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Abstract: This study proposes a deep learning method for pavement defect detection, focusing
on identifying potholes and cracks. A dataset comprising 10,828 images is collected, with 8662
allocated for training, 1083 for validation, and 1083 for testing. Vehicle attitude data are categorized
based on three-axis acceleration and attitude change, with 6656 (64%) for training, 1664 (16%) for
validation, and 2080 (20%) for testing. The Nvidia Jetson Nano serves as the vehicle-embedded
system, transmitting IMU-acquired vehicle data and GoPro-captured images over a 5G network to
the server. The server recognizes two damage categories, low-risk and high-risk, storing results in
MongoDB. Severe damage triggers immediate alerts to maintenance personnel, while less severe
issues are recorded for scheduled maintenance. The method selects YOLOv7 among various object
detection models for pavement defect detection, achieving a mAP of 93.3%, a recall rate of 87.8%, a
precision of 93.2%, and a processing speed of 30–40 FPS. Bi-LSTM is then chosen for vehicle vibration
data processing, yielding 77% mAP, 94.9% recall rate, and 89.8% precision. Integration of the visual
and vibration results, along with vehicle speed and travel distance, results in a final recall rate of
90.2% and precision of 83.7% after field testing.

Keywords: image recognition; deep learning; pavement inspection; intelligent inspection

1. Introduction

Land transportation encompasses railroad and highway systems, with highways as
vital infrastructure in Taiwan, which is crucial for national economic development. Taiwan’s
highway network includes national, provincial, city, county, district, and village highways,
totaling 21,757 km [1]. From January to August 2011, the monthly average vehicle count
reached 2826.45 million per kilometer [2], showing highway transportation’s colossal
capacity and importance. Highways, fixed vehicle movement, and parking facilities [3]
aim to deliver safe, fast, reliable, convenient, and high-volume service conditions, relying
on robust pavement structures for safe travel. Pavements between tires and roadbeds
bear vehicular traffic loads and environmental stressors. They distribute these loads layer
by layer, mitigating external forces to the natural soil layer below. Pavement design
influences vehicle speed, comfort, safety, and operating costs. Modern highway and urban
road pavements should cater to daily traffic volumes, minimizing maintenance expenses,
enhancing driving efficiency, and improving comfort and safety.

As pavement health monitoring plays a crucial role in pavement management systems,
this issue has been a hotspot of transportation research since the middle of the 20th century.
For this reason, governments allocate a significant budget annually to provide the necessary
facilities and equipment to find a high-speed, accurate, safe, and automatic detection
method. According to the surveys [4,5], the main steps of automatic pavement assessment
include data acquisition, data processing, and pavement interpretation. The traditional way
of pavement assessment is a visual inspection that human experts can conduct as the easiest
method. Other methods have been surveyed in [5] for detecting the isolation of different
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kinds of distress in pavement surface images. Whether these approaches are supervised,
unsupervised, or semi-supervised, various techniques can be grouped into five methods:
(1) Statistical Method, (2) Physical Method, (3) Filtering Method, (4) Model-Method, and
(5) Hybrid Method.

Motivated by the progress achieved by deep learning (DL), researchers have developed
extensive crack segmentation models based on DL methods with significantly different
levels of accuracy [6]. Although many of the models provide satisfying detection perfor-
mance, why these models work still needs to be determined. The objective of [6] is to
survey recent advances in automated DL crack recognition and provide evidence for their
underlying working mechanism. They first reviewed 54 DL crack recognition methods to
summarize critical factors in these models. Then, a performance evaluation of fourteen
famous semantic segmentation models is conducted using the quantitative metrics: F-1
score and mIoU.

Although many DL-based research studies are given in [6] at this stage studying
various automated highway inspections, there are still areas for speed improvement [7]
while maintaining some accuracy rate. Some misjudgments not only do not reduce human
resources and improve the efficiency of inspection and maintenance, but on the contrary,
they also result in the need for many personnel to screen the identification results. This
study adopts YOLOv7 [8] to solve the problem of workforce inspecting efficiency and
improve the whole process throughput, which balances accuracy and speed as the core
detection function. In addition to reducing false alarms, IMU is adopted as a filter, and
therefore, an integration mechanism is investigated to fuse visual information and car
altitude data. The GoPro camera and inertial measurement unit are deployed to reduce
hardware costs for road pavement inspection. The data are transmitted via a 5G mobile
network and then handed over to the server for recognition and storage. When the
seriousness is detected to the extent that it affects traffic safety, an alarm will be issued
immediately to notify the maintenance personnel to go to the emergency repairs, thus
accomplishing the goal of automated inspections.

This research aims to create a system that can replace human inspection, reduce the
labor required for inspection, and improve inspection efficiency. The automated inspection
system, from image acquisition, image processing, and image interpretation to inspection
results storage, can be fully automated, and the data can be managed in a unified way
to reduce the risk of omission caused by the workforce. This study develops an efficient
front-end system on an Nvidia Jetson Nano to capture pothole images and vehicle attitude
data and transmit them to the back-end server via a 5G mobile network to achieve the
above goal. An efficient back-end system is also developed by utilizing parallel threads for
pavement categorization and result storage to Mongo Database, which are then queried by
the maintenance personnel for review and repair.

