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Abstract: Identifying stress in older adults is a crucial field of research in health and well-being. This
allows us to take timely preventive measures that can help save lives. That is why a nonobtrusive
way of accurate and precise stress detection is necessary. Researchers have proposed many statistical
measurements to associate stress with sensor readings from digital biomarkers. With the recent
progress of Artificial Intelligence in the healthcare domain, the application of machine learning is
showing promising results in stress detection. Still, the viability of machine learning for digital
biomarkers of stress is under-explored. In this work, we first investigate the performance of a
supervised machine learning algorithm (Random Forest) with manual feature engineering for stress
detection with contextual information. The concentration of salivary cortisol was used as the golden
standard here. Our framework categorizes stress into No Stress, Low Stress, and High Stress by
analyzing digital biomarkers gathered from wearable sensors. We also provide a thorough knowledge
of stress in older adults by combining physiological data obtained from wearable sensors with
contextual clues from a stress protocol. Our context-aware machine learning model, using sensor
fusion, achieved a macroaverage F-1 score of 0.937 and an accuracy of 92.48% in identifying three
stress levels. We further extend our work to get rid of the burden of manual feature engineering. We
explore Convolutional Neural Network (CNN)-based feature encoder and cortisol biomarkers to
detect stress using contextual information. We provide an in-depth look at the CNN-based feature
encoder, which effectively separates useful features from physiological inputs. Both of our proposed
frameworks, i.e., Random Forest with engineered features and a Fully Connected Network with
CNN-based features validate that the integration of digital biomarkers of stress can provide more
insight into the stress response even without any self-reporting or caregiver labels. Our method with
sensor fusion shows an accuracy and F-1 score of 83.7797% and 0.7552, respectively, without context
and 96.7525% accuracy and 0.9745 F-1 score with context, which also constitutes a 4% increase in
accuracy and a 0.04 increase in F-1 score from RF.

Keywords: CNN; machine learning; stress detection; context; cortisol; digital biomarkers

1. Introduction

Stress monitoring plays a crucial role in healthcare, as it impacts individuals’ cognitive
functions and decision-making abilities [1]. It significantly influences work efficiency, and
prolonged exposure to excessive stress and negative emotions can detrimentally affect both
physical and mental well-being [2]. This is especially pertinent for individuals in specific
professions and specific age groups. In addition to its direct impact on physical health,
stress detection for older people is vital for maintaining their emotional and psychological
well-being. The aging process often brings about significant life changes, such as loss
of loved ones, retirement, or limitations in mobility, which can all contribute to feelings
of stress, anxiety, and even depression. Left unaddressed, these emotional stressors can
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significantly diminish an individual’s overall quality of life and lead to a decline in social in-
teractions and engagement with activities. During the pandemic alone, approximately 40%
of adults in the United States have reported experiencing symptoms of stress, anxiety, or de-
pressive disorder, and older adults are more susceptible to the impacts of stress compared
to other age groups [3]. Figure 1 illustrates that the Alzheimer’s Disease (AD) spectrum,
encompassing a gradual progression from subtle cognitive decline through various stages
to dementia, may be influenced by chronic elevations in cortisol concentration [4]. Stress-
induced physiological responses, which are measurable as neurophysiological biomarkers,
can offer valuable insights for understanding and potentially predicting AD progression.
With reliable digital biomarkers, older adults can learn more about their stress patterns
and become more adept at identifying triggers. Furthermore, having access to reliable
biomarkers enables older persons to take charge of their stress management by embracing
self-care routines, getting prompt medical attention, and establishing healthier lifestyle pat-
terns. Additionally, making knowledgeable decisions as a consumer regarding healthcare
products and services can improve results and raise satisfaction with the patient’s overall
experience. It not only enhances personal wellbeing but also empowers older populations
by fostering a culture of health literacy and active participation in self-management of their
own health and wellness.

Figure 1. Cognitive performance vs. AD continuum due to chronic stress [4].

Digital biomarkers for stress refer to measurable and quantifiable indicators of stress
levels that are collected through various sensors. These biomarkers provide insights into an
individual’s physiological or behavioral responses to stress, thus offering a more objective
and real-time assessment compared to traditional self-reporting methods. Commonly
employed digital biomarkers for detecting stress include Electrodermal Activity (EDA),
Photoplethysmography (PPG), respiration, Electroencephalogram (EEG), and Skin Temper-
ature (ST) [2]. Multiple studies are showing the differences in digital biomarker responses
in different moods or stress levels [5–7].

