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Abstract: Automated crowd counting is a crucial aspect of surveillance, especially in the context of
mass events attended by large populations. Traditional methods of manually counting the people
attending an event are error-prone, necessitating the development of automated methods. Accurately
estimating crowd counts across diverse scenes is challenging due to high variations in the sizes of
human heads. Regression-based crowd-counting methods often overestimate counts in low-density
situations, while detection-based models struggle in high-density scenarios to precisely detect the
head. In this work, we propose a unified framework that integrates regression and detection models to
estimate the crowd count in diverse scenes. Our approach leverages a routing strategy based on crowd
density variations within an image. By classifying image patches into density levels and employing a
Patch-Routing Module (PRM) for routing, the framework directs patches to either the Detection or
Regression Network to estimate the crowd count. The proposed framework demonstrates superior
performance across various datasets, showcasing its effectiveness in handling diverse scenes. By
effectively integrating regression and detection models, our approach offers a comprehensive solution
for accurate crowd counting in scenarios ranging from low-density to high-density situations.

Keywords: crowd counting; regression models; head detection; crowd surveillance; deep learning

1. Introduction

Automated crowd analysis is a challenging problem and has received tremendous
importance from the research community over the last decade. Due to the increasing
population, many people attend mass events, such as religious festivals, marathons, con-
certs, etc. Although these events are organized for entertainment or fulfillment of religious
obligations, sometimes these peaceful events end up with a crowd disaster. To predict and
prevent crowd disasters, surveillance cameras are mounted in different locations of venues,
where security personnel manually analyze the whole crowd with the naked eye. Studies
have proved that such manual analysis is a tedious job and is usually prone to errors [1].

To automatically analyze a crowded scene, researchers have developed different mod-
els and methods that automatically analyze a crowd and understand crowd dynamics [2].
Crowd analysis includes various applications, including crowd counting [3,4], congestion
detection [5], crowd tracking [6], crowd behavior understanding [7–9], and more. Crowd
counting, in particular, has gained significant importance within the research community.

Crowd counting in naturalistic scenes has numerous applications and is significant
both from political and geo-political perspectives [10]. The task of crowd counting is to
count the number of participants attending an event. Currently, most of the state-of-the-art
crowd-counting methods can be divided into two groups: (1) regression-based approaches
and (2) detection-based approaches.
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Regression-based methods regress density information and estimate the count without
localizing people. Zhang et al. [11] proposed a network that simultaneously solves the
counting and density estimation problems. This method relies on the generation of per-
spective maps that enhance the counting accuracy; however, the acquisition of perspective
maps for every scene increases the computational cost. Similarly, a Multicolumn Convolu-
tional Neural Network (MCNN) is proposed in [12] that consists of three columns. Each
column implements a small network with a different receptive field with the aim of solving
multi-scale problems. The Switching Convolutional Neural Network is proposed in [13]
that contains multiple Convolutional Neural Network (CNN) regressors with different
receptive fields, and a switch classifier is trained to route the patch to one of the CNN
regressors that can best estimate the count. While regression-based approaches excel in
high-density scenarios, they tend to overestimate crowd counts in low-density situations.

Detection-based crowd-counting methods not only estimate crowd counts but also
localize the people in the scenes. Composition loss was introduced in [14] to address
the simultaneous challenges of counting, density estimation, and localization. Similarly,
Locate, Size and Count Convolutional Neural Network LSC-CNN [15] is proposed that
localizes every person in a crowded scene, estimates the bounding box (size) of visible heads
and finally counts the number of people. Scale-Driven Convolutional Neural Network
(SD-CNN) [16] is proposed to count the number of people in high-density crowds by
detecting visible heads. These approaches work well in low-density scenes; however, their
performance degrades when applied in high-density situations. Therefore, we need a
“one-model method” that can accurately count people in all kinds of scenes.