Although the road pavement damage dataset is more accessible than the railroad
defect dataset, the relative environment is more complex when considering different kinds
of roads. The primary goal of this study is to avoid obstructing other vehicles, which may
make it impossible to recognize the defects effectively. Roads, unlike railroads, are more
complex environments with defects that have been filled in the past, and these repaired
defects are visually very similar to pothole defects. Discriminating between these two
categories is the second objective of this study, which requires a large amount of data for
training. Considering road vehicles and weather factors, this study uses data enhancement
to increase the dataset’s diversity and strengthen the recognition effect.

While collecting data on pavement damage, several categories were found to be
particularly difficult to define, with the category of pavement cracks being the most serious.
The main reason for this is that cracks usually occur regionally, i.e., for one crack, there
are two to three similar cracks around it, and the ends of the cracks are connected, which
leads to confusion when labeling the data, which in turn leads to errors in the training
set and the test set during training, as shown in Figure 1. However, these errors could be
corrected by post-processing all the captured frames. Overall, the main contribution of this
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study is to develop an efficient pavement defect detection system that includes parallel
thread implementation on both the front and back end. By utilizing YOLOv7 and Bi-LSTM
as the detection engine, the execution speed of the proposed back-end system achieves
30–40 FPS on a PC with CPU Intel i9-12900K, GPU Nvidia RTX 3090, and RAM 64 GB. A
fusion mechanism is also proposed to integrate the visual and vibration results for false
alarm filtering.
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2. Related Works
2.1. Road Pothole Inspection

The most mature techniques for road inspection are using laser 3D modeling [9],
ultrasound [10], and radar [11]. Due to the high hardware cost, many domestic and
international studies are trying the object detection method in computer vision for road
inspection. According to Aparna et al. [12], an infrared camera is used to capture the image
of potholes on the road surface, and after object recognition, the temperature difference
between the inside and outside of the pothole is used to detect whether it is a real pothole
or not. After testing various neural network models, it is concluded that an accuracy rate
of 95% can be achieved when using the neural network ResNet 152. However, the model
of this neural network needs to be bigger, and the recognition speed of the system could
be faster.

The use of ultrasonic waves for road pothole detection was proposed by Shenu
et al. [13]. Because water absorbs fewer sound waves in the 400 nm to 450 nm range,
this system determines potholes by detecting whether more waves in the 400 nm to 450 nm
range are reflected from the pothole. However, this method is limited because water must
accumulate in the pothole. So, if the ground is dry during the inspection, the system will
not be able to work. Nienaber et al. [14] used Canny edge detection for pothole detection
through conventional image processing and obtained a recognition recall rate of 74.4% and
an accuracy rate of 81.8%. However, more than this recognition rate is needed. Based on
the opinions collected in the past, the inspectors would like to have a recognition accuracy
of at least 90% to be sufficient.

Varadharajan et al. [15] mentioned that the background noise is first removed using
semantic segmentation, and the cracked regions are separated from the non-cracked areas
using the SLIC Superpixel Algorithm [16]. In the final classification stage, MISVM [17] is
used to classify the separated cracked regions and determine the authenticity of the cracked
areas. The final accuracy and recall rates still need to be higher than those of manual visual
inspection (50%, 70%), which are only 40% and 64%. In [18], JICA and the Ministry of
Transportation of the Republic of Tajikistan mentioned that the use of lasers for detecting
road pavement smoothness was introduced into the International Roughness Index (IRI)
to assess the condition of the road pavement. As shown in Figure 2, the classification of
damage categories according to the index range was formalized for real-world scenarios.
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2.2. Object Detection Neural Networks

This study uses a visual neural network to detect road pavement defects and determine
whether the road pavement is damaged. Because the server needs real-time streaming
for maintenance personnel to view the status, this study emphasizes using a one-stage
object detection neural network. Compared with YOLOv3 [19], YOLOv4 [20] significantly
improves the detection accuracy of the model while guaranteeing the recognition speed.
It reduces the hardware usage requirement, obtaining 43.5% average precision (AP) and
65.7% average precision at IOU = 0.5 (AP50) on the MS COCO dataset and 10% and 12%
improvement in AP and FPS, respectively. YOLOv4 is twice as fast as EfficientDet [21] with
the same recognition capability.

The most crucial feature of YOLOv6 [22] is that the recognition speed is greatly
improved with higher mAP than YOLOv5 [23]. YOLOv6-nano can reach 35.0% AP accuracy
on COCO and 1242 FPS recognition speed on T4. YOLOv6-s can reach 43.1% AP accuracy
on COCO and 520 FPS. YOLOv6 adopts a hardware-friendly backbone network design
and introduces the RepVGG style structure [24], which can generate more branches during
training. In the actual deployment, the structure can be equivalently fused into a single
3 × 3 convolutional quintic structure, which can more effectively utilize the computing
power of GPUs and significantly increase the computing speed of neural networks. In
addition to increasing the speed of neural network operation, YOLOv6 adds Decoupled
Head [22] and two new 3 × 3 convolutional layers to maintain the accuracy of YOLOv6.