Stress states can also manifest in behaviors such as eye movements, facial expressions,
and sleeping and speech patterns [8]. These measures have been extensively utilized in
laboratory settings for stress detection. Physiological signals are more practical to collect
and offer greater objectivity than behavioral indicators. The advent of wearable sensors has
provided a solution, thus enabling the use of wrist-worn devices for portable, inconspicu-
ous, and noninvasive collection of physiological signals. Again, different combinations of
signals from theses sensors also effect the outcome of stress response. Studies have shown
the added benefit of using sensor fusion. Sensor fusion indicates the usage of combined
features from multiple sensors that can dictate the output. Exercise, walking, and running,
on the other hand, can generate a stress-like reactions, even though they are not detrimental
to health. To address the problem, context-based machine learning algorithms that com-
bine context with digital biomarkers are being developed to distinguish between different
sources of stress [9]. Context typically refers to the information surrounding a particular
event or situation that can be leveraged to make better predictions or decisions. This
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surrounding information can include a wide range of factors depending on the application.
Subjective stress is used as the ground truth, or gold standard, in these investigations,
which are mostly directed toward younger individuals. On the other hand, according to
studies, salivary cortisol is a prominent gold standard for stress biomarkers and should
be used for ground truth estimation [10] instead of questionnaires or surveys filled out by
third parties. But this approach is more suited for laboratory setting only and harder to
obtain experimental results in real life settings.

In this work, we first test the performance of Random Forest, a machine-learning model
for stress detection, with cortisol concentration as the ground truth. We also incorporate
contextual information recorded during the test protocol. After the trial with manual
feature engineering, we also automate the feature selection technique with a Convolutional
Neural Network (CNN)-based feature encoder.

Here are the highlights of our contributions:

• We explore the effectiveness of machine learning models to find the correlation of
digital biomarkers of stress with experimental data from 40 healthy older adults.

• We propose a ground truth labeling scheme based on cortisol concentration. We
labeled stress into three distinct classes: No Stress, Low Stress, and High Stress.

• We investigate the efficacy of digital biomarkers from three signal streams (EDA, Blood
Volume Pulse (BVP), and Interbeat Interval (IBI)) for stress classification.

• We also validate that the combinations of features from different sensors, also known as
sensor fusion, enhances the accuracy of the machine learning classifier when compared
to the case of a single-signal stream.

• We also propose a CNN-based feature encoder that automates the feature selection
process and selects the best possible inputs for the FCN.

• We finally report that there’s an increase in accuracy and F-1 score for the CNN-based
feature extraction compared to the stress detection method with Random Forest on
our dataset.

2. Related Works

In recent years, the advancement of machine learning has led to the gradual integration
of deep networks into the realms of stress detection and emotion recognition based on
digital biomarkers. Digital biomarkers not only enable accurate stress monitoring but also
pave the way for personalized interventions. With continuous data collection, algorithms
can learn individual patterns and preferences, thus tailoring interventions to suit each
person’s unique needs. This personalized approach has the potential to enhance the
effectiveness of stress management strategies, thus moving away from generic solutions to
more targeted and impactful interventions.

For instance, Saylam et al. [6] conducted a study on stress biomarkers aiming to
predict stress levels by identifying crucial parameters from various modalities, including
mobile phones and wearables. They utilized a ranking system to emphasize the signifi-
cance of different modalities, such as sleep and activity levels, in classifying stress. Daily
stress responses served as labels, thereby categorizing participants into five stress levels.
The study compared the efficacy of considering only important parameters versus using all
parameters by employing the Random Forest (RF) algorithm. Additionally, the researchers
explored the potential impact of participants’ personalities on stress levels to enhance
overall understanding. Opoku et al. [5] conducted an analysis using a longitudinal dataset
and employed statistical and machine learning methods to explore the connection between
digital biomarkers, mood ratings, and depression. The study aimed to determine if there are
differences in digital biomarkers and mood ratings between depressed and nondepressed
participants. The findings revealed that although it was possible to accurately predict the
depression status of participants with only digital biomarkers, a combination of digital
biomarkers and mood ratings can increase the performance even more.

Neural Networks have also been employed in this field in recent times. By converting
multimodal sequence signals into pictures and using an integrated, scalable, low-power
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Deep Convolutional Neural Network (DCNN) to learn common features, Jafari et al. [11]
achieved an impressive 94% accuracy rate in stress detection. In order to extract features
from physiological data and behaviors gathered by wearable sensors, Aristizabal et al. [12]
used deep networks. In order to extract deep features from EDA, PPG, and Zygomaticus
Electromyography (zEMG), Hassan et al. [13] used the Deep Belief Network. These charac-
teristics were then merged with statistical features. In order to extract their image features,
Siddharth et al. [14] used deep networks to create spectrograms from every signal channel.