To address the above problems, we proposed a framework that combines the advan-
tages of both regression-based and detection-based models by exploiting the variations
of crowd density within an image to accurately predict the crowd counts. Generally, the
proposed framework adopts a routing strategy that routes the image patch to one of two
counting modules based on the density level. The framework divides the input image
into non-overlapping patches of fixed size. Then, each patch is classified into four classes,
i.e., Low, Medium, High, and No Crowd. Then, the patches are provided as input to the
Decision Block (DB), where, based on the classification label, the patches are routed to
either of two modules, i.e., the Detection Network or Regression Network. The network
estimates the count in each patch and then calculates the final count by summing the count
from all patches.

The proposed framework offers the following contributions:

1. A unified deep-learning framework is proposed that estimates crowd count in diverse scenes.
2. We introduce a Crowd Classifier (CC) that classifies the patches into four categories,

including Low Crowd, Medium Crowd, High Crowd, and No Crowd.
3. A novel Head-Detection (HD) network is introduced for the efficient detection of

human heads in complex scenes, leveraging iterative deep aggregation (IDA) to
extract multi-scale features from various layers of the network.

4. A novel Crowd-Regression Module (CRM) is introduced, which utilizes an Atrous
Convolution Grid (ACG) to densely sample a wide range of scales and contextual
information for accurate crowd count estimation.

5. An effective routing strategy is developed that efficiently routes the patches to either a
detection network or regression module based on crowd density variations within an image.

The remaining sections of the paper are structured as follows: Section 2 discusses
related work, Section 3 outlines the proposed methodology and detailed experiment results
along with performance analysis are presented in Section 4. Concluding remarks are
provided in Section 7.

2. Related Work

In this section, we briefly overview crowd-counting methods recently proposed in
the literature. In general, crowd-counting methods can be classified into two main groups:
(1) Regression-based methods and (2) Detection-based methods.
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2.1. Regression-Based Methods

These approaches utilize machine-learning models to estimate the count through
regression analysis between the image/patch and the count. Regression-based meth-
ods can be subdivided into two categories: (1) statistical machine-learning models and
(2) deep-learning models.

Statistical machine-learning models extract statistical features, Scale-Invariant Feature
Transform (SIFT), Histogram of Oriented Gradient (HOG), etc., and employ techniques such
as support vector regression [17], Gaussian process regression [18], Random forest [19], etc.,
to estimate the crowd count. Generally, these methods require the computation of complex
handcrafted features. Essentially, handcrafted features, such as SIFT, HOG, Bag-of-Words,
etc., are extracted from the image. Subsequently, a classifier is trained to categorize the
image into different classes. Idrees et al. [20] proposed a crowd-counting framework by the
fusion of multiple features. The authors identified that a single feature is not enough to
count people in high-density crowds.

Regression-based deep-learning models for crowd counting are designed to predict
the count of individuals directly from a given image. Unlike models focused on detecting or
localizing individuals, regression models generate a density map. This density map is used
to estimate a continuous value representing the crowd count. Wang et al. [21] introduced a
method for crowd counting that adopts an adaptive density map generator strategy, which
refines existing density maps using a learned refinement network. The refinement process is
integrated into an end-to-end framework, allowing joint training with the crowd-counting
network. Dong et al. [22] proposed MMNet, which addresses the challenges of crowd
counting, such as occlusions and scale variations. The method addresses the scale problem
using various filter sizes and integrates features from different layers of the network to
handle head scale variations effectively. Li et al. [23] presented CSRNet, aiming to precisely
estimate counts and produce high-quality density maps in densely populated scenes. The
network comprises a front-end Convolutional Neural Network (CNN) for 2D feature extrac-
tion and a dilated CNN for the back end, utilizing dilated kernels to achieve larger reception
fields without pooling operations. Xu et al. [24] introduced a method that addresses the
challenge of crowd counting with partial annotations. Sindagi et al. [25] introduced the
contextual pyramid CNN to estimate the crowd density and count by integrating global and
local contextual information in crowd images. Similarly, Zhai et al. [26] presented a novel
framework for crowd counting. The framework employs a discriminative feature extractor
to extract hierarchical features and utilizes a hierarchical fusion strategy to mine semantic
features in a coarse-to-fine manner. Zhang et al. [27] proposed a framework that counts the
number of people in multiple views. Zhai et al. [28] introduced a framework consisting of
three modules. The initial module extracts multi-scale features using a feature pyramid
network. The second module is an attention module designed to suppress less critical
information while preserving vital features for crowd counting. Finally, the third module, a
multi-scale aggregation module, consolidates features from various layers of the network.
Guo et al. [29] introduced a crowd-counting framework employing the Ghost Attention
Pyramid Network as a feature extractor (encoder). The extracted features are subsequently
fed into the channel attention module to efficiently capture discriminating crowd regions.
Moreover, there have been extensive surveys on various crowd-counting algorithms [3,30].
These surveys offer comprehensive insights into state-of-the-art crowd-counting models
and delve into the strengths and limitations of different approaches while also discussing
the datasets employed in evaluating these models.