YOLOv7 [8] not only outperforms all YOLO series, transformer-based [25], convolutional-
based, etc., models in terms of accuracy, such as the most popular YOLOR [26], PPY-
OLOE [27], YOLOX [28] or Scaled-YOLOv4 [29], but also achieves excellent results in terms
of speed. The authors of YOLOv7 mentioned four architectures for model improvement in
their paper, namely, VoVNet, CSPVoVNet, ELAN, and E-ELAN. Among them, CSPVoVNet
is a combination of CSPNet and VoVNet, and the design of the architectures not only
considers the number of parameters, the amount of computation, and the computational
density but also analyzes the gradient paths so that the weights of different layers can learn
more diverse features, making the inference faster and more accurate. In addition, YOLOv7
uses a new architecture, E-ELAN, which is based on ELAN with expand, shuffle, merge,
and cardinality methods, which maintains the original gradient path and enhances the
model’s learning ability.

In addition to model optimization, YOLOv7 also optimizes the training process.
YOLOv7 uses Model Re-Parameterization, which is divided into Model-Level and Module-
Level. There are two approaches to Model-Level Re-Parameterization. One is to train
multiple models with different training data and then perform weighted averaging on
these models. The other is to weigh the weights of different iterations in the training
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process. Module-Level parameterization splits the module into other branches during the
training and then aggregates these branches into a single module during the inference
computation. The most significant difference between YOLOv7 and others is the Dynamic
Label Assignment strategy (DLA). The auxiliary mechanism to train the shallow network
weights can significantly improve the model performance. The Lead Head has a relatively
strong learning ability. By allowing the shallow Auxiliary Head to directly learn the infor-
mation that the Lead Head has already learned, the Lead Head will be able to focus more
on understanding the information that has not yet been discovered.

The rapid advancement of artificial intelligence enables YOLO-based deep learning
techniques [30] to be applied to pavement damage detection from various images. Some
researchers chose to equip a vehicle platform with a standard camera to acquire pavement
images from the vehicle’s front view. Single-stage target detection algorithms YOLOv4-
Tiny [31], Scaled-YOLOv4 [32], and YOLOv5 [30,33,34] were applied in pavement damage
detection using road images captured from the front view of the vehicle, and they all
achieved high accuracy. In summary, these studies demonstrated the effectiveness of using
vehicle-mounted platforms with cameras to acquire road images and the application of deep
learning approaches. However, the labeled sample dataset in deep learning significantly
affects the model performance and the training and testing model accuracy.

2.3. One-Dimensional Neural Networks

This study used a 1-D neural network to determine vehicle body sway. When damage
is recognized in the front image, the three-axis acceleration and body attitude in inertial
navigation are used to determine whether the vehicle is moving to distinguish between
stains and damage. This data are time-dependent, so a 1-D neural network is used. The most
significant difference between a Recurrent Neural Network (RNN) [35] and a traditional
neural network is that RNN will bring the previous output into the hidden layer of the
next time and train together. This also means each output is directly related to the last
output. Because each output is correlated with the previous output, it makes RNN very
suitable for training events associated with each other. However, the drawbacks of RNN
are also quite noticeable. In addition to spending much time on training, as the results of
the previous output will be added every time, the weight of the past results will be lower
and lower, which gradually loses the past information, and makes it impossible to deal
with the problems of long sequences.

Long-Short Term Memory (LSTM) [35,36] is improved from RNN. The primary pur-
pose of LSTM is to solve the shortcoming of RNN, which is that the later the input is, the
higher the impact; the earlier the input is, the lower the effect. Valves are used to determine
the importance of inputs and decide whether to memorize the inputs and whether they
can be output to the output layer to solve this problem. Bi-LSTM [37,38] was proposed by
Huang et al., which consists of two LSTMs; one is responsible for processing the positive-
ordered inputs, and the other handles the inverse-ordered data. This approach can avoid
the loss of past data due to the uniform order of inputs in RNN and LSTM.

3. Proposed Approach
3.1. System Architecture

In this section, we will introduce the system framework for pavement defect inspection
and the hardware components used in the system, such as NVidia Jetson Nano, a GoPro
camera, inertial navigation, and a 5G communication module, as shown in Figure 3.
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3.1.1. Road Pavement Defect Detection

The pavement damage recognition system can be divided into front-end information
collection, transmission, and back-end detection and storage. The front-end information
collection consists of Nvidia Jetson Nano, a GoPro camera, and an inertial measurement
unit. The Nvidia Jetson Nano collects the front image, vehicle attitude, 3-axis acceleration,
and localization information and integrates all the data. The socket protocol transmits the
data over a 5G mobile network. After receiving the images and other information, the
back-end detection and storage system uses YOLOv7 to detect objects. After detecting
the pavement damage, the pothole’s location in the image is calculated. Then, Bi-LSTM
is used to recognize the vibration information of the vehicle body at the corresponding
distance. Finally, the recognition results are written into MongoDB, which is convenient for
maintenance personnel to view.

