected categories are very small, making detection
difficult. Furthermore, the xView dataset covers a wide range of land surface and contains
diverse scenes, including some extremely challenging areas. Figure 11 displays several
challenging image examples, including complex backgrounds, extremely dense object
distributions, heavy reliance on contextual features, and occlusion caused by clouds.
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With reference to the characteristics of the dataset images, we discuss the difficulties
in object detection in satellite images. A small bounding box positioning deviation causes
a significant decrease in the Intersection over Union (IoU) rate of small objects, but has
less impact on large objects. As a result, small objects have strict requirements for detector
bounding box positioning. Difficulties also arise due to some challenging scenes: the
appearance of some objects is not obvious, while the background features of the scene
are complex, as shown in Figure 11a; some objects are very densely distributed and the
bounding boxes overlap each other, making it difficult for the detector to distinguish the
objects, as shown in Figure 11b; some objects rely heavily on contextual features, such as
the ship relying on the wake in Figure 11c; cloud coverage obscures object features, as
shown in Figure 11d.

4.3. Quantitative Results

For a fair comparison, we turn off the online data augmentations during training. We
deploy our proposed method based on the YOLOv8-s model and set the YOLOv8-s model
as the baseline. We transplanted the state-of-the-art feature fusion methods and models
based on YOLOv8, trained them on the xView dataset, and compared the performance of
these models and improvements with the model we proposed. We compared the baseline
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model, multiple SOTA models and their variants, and the proposed model. The results are
shown in Table 2.

Table 2. Performance comparison of different models for object detection on the xView dataset. The
best results are in bold.

Model mAP50:95/% mAP50/%

Baseline 33.8 75.5
YOLOX [16] 20.4 52.7

Mask-RCNN [15] 22.2 59.6
Swin-Transformer [35] 26.2 64.3

YOLOv8-s-P2 30.6 70.4
LSK-Net [20] 25.3 65.4

LSKA [29] 36.2 75.8
AFPN [34] 23.1 57.8

ASF-YOLO [36] 30.7 72.5
BIFPN [31] 27.9 71.2

HS-FPN [32] 33.1 72.5
DCFF-YOLO (ours) 37.3 (+3.5) 77.6 (+2.1)

The compared models consist of three groups: backbone networks, context extraction
networks, and multi-scale fusion improvements. The comparison results will be discussed
in groups. (1) Backbone group: YOLOX [16], Mask RCNN [15], Swin-Transformer [35],
and YOLOv8-s-P2 are in the compared backbone group. YOLOX, Mask RCNN, and
Swin-Transformer are not good at small object detection. Thanks to the exquisite module
design, the baseline model, YOLOv8-s, has achieved a high average precision on the xView
dataset, significantly surpassing the previous backbone models. YOLOv8-s-P2 denotes an
additional tiny-objection detect head with a P2 feature branch in the YOLOv8 neck structure.
Nevertheless, the performance of YOLOv8-s-P2 is lower than the baseline YOLOv8-s model,
revealing that low-level features perhaps mislead detection. (2) Context extraction group:
Two large kernel convolutional networks, LSK-Net [20] and LSKA [29], are in the group.
The performance of LSK-Net on the dataset is poor. Meanwhile, the lightweight designed
LSKA has gained performance improvements compared to the baseline. (3) Multi-scale
fusion group: AFPN [34], ASF-YOLO [36], BIFPN [31], and HS-FPN [32] refer to the fashion
or state-of-the-art feature fusion models, which are believed to improve the fusion step
and enhance the detection performance. Unexpectedly, these models exhibit an average
precision index degradation on the xView dataset. Notably, the AFPN model costs the
largest computation and gains the most performance degradation, which may be caused
by unguided cross-layer feature concatenation. Our proposed model has achieved the best
average precision index, improving the 3.5 mAP50:95 index compared to the baseline model.

With reference to the performance comparison, we discuss the improvements for small
object detection in satellite images. First, context is beneficial for small object detection,
which can be verified by the improvement of LSKA and our proposed DCFF-YOLO. Second,
unguided cross-layer feature interaction leads to performance degradation, as verified by
the multi-scale group. Optimizing the intra-layer representation of small objects is the
basis for cross-layer interaction. Third, LSKA introduces an attention mechanism to the
backbone. The comparison of LSK-Net and LSKA reveals the benefits of the attention-
guided intra-layer representation.

We conduct an ablation study to verify the contribution of each proposed module, as
shown in Table 3.

The Context Convolution block, DySample [9], and CBAM [10] attention module have
effectively improved the model performance by solving small object detection of satellite
remote-sensing images. Comparing the Context Convolution block and DySample [9],
the former improves both the mAP50:95 and mAP50, while the latter mainly improves the
mAP50 index. It reveals that contextual information helps detect more objects and achieve
more accurate localization, while dynamic convolution tends to help find more objects by
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improving high-level feature upsampling. When combining all three modules, it is observed
that the mAP and mAP50 indexes of the model are boosted remarkably. It underscores the
valuable contribution of the CBAM [10] attention in guiding the feature fusion.

Table 3. The result of the ablation study. The best results are in bold.

Method Metrics

Context Conv DySample [9] CBAM [10] mAP50:95/% mAP50/%

33.8 75.5
✓ 35.8 77.0

✓ 35.3 75.6
✓ ✓ 35.8 75.5
✓ ✓ ✓ 37.3 77.5

For the goal of real-time object detection, we propose a lightweight convolution
module and integrate the lightweight upsampling and attention module into the network
to build the proposed lightweight model based on YOLO for small object detection. We
conducted a comprehensive comparison, analyzing the parameters, computational cost,
and the frame per second (FPS) index of the proposed model among our proposed model,
the baseline model, and comparison methods. The comparison is shown in Table 4.