Although the regression-based deep-learning models achieve good performance in
high-density crowds, this can be attributed to the fact that images in high-density crowds
often exhibit regular and repetitive crowd structures. As a result, regression-based methods
excel in such scenarios, as they effectively capture generalized density information. How-
ever, these methods suffer from the following limitations. (1) These methods do not localize
the people in the environment, and (2) these methods overestimate the crowd counts when
applied in low-density crowds.
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2.2. Detection-Based Methods

Detection-based approaches involve training object detectors to identify the position
of each person in the crowd, with the total number of detections indicating the overall
crowd count.

Most of the existing methods approach the crowd-counting problem by treating it as
the detection of faces, heads, or pedestrians in images. Traditional methods, for example,
Viola and Jones [31] use Haar-like features and learn a haar-cascade classifier. More recently,
Ren et al. [32] has incorporated temporal information using the conditional random field
(CRF) to further improve the accuracy of the Viola and Jones method. The deformable parts
model (DPM) [33] is a part-based model that uses a histogram of oriented gradient features
to detect different parts of the human body. These models work well in low-density crowds;
however, the performance degrades when applied in high-density crowded scenes. This is
because these rely on complex handcrafted features that do not have discriminating power.

Recently, deep-learning models have achieved superior performance in object detec-
tion, segmentation, and classification tasks. In recent years, several methods [34,35] have
been proposed to detect human faces in videos and images. Other methods have exploited
contextual information of the scene to detect human faces in complex scenes [36,37]. Hao
et al. [38] proposed a sophisticated method that detects tiny human faces in high-density
crowds by leveraging contextual information about the scene. Khan et al. [39] proposed a
novel method for crowd counting in high-density crowds by introducing an end-to-end
scale-invariant Head-Detection framework. The proposed framework employs specialized
scale-specific convolutional neural networks (CNNs) with different receptive fields to han-
dle diverse scales effectively. Shami et al. [40] introduced a head detector based on CNN
for crowd counting. Lian et al. [41] introduced a method that simultaneously estimates
headcount and localizes the humans through a detection-based strategy. Zhou et al. [42]
introduced a framework that combines multiple kernel learning (MKL)-based fast head
detection and shape-aware matching. Saqib et al. [43] introduced a crowd-counting method
that improves the performance of pedestrian detectors via motion-guided filters (MGF).

While the aforementioned methods excel in low-density crowds, where either all
or part of the human body is visible, they face challenges when applied to high-density
crowded scenes. This limitation is attributed to the fact that detection methods relying
on facial features encounter difficulties, particularly when the person is far away from
the camera or turns their back to it. Furthermore, facial features become hardly visible in
high-crowded situations due to severe occlusions.

Conversely, pedestrian detection relies on identifying the entire pedestrian, which be-
comes challenging in high-density crowded situations where the full body of the pedestrian
is not visible. In such cases, pedestrian detectors typically struggle to perform effectively.

3. Proposed Methodology

In this section, we will delve into the various components of the proposed framework.
The pipeline of the framework work is illustrated in Figure 1. Generally, the framework
comprises four major modules: the Crowd Classifier (CC), Patch-Routing Module (PRM),
Head Detector (HD), and the Crowd-Regression Module (CR). The primary objective of
this framework is to estimate the number of people within a given image. The initial
step involves dividing the input image into non-overlapping patches. Subsequently, these
patches serve as input to the CC, which classifies them into four distinct categories: No
Crowd (NC), Low Crowd (LC), Medium Crowd (MC), and High Crowd (HC). Based on the
classification outcomes, the PRM directs the patches towards the Head-Detector Module
and the Crowd-Regression Module. The counting modules estimate the count in the input
patch, and then the count accumulator provides the final count by accumulating the count
of all patches of the input image.
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Figure 1. Overall pipeline of the proposed crowd-counting framework.