Because the system will be applied to the general road, it needs to be installed on a
vehicle with a speed of 50 km per hour for detection. In addition, to ensure the accuracy of
the inertial measurement unit, the vehicle information needs to be collected about once in
0.5 m, which is converted to a transmission speed of about 30 FPS. The system uses Python
as the development language and parallel processing to improve system performance. The
front-end information collection and transmission consists of four threads: image acquisi-
tion, inertial measurement information, information integration, and socket transmission.
The image acquisition thread and the inertial measurement information thread receive
and transfer data to the information integration thread. In the information integration
thread, the images are first compressed, and the valuable parts of the inertial measurement
information are selected and transferred to the socket transmission thread to be recognized
and stored in the back-end detection and storage system, as shown in Figure 4, which
shows the activity diagram of the front-end information collection and transmission.
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The back-end recognition and storage system consists of five threads: the image
receiving thread, image recognition thread, vehicle attitude recognition thread, database
thread, and file writing thread. The image-receiving thread is responsible for receiving
images, transcoding them, and transferring them to the image recognition thread for the
first stage of recognition. After the recognition, the data are sent to the Bi-LSTM thread
for the second recognition stage. After both recognition phases are completed, the data
will be transferred to the file writing thread and database thread for writing to the file and
database, respectively. Finally, the file writing and database threads will compare whether
the data can be deleted. If it cannot be deleted, the executing thread will notify the other
thread by marking the variables, as shown in Figure 5’s activity diagram of the back-end
recognition and storage system.
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The system is designed to organize and review the data with a cloud site for reviewers
to check. The cloud site contains real-time streaming and inspection results, allowing users
to view images and inspection results while inspecting. The inspection results in the cloud
site can provide follow-up inspectors to check what areas need to be inspected and arrange
the inspection schedule.
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3.1.2. GoPro Camera

This study used a GoPro camera [39] for image acquisition. Using GoPro to capture
images can reduce the blurring of images caused by the moving vehicle’s vibration, allow-
ing for better training modeling and recognition results. Moreover, GoPro can support up
to 4K/120 FPS recording, which can provide high-resolution images for image recognition,
which is very suitable for use. In addition, because this study mainly focuses on image
recognition and is supplemented by vehicle vibration for inspection, although the infrared
camera is evident in photographing potholes and cracks, it was not selected due to the
inconsistency of the usage context. Because the depth of the cracks could not be determined
by standard cameras, a GoPro with better image quality and anti-shock capability was
chosen as the capture camera for this study.

3.1.3. GPS and Inertial Measurement Unit

The inertial navigation hardware equipment used in this study was provided by
Sinostar [40]. It contains a GPS and an inertial measurement unit (IMU), which can
be connected to the computer via USB, and the readout software is self-developed and
can obtain information including GPRMC [41] and AHRS [42] in the format of Table 1’s
GPRMC data format and Table 2’s AHRS data format. However, the IMU sensor needs to
be calibrated before usage. Users must place the IMU box on a flat, stable surface before
the front passenger’s seat. Make sure the device is level and not moving during calibration.
This process may take several minutes to complete. Detailed steps may vary according to
the vendor’s user manual and thus omitted.

Table 1. GPRMC data format [41].

Field No. Structure Description

<1> UTC Hhmmss (hour, minute, second)
<2> Position status A = data valid, V = data invalid
<3> Latitude ddmm.mmmm (degree, minute)
<4> Latitude direction N = North, S = South
<5> Longitude ddmm.mmmm (degree, minute)
<6> Longitude direction E = East, W = West
<7> Speed over ground, knots 000.0~999.9 knots

<8> Track made good,
degrees 000.0~359.9 degree

<9> Date ddmmyy (day, month, year)
<10> Magnetic variation, degrees 000.0~180.0 degree
<11> Magnetic variation direction E/W E (East) or W (West)

<12> Positioning system mode indicator A = autonomous, D = differential,
E = estimated, N = data not valid

Table 2. AHRS data format [42].

Field No. Parameter Format

<1><2><3> x, y, z (Attitude) xxx.xxx

<4><5><6> x, y, z acceleration (GPS
definition) xxx.xxx

<7><8><9> Angular rate xxx.xxx

3.1.4. Nvidia Jetson Nano

In this study, Nvidia Jetson Nano is used as the front-end information collection and
transmission system platform, which has the advantages of low power consumption, small
size, system stability, . . ., etc. A Nvidia Jetson Nano consumes only 10 W of power, and
it can be supplied by the power supply device in the car and run stably. In addition, a
Nvidia Jetson Nano provides four USB 3.0 ports for cameras, inertial navigation modules,
and a 5G communication module and supports up to 4K @ 60 fps (H.264/H.265) encoding
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and decoding for video processing. Based on the above advantages, a Nvidia Jetson Nano
performs excellently in front-end information collection and transmission.

When using Nvidia Jetson Nano for the first time, we need to use SDK Manager to
install the system, and we can see the Linux screen after the system is installed. Because
Nvidia Jetson Nano does not support the Anaconda management environment, and to save
storage space, this study uses the Linux built-in Python environment to write the program.
Because we used a GoPro with a capture box to acquire images, we used the OpenCV
package to control the camera. Because the customary navigation module provided by
Nvidia uses USB as the interface, we used the PySerial package to connect to the serial port.

3.1.5. Cloud Server

This study uses a high-performance host as the cloud server and Docker to manage
the recognition program and MongoDB. Through the built-in function of Docker, all the
functions will be started automatically at boot time. When the program starts automatically,
it first loads the YOLOv7 neural network, and after YOLOv7 is loaded, it sends signals to
the main program and loads the Bi-LSTM, and when all the threads are ready, the system
waits for the front-end system to connect and transmit. Because the system manages the
database and the recognition system as two containers, connecting the two containers via
a virtual network is necessary before connecting to the database. Then, the recognition
system connects to the database via the IP of the virtual network.