Table 4. The scale and efficiency comparison of models. The best results are in bold. An upward arrow
indicates that the higher the indicator, the better, while a downward arrow indicates the opposite.

Model ↓Parameters ↓FLOPS ↑FPS

Baseline 11.1 M 28.4 G 168.1
AFPN [34] 8.9 M 38.5 G 57.4
BIFPN [31] 7.3 M 25.2 G 138.8

Context Conv 7.5 M 19.5 G 168.4
DCFF-YOLO (ours) 7.8 M 18.8 G 157.8

We have proposed a lighter and more efficient object detection model that outperforms
the baseline model on satellite image datasets. In Table 4, ‘Context Conv’ refers to the
model where we incorporate the proposed Context Convolution block into the YOLOv8-s
architecture. The indexes highlight the contribution of the Context Convolution block
for light-weighting. Building upon this foundation, our proposed DCFF-YOLO detector
only introduces just a few additional parameters, resulting in further improvements to
average precision.

4.4. Visualization
4.4.1. Training Process

We record the training process as shown in Figure 12. We can find that the proposed
method has advantages in both accuracy and convergence.

4.4.2. Visualization of the Feature Response

To demonstrate the effectiveness of our improvements, we visualize the model’s
feature maps in the form of heatmaps in Figure 13. Compared to the baseline model, the
feature response of DCFF has the following improvements: (1) DCFF detects more ground
-truth objects. (2) DCFF handles dense detection better. (3) The feature responses of DCFF
at the object boundary and in surrounding contexts are stronger, showcasing the effect of
the contextual convolution block and the attention module.
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Figure 13. The heatmap of the feature responses. The redder the response, the more significant the
feature representation; conversely, the bluer it is, the closer it is to the background.

4.4.3. Visualization of the Detection

We have also conducted a comparative visualization experiment, displaying TP, FP,
and FN objects in Figure 14. TPs (green boxes) represent correct detections, FPs (blue boxes)
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correspond to wrong detections, which denote detections of the background as objects, and
FNs (red boxes) denote missed detections.
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Figure 14. Visualization of detections. Green boxes indicate correct detections, red boxes indicate
missed detections, and blue boxes indicate redundant detections.

When we focus on the red boxes (missed detections), our proposed DCFF demonstrates
a slight advantage in dense detection compared to the baseline model. The advantage is
mainly reflected in densely distributed scenes, for example, in the middle left of the 2nd
(from left to right) image and bottom right of the 3rd image in Figure 14b.

When it comes to the blue boxes (wrong detections), DCFF recognizes objects from
the background more accurately. For example, in the 1st image of Figure 14a the baseline
mistakenly detects the warehouse on the shore as an object, while DCFF avoids this wrong
detection in Figure 14b. Furthermore, there are some missing annotations in the dataset,
which means that some blue boxes are actually correct detections.

5. Discussion

In satellite images, small objects may lack discernible texture features. Our research
demonstrates that enhancing small object detection involves emphasizing contextual fea-
tures. This approach aligns with the method of combining the surrounding context to
identify objects for humankind. However, introducing low-level features without proper ar-
rangement can escalate computational complexity and potentially result in reduced average
precision. Through a series of experiments and analyses, we have found the effectiveness of
adjusting intra-layer feature representation. In addition, the attention mechanism is crucial
in multi-scale feature fusion and can facilitate other potential improvements.

At present, there are only a limited number of large-scale public satellite image object
detection datasets. The average precision index of object detection is notably affected by
the quality of the dataset. An example is taken from Figure 14 to show a missing annotation
in Figure 15. Obviously, both detectors correctly detect the ship object.

Our improvements rely heavily on accurate annotations, but it is hard to accurately
label all satellite image objects. This limitation manifests in the improvement of precision
indexes. In typical object detection scenarios with normal-style images, improvements
resulting from model enhancements are often more pronounced in the mAP50 indicator than
in the mAP50:95. However, our research demonstrates a different trend: the improvement in
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mAP50:95 surpasses that of mAP50. This discrepancy may arise from the model’s challenge
in identifying objects that were previously missed by the baseline model.
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Figure 15. Missing annotation of the dataset are shown in the blue box. Both of the baseline and
DCFF correctly detect the ship object, but these detections are marked as wrong detections. The green
boxes indicate the other correct detections.

6. Conclusions

In this paper, we have developed a lightweight and high-performance object detection
model tailored for satellite remote-sensing images. The objects of interest are mostly small
objects, which poses great challenges to detection. We improve the small object detector by
extracting local and contextual features, optimizing the intra-layer feature representation,
and introducing an attention mechanism to the multi-scale feature fusion. We propose the
Context Convolution block to extract local and contextual features to enhance the detection.
The Context Convolution block both extracts more features and reduces computational cost.
In the feature fusion step, we employ the DySample [9] upsampler and CBAM [10] attention
to improve fusing features. As observed in comparative experiments, unguided cross-layer
concatenation of features will lead to degradation of detection performance. Due to the
contribution of these modules, we have achieved a 3.5% mAP50:95 improvement compared
to the baseline model, shedding light on the mechanism of small object detection in satellite
images. Additionally, our model boasts a lightweight design. The proposed Context
Convolution block reduces the computational cost, and the two introduced modules also
follow a lightweight style. Consequently, we achieve the average precision improvement
with only 70% of the parameters and 66% of the FLOPS, and the FPS remains comparable
to the baseline model.
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