The Head-Detection Module is responsible for processing Low-Density Crowd and
Medium-Density Crowd patches. It employs a deep-learning model to detect the number
of heads in each patch. On the other hand, the Crowd-Regression Module handles high-
density crowd patches and estimates the count within each patch. Detailed information on
each module is provided as follows:

3.1. Crowd Classifier

Crowd classification plays a vital role and serves as a preprocessing step in crowd analy-
sis. Most of the existing crowd-counting models are based on regression techniques [20,44,45],
where the models learn repetitive structures within the whole image to estimate the count.
However, these regression-based models tend to produce false positives when applied to
images with No Crowd, which causes significant inaccuracies in crowd counting. Since
these regression models are blind and learn from the patterns present in images, they may
not distinguish the difference between individual heads and the background. This fact is
illustrated in Figure 2.

Figure 2. Samples of non-crowded scenarios. The ground truth is 0, while the regression model [44]
still predicts the count of people.

To remedy this problem, we introduce a crowd-classification model to characterize
the crowd image from non-crowd images. However, it has been observed that classifying
the whole image usually leads to inaccuracies in crowd counting, as some areas within the
image may be significantly denser than others [20]. Therefore, instead of considering the
whole image, we divide the image into smaller, non-overlapping patches by assuming that
the crowd density is uniform across the whole image. In this manner, the model assigns
significance to each region of the image, therefore identifying non-crowded areas, which
enhances the efficiency and precision of the counting process. With this approach, the
framework avoids routing non-crowded patches to the other two counting modules and
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accommodates the variations in crowd density across different areas of the scene, which
results in improved counting accuracy and processing speed.

Let I be the input image of arbitrary size. We divide the input image I into N number
of non-overlapping patches. Let {p1, p2, . . . , pN} be the patches extracted from the input
image. All patches have identical dimensions, with each patch comprising S × S pixels.
After the extraction of patches, we then preprocess the patches to make them suitable for
training the deep-learning model. During the preprocessing step, the patches are resized to
224 × 224 pixels to make them fit for the input of the deep-learning model. Subsequently,
the normalization step is employed to reduce the impact of brightness and contrast among
different images. The patches are then converted to RGB color space as the deep-learning
model utilizes RGB format during training.

For the patch-classification task, we employ the ResNet-152 deep-learning model;
however, any deep-learning model may be employed. The selection of ResNet-152 is
based on its specialized architecture, characterized by the presence of residual connections,
which enables the network to learn complex features while effectively mitigating the
issue of vanishing gradients. These attributes greatly enhance ResNet-152’s generalization
capabilities, which is crucial for achieving accurate patch classification across a diverse
range of patches.

To train ResNet-152 on the obtained patches, we first accumulate the patches from
all training images of the dataset and then label each patch as one of the four categories.
To label the patches, we employ an automated approach that utilizes dot annotations
available for each image. These dot annotations are the markers indicating the presence
of human heads within the image. For every patch extracted from the image, we perform
a straightforward procedure by counting the number of dots within the patch area. The
cumulative count of these dots is then used to determine the label for the patch. This method
simplifies the patch-labeling process, as the presence of dots offers a straightforward and
automated means of associating each patch with its corresponding crowd density label,
making it a practical and efficient approach for crowd analysis tasks. We generate class-wise
patches according to the density levels defined in [46]. An “LC” class label is assigned to
a patch if the count is greater than 0 and less than 10. An “HC” is assigned to a patch if
the count is greater than 15. An “MC” is assigned to patches if the count is greater than 10
but less than 15, and an “NC” label is assigned to patches where the count is 0. The overall
pipeline of the patch-labeling process is illustrated in Figure 3.