3.2. Dataset

The datasets used in this study are mainly categorized into two types: front-end image
and vehicle attitude. The first is the front image dataset, consisting of web-based, self-
recorded, and retouched datasets. At the initial stage of dataset production, most datasets
are open source on the internet and are manually adjusted to remove the datasets that do
not meet the usage context. As more and more front-end images were recorded using a
vehicle recorder, it was found that pavement cracks usually occurred regionally and were
connected at the end, as shown in Figure 6, leading to confusion when defining whether
a crack was one or two. Therefore, images that meet the above criteria are retouched to
ensure no confusion during validation testing.
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Figure 6. Dataset processing. (a) The original image before processing. (b) The modified image
after processing.

The vehicle attitude dataset was recorded in-house using an inertial navigation module
mounted in front of the vehicle’s windshield and collected simultaneously with the video
dataset. The vehicle speed must be kept below 54 km/h during the process to ensure that
more than two vibrations per meter are obtained.



Information 2024, 15, 239 10 of 22

3.2.1. Front View Image Dataset

The dataset has two types of roadway pavement defects: potholes and pavement
cracks. Potholes are visible in the roadway pavement, and pavement cracks are visible in
the roadway pavement, as categorized in Table 3.

Table 3. Road pavement defects.

No. Type Sample Image Definition

1 Potholes
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3.2.2. Vehicle Vibration Dataset

Vehicle vibration data includes vehicle three-axis acceleration and vehicle attitude.
Every five strokes is a frame, and Bi-LSTM is used for the recognition. The dataset
is categorized into two types: road pavement uneven—low risk and road pavement
uneven—high risk, as shown in Table 4 and Figure 7. Each subgraph in Figure 8 contains
nine points, each of which is the current acceleration value of the vehicle in that direction.
The result would be high risk when at least two criteria are met. Each criterion measures the
variation of the accelerations. All the thresholds are defined according to our experiences
from experiments.

Table 4. Pavement defects by vehicle attitude.

No. Type Sample Image (Time Domain) Definition (at Least Two Items Are
Met)

1 Road pavement uneven—low risk As shown in Figure 7a are the
acceleration (ax, ay, az) in (x, y, z).

• max(ax)-min(ax) < 1208 mm/s2

• max(ay)-min(ay) < 1168 mm/s2

• max(az)-min(az) < 472 mm/s2

2 road pavement
uneven—high-risk

As shown in Figure 7b are the
acceleration (ax, ay, az) in (x, y, z).

• max(ax)-min(ax) >= 1208 mm/s2

• max(ay)-min(ay) >= 1168 mm/s2

• max(az)-min(az) >= 472 mm/s2
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3.3. Integration of Visual and Vibration Information

In this study, two types of information, visual and vibration, are used to recognize the
damage of roadway pavement. Because the visual information is the image of the front of
the vehicle, and there is a time difference between the actual vehicle body passing through
the damage, an information integration thread is designed in the front-end information
collection and transmission system to integrate the two types of information. In the
information fusion thread, as shown in Figure 8, the system will compare the visual and
vibration information by time and vehicle speed. The speed and time of the vibration
information can be obtained by the inertial measurement unit, as shown in Figure 9, while
the image acquisition time is based on the computer time. The two times are compared
when the information fusion thread is activated to prevent the conversion error caused
by the time difference to avoid the time difference between the computer and the inertial
navigation hardware.
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Figure 9. Information obtained by GPRMC.

Because the system integrates both visual and vibration information through moving
distance, as in Equation (1), it is necessary to measure the relative distance of the front
wheels from the markers in the image, and the measurement results are shown in Figure 10,
which shows the relative position of the front wheels from the image. The numbers in the
figure are the meters from the front wheel, and the data source is the actual measurement.
Each image contains vibration information to cover the area within 18 m in front of the
vehicle to facilitate the cloud server in comparing the pothole location and vehicle vibration
data in the images. In Equation (1), v is the vehicle speed that GPRMC can obtain, and t is
the time fixed to 0.5 because the sampling frequency is 30 Hz.

S = vt (1)
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The integrated information consists of images, file names, and vehicle vibration
information, and the detailed data structure is shown in Figure 11. The file names are named
according to the current time the information is acquired. The vehicle vibration information
contains several pieces of information to cover the distance captured in all the images.
The example in the figure comprises three pieces of information about the vehicle body
vibration, which are arranged in the order of occurrence. When confirmed that the image
has moved more than 18 m since it was captured, it is placed in the transmission thread
and waits to be sent to the cloud server. After the cloud server receives the information
and performs the first identification stage to confirm the damage category, the system
will use Equations (2) and (3) to calculate the Bounding Box center point coordinates to
determine how many meters the damage point is located. The displacement distance is then
calculated based on the vehicle speed Vi in the GPRMC of the body vibration information,
and the displacement distance is used to determine which body vibration information the
pothole coordinates belong to, as shown in Equation (4). Then, we could evaluate i value in
Equation (4) and locate its position.

xCenter point =
x0 +

(
bonuding_boxwidth

2

)
2

(2)

yCenter point =

y0 +

(
bonuding_boxheight

2

)
2

(3) vehicle_vibrationi, i f yCenter point ≤
m
∑

i=0
Vi × ∆T

m = m + 1, else
(4)
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Figure 11. Integrated information format.