Despite the remarkable performance improvements achieved by deep learning-based
algorithms in stress assessment, they come with only a few number of subjects and struggle
to meet the requirements necessary for effectively training deep networks. Researchers
have addressed such problems and proposed solutions based on machine learning with
manual statistical feature engineering and have targeted specific age groups for less spread
in the training set [15–17]. These studies have relied on questionnaires or annotations
by external observers for ground truth on the base level and stress level. However, such
ground truths are prone to error and differ from person to person. Hence, Nath et al. [18]
used cortisol for the label and the EDA and PPG biomarker with context as an added input
for stress classification. Table 1 shows an overview of recent works that deal with stress
detection for older adults and takes context information into account.

Table 1. Summary of recent research on older adult stress detection.

Authors & Year Signals Feature
Extraction Base Model Used

Context
Stress

Ground Truth

Ferreira et al. [19] 2014 ECG, EEG, EDA Manual
Quadratic

Discriminant
Analysis

✗ Questionnaire

Kikhia et al. [20] 2016 EDA Manual Thresholding ✗
Annotation by
clinical Staff

Belk et al. [15] 2016 EDA, IMU, HR,
ST, Grip Force Manual Bayesian

Probability ✗
Annotation by

external observer

Delmastro et al. [16] 2020 ECG, EDA Manual
Support Vector
Machine,K-NN,
Decision Tree

✗
Predetermined

annotation

Cheong et al. [17] 2020 ST, HR, SC,
HUM, AT Manual Statistical

Correlation ✗ Questionnaire

Nath et al. [18] 2021 EDA, BVP, IBI, ST Manual Decision
Tree ✗

Cortisol
Concentration

Proposed Work 2024 EDA, BVP, IBI, ST Manual Random
Forest ✓

Cortisol
Concentration

Automatic 1-D CNN ✓

ECG: Electrocardiogram. EEG: Electroencephalography. EDA: Electrodermal Activity. SCL: Skin Conductance
Level. IMU: Inertial Measurement Unit. HR: Heart Rate. ST: Skin Temperature. SC: Step Counter. HUM: Humidity.
AT: Air Temperature, BVP: Blood Volume Pulse. IBI: Inter Beat Interval.

For quite some time, the scientific community has acknowledged the importance of
monitoring stress levels based on physiological signals. The majority of currently released
works, however, are focused on younger adults or fail to take advantage of relevant contexts.
However, the literature in this domain shows that biomarkers like oxidative stress, cortisol,
and metabolic imbalances are highly correlated with age and are fairly distinguishable
among the age groups [21]. Similarly, the use of cortisol concentration as a stress biomarker
has also been investigated. To calculate stress levels, the majority of studies have relied on
subjective procedures or surveys. While there have been recent experiments in context-
based stress detection, feature selection requires significant human involvement. The next
step toward improvement will require an automatic feature encoder that employs context
information and cortisol as the ground truth. With that in mind, we incorporated a 1D
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CNN-based feature encoder. CNNs are a type of artificial neural network (ANN) with
convolutional layers in their hidden layers [22]. They were first used in computer vision
tasks, but they have since piqued the interest of researchers in a wide range of fields,
including biosignal classification such as electromyogram (EMG) signal classification for
gesture recognition and electroencephalogram (EEG) pattern identification for assistive
machine control [23–26]. The CNN has been used effectively in arrhythmia detection [26],
signal component identification [27], biometric recognition [28], and other applications in
ECG signal classification. These experiments revealed the power of CNN in biomarker
categorization, thus demonstrating that CNN has the capacity to identify stress. They
also show the requirements for an for an end-to-end CNN-based context-aware machine
learning model for stress biomarker in older persons. Therefore, in our work, we aim to
experiment the aforementioned under-explored domains of stress biomarkers. We employ
both feature engineered machine learning and CNN-based fully connected networks for
stress biomarkers of older adults in laboratory settings and validate the stress labels with
cortisol concentration.

3. Data Collection, Preprocessing, and Labeling

In this section, we will first explain the procedure of our data collection from the
selected participants. Then, we mention the stress protocol that was incorporated to
induce stress in participants. Then, we provide our ground truth labeling technique and
its visualization after labeling. Afterwards, we explain the incorporation of contextual
information followed by feature selection and preprocessing.