Figure 3. Pipeline of patch-wise labeling process. The algorithm utilizes the input image and its
corresponding dot annotations to generate a grid-wise count. The grid-wise count is then transformed
into class-wise patches for network training.
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3.2. Patch-Routing Module

The Patch-Routing Module (PRM) plays a crucial role in deciding whether a specific
image patch should be directed to the regression network or the detection network for
further processing. As previously mentioned, when dealing with crowd counting in
diverse and complex scenes with varying densities, it becomes imperative to judiciously
determine the destination of each image patch to attain the best possible results. The PRM
accomplishes this task through a heuristics-based approach, which involves applying a set
of predefined rules to determine the most appropriate network for processing the patch.
These rules are typically established based on prior experience and an understanding of
the problem.

It is worth mentioning that in high-density crowd scenarios, achieving accurate count-
ing through the detection of human heads is very challenging. Conversely, in low-density
crowd scenarios where the head of each individual is readily visible, employing a regression-
based model for counting is not efficient since the regression-based models tend to overesti-
mate the crowd counts in such situations. To address the problem, we formulate some rules
that intelligently direct image patches to the appropriate network modules. In this context,
high-density patches are directed towards the regression module, while low-density and
medium-density patches are routed to the detection module. This strategic routing of
patches serves to optimize the efficiency of crowd counting by aligning the computational
capabilities of each module with the specific characteristics of the input patches.

Algorithm 1 provides a detailed illustration of the routing approach and the counting
process during the inference stage. The algorithm takes an image, I, as input, and it
produces an output represented by the grid count CG, the size of which is equal to the size
of the input image. The algorithm begins by overlaying a gird G of size N × M over the
input image and initialize a count grid (CG) with the same dimension as the grid. The
algorithm then iterates through each cell of the grid, where each cell of the grid represents
a patch of the image. After extracting the patch, the patch is normalized and resized to
224 × 224 to make it fit the input of the crowd-classification network. The classifier feed
forwards the input patch and predicts its class label. Based on the class label, the routing
algorithm decides where to direct the patch. If the predicted label of the patch is “HC”, the
algorithm routes the patch to the regression network; otherwise, the algorithm directs the
patch to the detection network. The count contained within each patch is then cumulatively
aggregated within the count grid, denoted as CG.

Algorithm 1 Routing patches and counting during inference stage
Input: Image I, N, M
Output: Count Grid CG

Overlay N × M grid G over the input image.
Initialize count grid CG equal to the size of G.
for each i in N do

for each j in M do
Normalize and re-size patch pi,j
Re-size patch pi,j to 224 × 224 pixels
Classify pi,j in categories: LC, NC, HC, MC
if pi,j is HC then

CGi,j = CountRegressor(pi,j)
else if pi,j is NC then

CGi,j = 0
else

CGi,j = HeadDetector(pi,j)
end if

end for
end for
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3.3. Head-Detection Module

Head detection in images and videos has a wide range of applications in crowd
analysis and large-scale surveillance. Head detection is a special case of object detection.
Although object detection in images has achieved significant progress, head detection
presents a distinctive set of challenges. These challenges arise from the substantial vari-
ations in head sizes, complex background clutter, and the relatively small size of human
heads within images.

The current generic object detectors face the following challenges while detecting
human heads in images for counting tasks: (1) Current deep-learning-based object de-
tectors represent the objects through bounding boxes that tightly encompass the objects.
This approach is highly effective when precise ground-truth bounding box annotations are
available for training. However, such annotations are not available in the crowd-counting
dataset. The crowd-counting datasets usually contain dot annotations (2-D points), which
represent the position of a human head in the image. This difference in annotation method-
ology complicates the training process for Head-Detection models, as these models are
primarily designed for bounding box annotations. (2) Current deep-learning models, such
as Faster R-CNN, extract deep hierarchical features from the input image by passing the
input image through subsequent convolution and pooling layers. These pooling operations
typically downsample the input image, leading to the loss of crucial information regarding
small objects.

For precisely detecting human heads in complex scenes, we propose a simple yet
effective approach by addressing the above-mentioned problems. To tackle the prob-
lem related to bounding box representation, we employ CenterNet. CenterNet adopts
a keypoint-centric approach, which demonstrates exceptional performance in situations
where bounding boxes are not available or in cases that involve small and densely clustered
human heads. The network efficiently identifies the location of heads by predicting the
central of each human head, even in crowded scenes or cases of occlusions.