Take Figure 12 as an example; there are three pieces of body vibration information
in the figure, and i = 0 ~ m − 1, where m is the number of vehicle vibration data. The
system will use Equation (4) for the second identification stage. Calculate each piece of
body vibration information individually and check whether the vehicle passes through the
damaged position. Figure 13 depicts a pothole was detected between 6 m and 8 m.
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4. Experimental Results and Analysis

In this section, the gyroscope signals are pre-processed and analyzed, and the training
results of the latest neural networks on the same dataset are verified. We compare the
differences between different neural networks and verify the feasibility of a pavement
damage recognition system.

4.1. Three-Axis Acceleration and Vehicle Attitude Analysis

In this study, in addition to pothole identification using images, a gyroscope was used
to collect the three-axis acceleration and attitude of the vehicle. After pre-processing the
signals, the study analyzed whether the three-axis acceleration information conforms to
the normal distribution. After analysis and consideration, it was decided to use a dataset
other than two times the standard deviation as the negative sample. The vehicle attitude
and the three-axis acceleration were recorded in this study, and the vehicle speed was
kept at no more than 54 km/h to ensure that the collected data could cover the driving
path completely.

4.1.1. Vehicle Information Pre-Processing

The vibration signals collected by the gyroscope can be categorized into signal and
noise; signal includes standard and crack signals, and noise includes road and system noise.
This study uses the moving average for the first stage of vibration signal processing to solve
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the effect of high-frequency signals on pothole identification in collecting vehicle vibration
information. Considering that five samples are one frame for subsequent recognition, it is
decided to use a filter with a window size of 5 for smoothing to avoid over-smoothing to
filter out the signal features. Then, a finite impulse response filter (FIR) is used as the second
stage of signal processing to retain the low frequency and suppress the high-frequency
features based on the characteristics of the FIR filter. The result of the two-stage signal
pre-processing is shown in Figure 13.

4.1.2. Vehicle Vibration Information Analysis

After analyzing the data, it was confirmed that the three-axis acceleration data be-
longed to the normal distribution as in Figure 14. There was no linear correlation between
the three-axis acceleration and the vehicle attitude. Therefore, the data outside of two
standard deviations, as shown in Table 5, was chosen as the negative sample (5%) and
within two standard deviations as the positive sample (95%).
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tion distribution.

Table 5. The standard deviation of three-axis acceleration.

Name Std (mm/s2)

Ax 603.58
Ay 584.28
Az 236.27

After the above pre-processing, this study filters again, with the condition that the
acceleration of both axes must be two times larger than the standard deviation to be
regarded as road pavement unevenness. Because 5 data are one frame, to avoid being
unable to fit the data in the subsequent training, the number of abnormal signals in the same
frame must be greater than 3/5 of the number of signals. Some results of the categorization
are shown in Figure 15.

4.2. Visual Neural Network Training

In this study, the training environment is a PC with a CPU Intel i9-12900K, GPU
Nvidia RTX 3090, and RAM 64 GB. The object recognition neural network and the 1-D
signal neural network were trained in the experimental process. The object recognition
neural network consists of three types: YOLOv4, YOLOR, and YOLOv7. Precision, recall
rate, and FPS are important indicators, so the confusion matrix must be derived first, which
consists of true positive, false positive, true negative, and false negative. The reason for
considering precision and recall rate in this study is to ensure recognition accuracy when the
damage category can be determined. Precision represents the percentage of positive among
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optimistic predictions (TP/TP+FP); the higher it is, the less misjudgment it represents. The
recall rate represents the percentage of positives captured (TP/TP+FN); the higher the rate,
the fewer missing cases are.
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The neural networks used in this training are YOLOv4/YOLOv4-tiny/YOLOR/YOLOv7,
which take 8/6/4/8 h with 7500/12,000/1003/2000 iterations and a total of 882/10,828/
10,828/10,828 images. The training results are shown in Tables 6 and 7. The main reason
for the excellent performance of YOLOR compared with YOLOv4 is that YOLOR resizes
image data during the training process. Because the datasets collected in this study are
from different periods, and most of them are open-source datasets after post-processing,
the size of the images varies, and the data augmentation during the training process of
YOLOR can help the neural network to perform better.
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Table 6. Performance comparison of the trained different YOLO versions.

Models Precision Recall mAP FPS

YOLOv4 87.6% 88.6% 89% 20~22
YOLOv4-tiny 86.6% 73.8% 87% 150~200

YOLOR 79.1% 92.6% 92.5% 40~50
YOLOv7 93.2% 87.8% 93.3% 30~40

Table 7. Confusion matrixes of different versions of YOLO.

TP FP FN

Types\Models v4/v4-tiny/R/v7 v4/v4-tiny/R/v7 v4/v4-tiny/R/v7

Pothole 47/50/50/45 7/3/14/0 5/2/2/7
Crack 31/15/32/32 4/7/8/5 5/21/4/4

We adjusted the horizontal flip possibility to 0.5 while training YOLOv7 and tested it
with an independent test set. During the training process, it was found that the features
learned by YOLOv7 were concentrated around potholes. Therefore, whenever there is a
significant height difference in the image, it will be misclassified as a pothole. The pothole
image types are too similar and have considerable height differences. In addition, the
horizontal and vertical flips were turned on during training. During subsequent testing, it
was found that turning on the vertical flip resulted in the misinterpretation of the streetlights
as cracks. Therefore, the vertical flip was turned off during data augmentation.

Table 6 shows that YOLOv7 performs best among all neural networks in terms of mAP,
recall rate, and precision. Although the processing speed of YOLOv4-tiny is much higher
than YOLOv7, we choose to use YOLOv7 as the object detection model because the system
only needs 30 FPS.