3.1. Data Collection

In our investigation, a group comprising 40 elderly individuals ranging in age from 60
to 80 years was selected as the subject population. Within this sample, the demographic dis-
tribution is comprised of 28 female and 12 male participants. As we are targeting a specific
age group, 40 participants should be adequate for our experiments. Due to data corruption,
the dataset of one participant was deemed unsuitable for inclusion, thus resulting in a final
dataset derived from 39 participants. To provide an unbiased dataset, a thorough screening
procedure was conducted on each participant prior to their registration in the experimental
protocol to determine whether they had any pre-existing medical illnesses or disorders. We
collected physiological data using the Empatica E4 wristband, which has built-in sensors
for skin temperature (ST), photoplethysmography (PPG), and electrodermal activity (EDA),
as illustrated in Figure 2.

Figure 2. Empatica wristband for data collection.

3.2. Stress Protocol: Trier Social Stress Test

As a stress inducer, the Trier Social Stress Test (TSST) protocol was employed for the
experiment. The TSST, a widely recognized and established experimental framework, is
distinguished for its capacity to stimulate stress within a context that emulates natural-
istic conditions [29]. The procedural sequence of the TSST encompasses distinct phases,
as shown in Figure 3. It consists of the waiting interval, prestress phase, stress induction pe-
riod, and subsequent recovery phase. As part of the preparatory stage, participants engage
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in the completion of demographic questionnaires. After the waiting period, the prestress
(PS) phase starts, during which the base measurements are acquired. The collective dura-
tion of the waiting interval and the prestress phase comprise a duration of 20 min (T1–T2).
Then, the prestress and stress phases span a duration of 20 min (T2–T3). The stress-inducing
session is partitioned into three discrete segments: an initial 10 min span designated as
the anticipatory stress phase (AS), which is succeeded by a 5 min interval encompassing
speech and cognitive arithmetic exercises (M). During the anticipatory stress phase (AS),
participants are tasked with a continuous discourse on a designated topic for 5 min while
being observed. Then, they are engaged in the cognitive arithmetic exercise that requires
resolving basic addition and subtraction equations. Importantly, the complexity of the
cognitive tasks increases progressively with each accurate solution. The study ends with
the inclusion of two sequential 20 min recovery intervals (T3–T5). Throughout the course
of the experiment, salivary samples were collected on five distinct occasions corresponding
to the time points denoted as T1, T2, T3, T4, and T5.

Figure 3. TSST protocol. PS: Prestress. AS: Anticipatory Stress. SA: Speech Assignment. MA: Mental
Arithmetic. * refers to the time when saliva sample was collected.

3.3. Ground Truth Estimation from Cortisol Concentration

The participants’ saliva samples were dispatched to the laboratory for cortisol con-
centration analysis. We classified cortisol levels into three distinct categories, namely No
Stress, Low Stress, and High Stress, serving as the reference for addressing the multiclass
classification problem. We designated the minimum value among the samples taken at
time points T1, T2, and T5 as relaxed or No Stress, with the other two being categorized
as Low Stress. The highest of the two samples collected at time points T3 and T4 was
labeled as High Stress, while the remaining one was classified as Low Stress. Ultimately,
these labels were expressed as numeric integers [30]. Figure 4 shows an example of cortisol
concentration for a participant from the dataset. According to the algorithm mentioned
before, the assigned labels would be No Stress: T-5, Low Stress: T-1, T-2, T-4, and High
Stress: T-3. These reference labels were used as ground truth in laboratory settings for
validation purposes.

Figure 4. Cortisol concentration of a participant.
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3.4. Distribution of Labeled Dataset and Incorporating Context

The labeled data were then projected with Fisher’s Linear Discriminant (FLD) in
Figure 5. It is a dimensionality reduction method that uses a projection vector w⃗p to reduce
the dimension of the dataset from f to n − 1, as shown in Equation (1).

XFLD
M×(n−1)

= XT
original
M× f

. w⃗p
f×(n−1)

(1)

Here, M is the length of the data, f is the original number of features mentioned in
the previous section, and n is the number of classes. It shows that our new ground truth
labeling successfully differentiates the No Stress and High Stress classes, with some overlap
between Low Stress and High Stress. There are also minor data points, which can be marked
as outliers. These data points will be misclassified with any linear classifier unless any
external information or context is provided to deal with them.

Figure 5. Distribution of projected 2D labeled dataset with FLD.

In this research, our contextual information was derived from the stress levels of
participants before, during, and after the TSST. It is important to acknowledge that some
participants may have arrived at the lab already experiencing stress levels higher than what
was induced during the TSST, while others may have exhibited varying rates of stress level
change following the TSST, thus leading to several challenges for our classifier. Primarily,
these variations can result in an increased false positive rate, as the prior probability after
ground truth estimation is not uniform across all classes, thus causing dataset imbalance.
Additionally, the duration of the relaxed period may vary among individuals. To mitigate
these unexpected outcomes and enhance decision making, we incorporated supplementary
contextual information like the lab settings before, during, and after the TSST protocol
directly into our dataset. These context features provided numeric values analogous to the
ground truth labels, and their assignment was based on the laboratory conditions under
which the data were collected.