Although the adoption of CenterNet solves the bounding box representation problem,
and we directly use the dot annotation provided by the dataset, CenterNet in its original
form may suffer from a loss of fine-grained information and may be unable to address the
second problem. This is because CenterNet employs subsequent pooling operations, which
leads to the downsampling of input images. This downsampling potentially results in the
loss of crucial information about small objects and may result in many false positives. To
address this problem, we modified the original CenterNet by incorporating the iterative
deep layer aggregation strategy, which combines features from both shallow and deep
layers of the network. This strategy allows for better context understanding while retaining
the spatial details of tiny heads. The integration of shallow- and deep-feature layers helps
the network address the downsampling problem by providing the network with more
comprehensive and precise information about the small heads.

As in high-density crowds, the distance between the human heads is a few pixels.
To accurately detect each head, the Head-Detection network produces a high-resolution
heatmap. In this heatmap, dark pixels indicate the likelihood of a human head’s presence,
while bluish pixels represent the background or other objects. The overall architecture of
the proposed Head-Detection framework is illustrated in Figure 4. We use ResNet-18 as the
backbone of the framework. Resnet-18 consists of four blocks, namely ResNet-1, ResNet-2,
ResNet-3, and ResNet-4. The network accepts the input image and applies a convolutional
layer of size 7 × 7 with stride 2 followed by a max-pooling layer of size 3 × 3 and stride
2. The resultant feature map is then passed through Resnet-1, which employs a stack of
two convolutional layers of size 3 × 3 and reduces the size of the original feature map to
half. The reduced feature map is then passed through ResNet-2. The output of ResNet-2
is then up-sampled by employing a deconvolutional layer and then integrated with the
feature map of the Resnet-1 using an iterative deep-aggregation module, IDA-1. The feature
maps of the subsequent ResNet blocks are integrated through iterative deep-aggregation
function Ψ, which captures the deep semantic information formulated in Equation (1).
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Ψ =

{
F1, if n = 1
Ψ{N(F1, F2), . . . , N(Fn−2, FN−1), Fn} otherwise

(1)

where Fi is the feature map of ResNet block i, and N represents aggregation node.

Figure 4. Detailed architecture of Head-Detection network. The input is the image, and the output is
the detections, where the number of detections represents the crowd count in the image.

The final feature map is subsequently subjected to a 1 × 1 convolution layer followed
by a SoftMax operation to estimate the probability of human heads. Next, a 3 × 3 filter is
applied to mitigate noise and detect peaks based on a specified threshold. In this study, we
employ a threshold value of 0.5. Any pixel with a value lower than 0.5 is considered noise
and is suppressed, while pixels with values greater than 0.5 are set to 1. We then utilize the
coordinates of these peaks to derive the location of human heads.

For training the Head-Detection network, we utilize dot-level annotations, where
1 represents the presence of the human head, and 0 represents the background. To supervise
the Head-Detection network, we need to generate a ground-truth heatmap. For this
purpose, we place a 2D-Gaussian kernel at the location of the head. After generating
ground-truth heatmaps from dot-level annotations, we train the Head-Detection network
employing the focal cross-entropy loss function formulated in Equation (2).

L = − 1
Ps

∑
k∈G

{
(1 − ω̂k)

τ
log(ω̂k), i f ω = 1

Ω(1 − ωk)
δ(ω̂k)

τ log(1 − ω̂k), otherwise
(2)

where Ps is the number of positive samples (heads) in the image G, ω̂ represents the
predicted probability of the pixel, and ω is the ground truth, where 1 is for head and 0
for background, τ is the hyper-parameter of focal loss [47] and we set its value to 2 in all
experiments as also adopted in [48], δ is also hyper-parameter that controls the penalty of
negative samples and we fix its value to 4 in all experiments. Ω is the balancing parameter
that balances the positive and negative points, and its value is fixed as 1

16 .

3.4. Crowd-Regression Module

In this section, we discuss the specifics of the proposed crowd-counting model based
on regression. As mentioned earlier, in densely populated scenarios, head detection faces
challenges in identifying heads due to occlusions. Consequently, in such situations, we
leverage regression techniques to estimate the people count. The patches categorized as
“HC” will be directed to the Crowd-Regression Module.