4.3. One-Dimensional Neural Network Training

We trained three kinds of 1-D neural networks: Simple RNN, LSTM, and Bi-LSTM.
Because only two types of classes are used in 1-D neural networks in this study, we used
Sigmoid as the output layer of the neural networks, classified the final outputs into two
classes, and used binary cross entropy as the loss function. In addition, Relu is used as the
activation function of the 1-D neural network, and the training speed is greatly improved
by using Relu’s high-speed computational property for the convergence of stochastic
gradient descent.

A total of 4360 datasets were used in the training and were divided 8:2 into training
and validation sets. The neural network first used for the training is a Simple RNN, which
contains 512 units and achieves the best results in 343 iterations. The results of the training
were loss: 0.05 and accuracy: 0.98. The Simple RNN was tested using a test set independent
of the training and validation datasets, and the results are shown in Table 8. When using the
test set for validation, it was found that there was overfitting during the training process,
so the batch size was readjusted, and the dropout was set to 0.2. However, because Simple
RNNs forget the first half of the data, it is easy to misjudge the signal when it occurs
in the middle of the back of a frame. Other neural networks are also tested to solve the
above problem.

Train the Long Short Term Memory neural network, which contains 512 units. Five
hundred iterations were performed, and the best result was obtained at 442 iterations. The
results of the training are loss: 0.07 and accuracy: 0.98. Because reducing LR (learning rate)
on the plateau is set, and from the training results, it can be seen that when it is impossible
to minimize the loss, adjusting the LR downward can effectively improve the learning
results. The test results are shown in Tables 8 and 9. LSTM improves the inference speed by
25% compared with Simple RNN and has higher accuracy in recognizing abnormal signals
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in the middle and late segments because LSTM can control whether to save the parameters
through the gate.

Table 8. Performance comparison of different 1-D neural networks.

Metrics Precision Recall Accuracy FPS

Types\Models RNN/LSTM/Bi-LSTM RNN/LSTM/Bi-LSTM RNN/LSTM/Bi-LSTM RNN/LSTM/Bi-LSTM

Pavement
uneven—low risk 99%/98.6%/99.1% 99.3%/99.4%/99.6% 98.9%/98.1%/98.7%

Pavement
uneven—high risk 77.2%/71.4%/80.4% 82.9%/85.3%/90.2% 66.6%/63.6%/74%

Average 88.1%/85%/89.75% 91.1%/92.35%/94.9% 82.75%/80.85%/86.35% 25/33.3/40

Table 9. Confusion matrix for different 1-D neural networks.

TP FP FN

Types\Models RNN/LSTM/Bi-LSTM RNN/LSTM/Bi-LSTM RNN/LSTM/Bi-LSTM

Pavement uneven-low risk 1039/1034/1040 7/6/4 10/14/9
Pavement uneven-high risk 34/35/37 10/14/9 7/6/4

The neural network Bi-LSTM is trained with 512 units, 200 iterations, and the best
result is obtained at 175 iterations. The training set results are loss: 0.06 and accuracy: 0.99.
Compared to Simple RNN and LSTM, Bi-LSTM requires less than half of the number of
iterations to achieve the same training results, and the inference speed is improved by 38%
compared with Simple RNN and 17% compared with LSTM. The results after testing are
shown in Tables 8 and 9. Bi-LSTM can learn the features faster compared with LSTM, and
due to the possibility of inference in the reverse direction, it is more capable of extracting
and remembering the features of abnormal vibrations compared with Simple RNN, which
will forget the past inputs and the unidirectional inference of LSTM.

Table 8 shows that Bi-LSTM has a vast improvement compared with Simple RNN
and LSTM, and the inference speed is increased by 38% compared with Simple RNN and
17% compared with LSTM. Therefore, Bi-LSTM was chosen as the RNN in this study’s
pavement vibration recognition system.

4.4. Field Test Results

This study uses the image as the primary method and the vehicle vibration information
as the supplementary method to detect pavement damage. When the cloud server receives
the image, it will recognize it first, and the first recognition stage will be carried out first.
Suppose the damaged object is identified in the first stage. In that case, the system will
determine the distance between the damaged location and the vehicle according to the
center point coordinates of the damaged object. Then, the vehicle speed determines the
corresponding vibration information, and Bi-LSTM is used to recognize the information.
The information is judged damaged when the second recognition stage results in an uneven
road surface-high risk.

The vehicle used in this study was a Toyota Corolla Crossover. A GoPro was used to
capture the front image of the car. An inertial navigation module provided by Thinkstar
was used to measure the acceleration and attitude of the vehicle. Then, an Nvidia Jetson
Nano was used as the computer equipment for the information collection and transmission.

In the first test, the data from Banqiao to Shulin were recorded on 23 November
2022 for the field test, and the images and vehicle body information were transmitted
via a 5G mobile network. The pictures and vehicle vibration information were recorded
simultaneously, and the recall was 83.3%, and precision was 84.0%. We also tested the
stability and recognition speed of the system. After 2 h of testing, the average transmission
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and recognition speed was 54 FPS, which could transmit all the data from the front end to
the back end. The system can handle speeds up to 54 km per hour, and the inspector can
view the recognition results and real-time information via real-time streaming.