4. Context-Aware Stress Detection with Supervised Machine Learning

Our method for context-aware stress detection with ML consists of three main parts.
First, we have the statistical feature extraction, which we explain in Section 4.1. After col-
lecting the data from the Empatica wristband, they go through preprocessing steps where
they are filtered, normalized, and fused. This sensor fusion plays an important role in
removing false positives, which we will show in more detail in the later part of the section.
Second, the ground truth is estimated from the cortisol concentration, and the context
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information comes from the TSST protocol. Finally, they are all fed to the Random Forest
model for training. The overall workflow illustrated in Figure 6 is explained in this section.

Figure 6. Workflow of stress detection with machine learning model (Random Forest).

4.1. Statistical Feature Extraction from Signal Stream

After collecting sensor data, they are preprocessed for the corresponding machine
learning algorithm. The raw Electrodermal Activity (EDA) and Blood Volume Pressure
(BVP) signals are normalized and filtered using a 5th-order low-pass filter with cut-off fre-
quencies of 1 Hz for EDA and 10 Hz for BVP. The Interbeat Interval (IBI) signal undergoes
no preprocessing. Subsequent to preprocessing, features are extracted using a window of
1.5 min, with an overlap of 0.75 min from the samples. Previous studies have indicated
that characterizing EDA peaks or startles can provide insights into an individual’s stress
level [31]. The first derivative of the EDA signal undergoes a peak detection algorithm [32],
and features such as peak amplitude, peak width, and peak prominence are computed.
In total, 18 characteristics were extracted from the EDA signal. The BVP signal, obtained
from the photoplethysmogram (PPG) sensor, reflects heart activity. The cardiovascular
arousal associated with increased blood pressure and heart rate during stress is correlated
with the BVP signal [33]. Seventeen characteristics were derived from the BVP signal, thus
summarizing peak amplitude, breadth, and prominence similar to EDA features. Addi-
tionally, the IBI and ST signals contribute six time domain statistical characteristics each.
The IBI, representing the interval between two heartbeats, is instrumental in understanding
cardiac activity concerning stress. ST refers to the skin temperature in that instance.

4.2. Machine Learning Model

We have chosen Random Forest as our base model for the classification problem.
Supervised machine learning algorithms, such as Random Forest, are commonly utilized
for addressing classification and regression challenges. It constructs a multitude of decision
trees during training and outputs the class that is the mode of the classes (classification) or
mean prediction (regression) of the individual trees. The algorithm is defined as follows:

1. Bootstrap Sampling:The dataset is broken into subsets to send randomly in individ-
ual trees.

2. Decision Trees: For each sample and feature subset, a decision tree is constructed.
The splitting is based on a preset criterion. For the classification problem, we used
logarithmic Gini impurity, which is shown in Equation (2):

Gini(D) = 1 −
C

∑
i=1

(Pi)
2 (2)

Here, D is the dataset at that tree node, C is the number of classes iterated by i, and Pi
is the probability of class i in node D.
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3. Ensembling and Voting: Based on the criterion, the required number of trees is con-
structed. The loss is calculated based on logarithmic entropy, as shown in Equation (3).
These ensemble trees will provide a prediction of their own, and out of it, the majority-
voted class will be the final prediction. The equation for the prediction of individual
trees is shown in Equation (4), and the final prediction is shown in Equation (5). Here,

ˆPredi(x) denotes the prediction of a tree, f (.) is the indicator function, and Li(x) is
the leaf node to which x is assigned in tree i.

Entropy = −
C

∑
i=1

Pi × Log2(Pi) (3)

ˆPredi(x) = argmaxc

 ∑
xj∈Li(x)

f
(
yj = c

) (4)

Pred = argmaxi( ˆPredi) (5)

4.3. Model Training and Testing

After extracting features from the data, we employed salivary cortisol analysis to label
these features as indicative of three stress classes. To evaluate the performance, we utilized
a Leave One Sample Out (LOSO) crossvalidation technique. This involved iteratively
using one participant’s data for testing while training on the remaining participants’ data.
During the training phase, a feature selection process based on Kendall’s tau correlation
was implemented to identify the most pertinent features. This correlation measure estab-
lished the link between the training feature set and the stress labels derived from cortisol
concentration [34]. Only features exhibiting statistically significant correlations (p values
below 0.05) were retained. The final set of training features is presented in Table 2. When
training the Random Forest model, hyperparameters were optimized based on the model’s
performance. The final selection of hyperparameters that resulted in the best accuracy on
the test set is shown in Table 3.