The second test was conducted on 28 November 2022 on the urban road from Banqiao
District, New Taipei City, to Daan District, Taipei City. The results are shown in Table 10,
including pavement image pothole detection, vehicle attitude information for pavement
damage detection, and integrated pavement damage detection results. Although the
precision of integrated detection is 75.6%, the recall is 86%, which means the most actual
pavement defects would be picked out.

Table 10. The second field test results of the proposed pavement damage detection system.

Recall Precision

Pavement
image

Pothole 95.0% 92.8%
Crack 92.5% 91.9%

Vehicle
attitude

Uneven—low risk 99.4% 99.1%
Uneven—high risk 93.0% 82.3%

Integrated
detection

Pothole—high risk 94.4% 91.9%
Crack—high risk 86.0% 75.6%

4.5. Comparison with State-of-the-Art

There are four known road pavement inspection approaches: ultrasonic [10], Li-
DAR [11], thermal [12], and camera [9]. The advantages of the first three approaches are
that they have higher accuracy and can measure the depth of potholes and cracks. Our
vehicle’s IMU information recognition has lower accuracy but costs much less than the
others. However, the IMU information is highly related to the road pavement where the
vehicle’s wheel is contacted. The accuracy would be higher if vehicle wheels could cover
most road pavements. There is a vehicle designed to have many wheels installed across a
whole lane. Then, the vibration would be measured to achieve pavement defect detection.
A comparison of road pavement inspection approaches is shown in Table 11. Some closely
related YOLO base damage detection models from images are also listed. Because only
F1 scores are given in [32,33], Equation (5) is used to describe it as the harmonic mean of
the precision and recall. The two metrics contribute equally to the score, ensuring that the
F1 metric correctly indicates the reliability of a model. Based on the performance index in
terms of precision and recall, our YOLOv7+Bi-LSTM has excellent performance, while FPS
may not have the advantage. It demonstrated the feasibility of the proposed methods.

F1 = 2 × Precision × Recall
Precision + Recall

(5)

Table 11. Comparison of road pavement inspection approaches.

Items Sensors Precision/Recall Classification Defect Types FPS

[9] Line Camera 98.29%/93.86% SVM Ten types NA
[10] Ultrasonic Error < 7% FFT Crack depth NA
[11] LiDAR 70%/73.9% GCN Crack NA
[12] Thermal imaging Accuracy 97.08% CNN-ResNet Pothole NA
[31] Smartphone 65%/55% YOLO4 Tiny Four types of cracks NA
[32] Smartphone F1 score = 51.9% Scaled YOLOv4 Four types of cracks 73.8
[33] Smartphone F1 score = 58.4% YOLOv5x Four types of cracks 33.3
[34] CCD+LED 83.38%/90.45% YOLOv5s Cracks/sealed cracks 67.5
[30] CCD 78.2%/72.1% YOLOv5s-M Seven types 42
Ours Camera +IMU 93.3%/86.35% YOLOv7+Bi-LSTM Pothole/crack >30
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5. Conclusions and Future Works
5.1. Conclusions

This study uses the vehicle body vibration information and the front image to form
the pavement damage recognition system. Precision is more critical than recall to avoid
misjudgment and increase inspectors’ workload. Therefore, YOLOv7, which has the
highest precision, was chosen as the neural network model for image recognition. As
for the second stage of assisted judgment, after comparing the Simple-RNN, LSTM, and
Bi-LSTM neural networks, we finally decided to use the better Bi-LSTM for road pavement
damage detection.

In this study, a GoPro camera, an IMU, and a Nvidia Jetson Nano are used to col-
lect the vehicle vibration and the front image of the vehicle, which are then transmitted
to the back-end server via a 5G mobile network for recognition. Parallel processing in
both the front and back end separates the asynchronous steps, and MongoDB stores the
detection results to improve the system’s efficiency. The cloud-based identification sys-
tem also provides a real-time streaming service so that inspectors can check the current
inspection results through real-time streaming to facilitate the inspectors’ checking of the
inspection results.

Regarding object recognition, the accuracy and recall rate of cracks cannot simultane-
ously reach more than 90%. The main reason is that cracks appear around potholes, and
cracks often appear regionally, so when the end of the cracks connects, it is easy to lead to
misjudgment of the neural network, which leads to a decrease in the accuracy and recall
rate. Although the use of cameras with body vibration for road pavement inspection is not
widespread at this stage, considering the increasing proportion of vehicles equipped with
cameras, gyroscopes, and communication equipment, it may be possible to save inspection
costs and improve the timeliness of repairs in the future by using civilian vehicles to report
on road conditions.

5.2. Future Works

Currently, fewer defects are used in this study, with only cracks and potholes in the
image and no risk or high risk of body vibration. In the future, the risk level should be
further divided, and the completion time of repair work should be divided according to the
different levels. In the future, we should further categorize the risk level and the completion
time of repair work according to the different levels. We should also increase the number
of categories affecting the vibration, such as maintenance hole covers, pavement patches,
etc., to help inspectors filter out unnecessary information more quickly.

Due to the limitation of gyroscope hardware, the current inspection speed cannot reach
the goal of highway inspection. In the future, the gyroscope can be replaced to improve the
sampling rate so that the system can have more vibration signals in a frame to be analyzed.
Incorporating additional features can enhance identification accuracy, expedite inspection
speed, and bolster overall inspection efficiency.
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