Table 2. Selected Features from Physiological Signals.

Physiological Signals Extracted Features Statistical Measures

EDA

Amplitude:
Mean, Median, Maximum,
Minimum Standard Deviation,
Root Mean Square

Width:
Median, Standard Deviation,
Root Mean Square

Prominence: Minimum

BVP

Amplitude: Mean, Standard Deviation,
Root Mean Square

Width: Median

Prominence:

Mean, Median, Maximum,
Minimum, No of Peaks,
Standard Deviation,
Root Mean Square

IBI Amplitude: Maximum, Standard Deviation

ST Amplitude: Maximum, Standard Deviation
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Table 3. Training parameters for Random Forest.

Parameter Value

No. of Estimators - 40
Criterion - Entropy
Minimum Samples Split - 2
Maximum Depth - Till (minimum sample Split − 1)
Minimum Samples Leaf - 1
Maximum Feature - Auto
Bootstrap - True
Random State - 4

4.4. Result Analysis

We now assess the Random Forest model’s performance using our dataset in terms of
the estimated ground truth following training and testing. We will then talk about how
well it performs with more context. We used the F-1 score and weighted accuracy to assess
the model’s performance.

The summarized results, as presented in Table 4, illustrate the performance of a single
sensor and the sensor fusion. The enhancement in the F-1 score suggests that sensor fusion
plays a role in mitigating the likelihood of false positive detections. Notably, our model
achieved a commendable accuracy even in the absence of context, as per the proposed
ground truth labeling. Introducing context resulted in an increase of around 20% in
accuracy and around 0.2 in the F-1 score. The increase in the F-1 score explains the model’s
performance in not only making the correct detection for positive cases but for negative
cases as well.

Table 4. Performance of Random Forest model with and without context.

Criteria
Sensor List EDA PPG PPG EDA, PPG EDA, PPG EDA, PPG, ST

Signal List EDA BVP IBI EDA, BVP EDA, BVP, IBI EDA, BVP, IBI, ST

Features
Total 18 17 6 35 41 47

Selected 11 11 2 22 24 27

Without Context
Macro F-1 Score 0.723 0.711 0.713 0.712 0.734 0.734

Accuracy (%) 72.95 73.40 72.77 72.51 72.44 72.44

With Context
Macro F-1 Score 0.922 0.907 0.910 0.909 0.937 0.943

Accuracy (%) 93.13 93.69 92.89 92.56 92.48 91.01

5. Context-Aware Stress Detection with CNN-Based Automatic Feature Encoder

Our method for context-aware stress detection with a CNN-based model is based on
standard, well-known CNN architectures. First, we have the automatic feature encoder,
which is a series of 1D convolutional layers. It is a sophisticated tool for extracting features
and learning from 1D data sequences automatically. Based on loss, activation, and gradient
values, we keep an appropriate number of neurons in each layer in our model architecture.
During convolution, the CNN kernels move over the components of the 1D input signal
stream. After collecting the data from the Empatica wristband, they are fed directly to
CNN. Similar to ML, the ground truth is estimated from the cortisol concentration, and the
context information comes from the TSST protocol. Finally, they are all fed to the feature
encoder to extract a new feature representation. To test the performance for this case, we
have used 5-fold crossvalidation. The overall workflow illustrated in Figure 7 is explained
in this section.
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Figure 7. Workflow of stress detection with CNN-based model.

5.1. Automatic Feature Extraction with Feature Encoder

Our 1D CNN feature encoder consists of an input layer, a group of convolutional and
max pooling layer pairs, a flattening layer, and dense layers. The convolutional layers have a
gradually increasing number of filter sizes with a Rectified Linear Unit (ReLU) activation
function followed by a max pooling layer. This type of pattern helps the model choose the
best possible weights for the input streams. The ReLU activation function helps to avoid
the vanishing gradient so that a faster convergence can be obtained, and the max pooling
layer has been introduced to reduce the dimensions of the feature maps. Then, the flattening
layer downsamples data into a 1D vector. Finally, there is a dense–dropout pair that reduces
model overfitting. We have chosen the dropout rate to be 30% after trial and error for the
best accuracy.

5.2. Fully Connected Neural Network

After the CNN-based feature encoder, the encoded features are sent to a series of
dense and dropout layers for final decision making. The dropout rate was similar to the
feature encoder with a ReLu activation. Finally, the output layer sets out three nodes with
a softmax activation function that represents three stress classes.

As the problem formulated suggests it is a multimodal classification problem,
Equation (8) provides the class prediction with output layer activation of softmax (σo),
which is shown in Equation (6). Other layers have activation of ReLu (σh), as shown in
Equation (7). The entropy, i.e., the loss to optimize, is chosen to be the categorical crossentropy
loss shown in Equation (9).

σo(z) =
ezi

∑N
j=1 ezj

(6)

σh(z) = max(0, z) (7)

class = arg_max
[
σ
{
(Wi)

T × ϕ(Xj) + bi
}]

(8)

Loss(y, ŷ) = −
N

∑
i=1

yi · log(ŷi) (9)

Here, Wi, Xj, and bi are the weight, inputs vector, and bias for ith and jth instances,
respectively. N is the total number of samples, yi is the true probability distribution (one-hot
encoded) for class i, and ŷi is the predicted probability for class i.

Our proposed CNN-based model consists of these two major parts cascaded together.
Firstly, the feature encoder takes all possible statistical features and transforms them into
a new feature representation. Secondly, these new features are fed to a fully connected
neural network comprising several dense layers. The hyperparameters for this model is
chosen similarly based on the best performing test dataset listed in Table 5. The primary
determinant of a model’s complexity is the quantity of trainable parameters. This comprises
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the total number of neurons that are employed in creating the layer-to-layer connection.
With m and n serving as input and output nodes, respectively, a dense layer with a total of
(n + 1)× m trainable parameters is formed. Convolutional layers with input and output
feature maps of p and q, respectively, combined with a filter of size i × j result in total
trainable parameters of (i × j × p + 1) × q. We present a breakdown of the number of
parameters in our suggested model in Table 6.

Table 5. Training parameters for convolutional neural network.

Parameter Value

Base Architecture - CNN
Classes - 3
Number of Epochs Trained - 25
Hidden Layer Activation - Rectified Linear Unit (ReLU)
Output Layer Activation - Softmax
Optimizer - Adam
Loss Function - Categorical Crossentropy

Table 6. Proposed model layers.

Model Layer Name Layer Info Number of
Parameters

Feature Encoder Conv-1D Filter = 32 128
Conv-1D Filter = 64 6208
Maxpool-1D – 0
Conv-1D Filter = 128 24,704
Maxpool-1D – 0
Conv-1D Filter = 256 98,560
Maxpool-1D – 0
Flatten – 0
Dense Node = 2048 3,147,776
Dropout Rate = 30% 0
Dense Node = 512 1,049,088
Dropout Rate = 30% 0

Fully Connected NN Dense Node = 128 65,664
Dense Node = 32 4128
Dense Node = 8 264
Dense Node = 3 27

Total Parameters 4,396,547

5.3. Result Analysis

Crossvalidation is a crucial technique in machine learning and statistical modeling that
addresses the challenge of assessing a model’s performance on new, unseen data. We per-
formed 5-fold crossvalidation with an 80/20 train/test split and recorded the performance
in each case. From Table 7, it can be seen that Fold-1 had the highest average accuracy, and
Fold-3 had the highest macro F-1 score. On the other hand, Fold-2 had the lowest accuracy
and F-1 score.

Again, for multiclass classification problems, the accuracy and F-1 score might not
always provide a full picture of a model’s performance. In such cases, the confusion
matrix provides a quantitative measurement of the model’s performance in each class.
The confusion matrix generated from our experiment in Table 8 shows that only a few times
did our model confuse Low Stress with High Stress. As seen from the projected dataset
in Figure 5, this minor confusion was expected. The high value of its diagonal validates
our model’s performance on stress level classification.
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Table 7. Performance for 5-fold crossvalidation.

Fold Sequence Avg Accuracy F-1 Score

Fold-1 99.8685% (highest) 0.9888
Fold-2 86.9696% (lowest) 0.9379 (lowest)
Fold-3 99.2796% 0.9928 (highest)
Fold-4 99.3216% 0.9752
Fold-5 98.3232% 0.9778

Average 96.7525% 0.9745

Table 8. Confusion matrix (weighted average of 5 folds).

Ground Predicted Class
Truth No Stress Low Stress High Stress

No Stress 83.8 2.6 3
Low Stress 5.6 243.8 2.2
High Stress 2.6 2.8 58

Table 9 shows the performance of our proposed model with and without contextual
information. It shows that the F-1 score increased from 0.7552 to 0.9745, and the accu-
racy increased from 83.7797% to 96.7525% after adding additional contextual information.
The increased F-1 score suggests that sensor fusion and added context reduce the possibility
of false positive detections. Based on the proposed neural network-based model, we ob-
tained a reasonable accuracy without context, and after incorporating context, the accuracy
increased by roughly 13%. With the sensor fusion listed in the last column, our model had
an F-1 score of 0.75 and an accuracy of 83.78% when it performed without any contextual
information from the TSST protocol. On the other hand, after the inclusion of contextual
information, the F-1 increased to 0.97, which is 0.22 higher. Similarly, the accuracy increased
by 13% to 96.75%.

Table 9. Performance of proposed CNN-based model with and without context.

Criteria
Sensor List EDA EDA, PPG EDA, PPG EDA, PPG, ST

Signal List EDA EDA, BVP EDA, BVP, IBI EDA, BVP, IBI, ST

Without Context
Macro F-1 Score 0.6992 0.7161 0.7492 0.7552

Accuracy (%) 80.0078 81.4290 83.2227 83.7797

With Context
Macro F-1 Score 0.9022 0.9240 0.9667 0.9745

Accuracy (%) 92.3965 94.0378 96.1092 96.7525

6. Results Comparison and Discussion

Table 10 shows a comparison of the performance between the machine learning
model with manual feature engineering and the CNN-based model with automatic feature
selection. It is seen that the CNN-based model outperformed ML models in the case of both
with and without contextual information. Although the F-1 score was similar, the accuracy
for the CNN-based model was around 10% higher for cases without context and 4% higher
for cases with context. The difference in performance mostly depends on the the type
of data, best correlated features, and the architecture of the model itself. Random Forest
worked better on tabular data, where it builds its own decision tress as weak learners
to ensemble a final classifier. It can not modify the features on these parallel tress and
thus highly depends on the input feature. Thus, the Random Forest model drew decision
boundary for the given 27 features, which only resulted in some loss of information. On the
other hand, CNN-based models are best suited for a larger number of data where in each
layer, the features are given new representations based on the trainable parameters and
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weights. By taking care of the overfitting problem, where the model tries to memorize the
training set, neural networks can outperform many classical algorithms. For these reasons,
the fully connected layers at the end have more correlated feature representation to make
decisions and show increasing performance metrics.

Table 10. Performance comparison of signal fusion for proposed CNN-based model with machine
learning model.

Criteria Without With
Context Context

Sensor Signal Manual Feature CNN-Based Manual Feature CNN-Based
List List ML ML ML ML

EDA, PPG,
ST

EDA, BVP,
IBI, ST

F-1: 0.73
ACC: 72.44

F-1: 0.75
ACC: 83.77

F-1: 0.94
ACC: 92.48

F-1: 0.97
ACC: 96.75

7. Conclusions and Future Works

Our findings and analyses shown in this paper demonstrate digital biomarkers as
a viable option for developing a context-aware stress detection model for older persons.
We have experimented with both feature-engineered and CNN-based machine learning
models to find out their performance on stress biomarkers. The use of wrist-worn sensors
to identify stress from digital biomarkers by correlating with cortisol can improve the
state of the art. Our proposed algorithm can help bring clinical-level stress diagnosis into
the ordinary consumer world, hence improving the quality of consumer health care. Our
focus on a specific age group of older adults will help physicians prescribe personalized
medications and treatments. This model also enables continuous stress monitoring, thus
allowing an individual to regulate stress on their own. We provided two frameworks to
validate our hypothesis on digital biomarkers. Our experimental results on the laboratory
setting with cortisol concentration show the promise of utilizing machine learning for
digital biomarkers of older adults. We also proved that the inclusion of context increased
the machine learning model’s performance metrics of stress detection for both of our
proposed frameworks. Despite these developments, there is still space for improvement in
the research that has been published thus far. Novel standardized datasets, crosscultural
validation, the inclusion of more multimodal data sources, and real-time detection and
predictions are a few of these requirements. In addition, for future directions, a careful
analysis of the ethical implications of stress detection technology is necessary, including
concerns about privacy and possible biases in algorithmic decision making.
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Abbreviations
The following abbreviations are used in this manuscript:

AD Alzheimer’s Disease
ANN Artificial Neural Network
AT Air Temperature
BVP Blood Volume Pressure
CNN Convolutional Neural Network
DCNN Deep Convolutional Neural Network
ECG Electrocardiogram
EDA Electrodermal Activity
EEG Electroencephalography
EMG Electromyography
FLD Fisher’s Linear Discriminant
HR Heart Rate
HUM Humidity
IBI Interbeat Interval
IMU Inertial Measurement Unit
LOSO Leave One Sample Out
PPG Photoplethysmography
ReLU Rectified Linear Unit
RF Random Forest
SC Step Counter
SCL Skin Conductance Level
ST Skin Temperature
TSST Trier Social Stress Test
zEMG Zygomaticus Electromyography
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