Counting crowds in high-density situations poses a challenge due to significant scale
variations induced by perspective distortions. To address the scale issue, several methods
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have proposed using a single CNN with multiple branches [13,49] or employing multiple-
column CNNs [12,50] to capture significant variations in object scale. However, these
models can cover limited scales due to a fixed number of branches or columns and cannot
capture wide-scale variations [51]. Chen et al. [52] introduced Atrous convolutions to
capture large capture context without the loss of spatial information. However, these
models have wide gaps between the scales due to large dilation rates, which is not suitable
for crowded situations where the scales are continuous or have narrow gaps.

To densely sample a wide range of scales, we introduce the Atrous Convolution
Grid (ACG). The overall architecture of the proposed Crowd-Regression Module (CRM) is
illustrated in Figure 5. Generally, the pipeline of CRM consists of three parts: (1) Backbone
network, (2) ACG, and a fusion module that fuses the feature maps of the last layer of
the backbone network and feature maps with different dilated rates obtained from the
G-ASPP module.

We use VGG-16 as a feature extractor (backbone), which enables the Crowd-Regression
Module to extract deep hierarchical features to understand complex crowd dynamics. It is
to be noted that we use the first four convolution layers of the VGG-16 and then connect
the 3 × 3 Atrous Convolution Grid (ACG) to the fourth convolution layer. The first row
of the grid consists of four Atrous Convolution Layers with dilation rates of 1, 2, 4, and
6. The second row of the grid consists of four Atrous Convolution Layers with dilation
rates of 5, 7, 9, and 11. The third row of the grid consists of four Atrous Convolution
Layers with dilation rates of 8, 10, 11, and 13. From the experiment results, we observe
that the choice of Atrous Convolution Layers and their dilation rates plays a critical role
in the network’s effectiveness. We observe that using a single Atrous Convolution Layer
as originally employed in [52] with a dilation rate of 6, 12, 18 is not able to capture the
full spectrum of object sizes. We then fuse the feature maps extracted from the fourth
convolutional layer of the VGG-16 backbone with the feature maps generated by the Atrous
Convolution Grid (ACG), specifically the output from each row of the grid. This fusion
is aimed at combining both the high-level hierarchical features learned by VGG-16 and
the multi-scale information captured by the ACG. This fusion enables the network to
understand complex patterns and details in crowd scenes while accommodating various
object sizes and scales. After merging these feature maps, we utilize a convolutional layer
with a filter size of 1 × 1, followed by a SoftMax layer to estimate the crowd density.

Figure 5. Detailed architecture of Crowd-Regression Module.
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We use the Pytorch library [53] for implementing both Head-Detection and crowd-
regression modules. To train the models, we employ the Adam optimizer [54], initialized
with a learning rate of 3.0× 10−4 and weight decay set to 1.0× 10−5. All models are trained
for 60 epochs, using a mini-batch size of 20, with batch normalization updated across the
entire mini-batch.

4. Experiment Results

In this section, we evaluate the effectiveness of the proposed framework through both
quantitative and qualitative analysis. Additionally, we present a detailed comparative anal-
ysis of our framework in relation to other relevant methods. To carry out this assessment
and draw comparisons with reference methods, we rely on three publicly available and
challenging datasets: UCF_CC_50, UCF_QNRF, and ShanghaiTech. We provide the details
of each dataset as follows:

4.1. Datasets

UCF_CC_50 is the first and most widely adopted dataset for crowd-counting tasks
and was proposed by Idrees et al. [20]. The dataset contains 50 images, each represent-
ing a different real-world scene with varying crowd densities. The dataset covers both
low-density and high-density situations, where the number of people ranges from 94 to
4543. Each image in the dataset is accompanied by dot annotations, which represent the
position/location of each individual within the image. The dataset covers complex crowd
scenes, including outdoor events, public gatherings, and urban environments, with chal-
lenging elements like occlusions, scale variations, and perspective distortions, which make
the dataset challenging for crowd-counting models.

UCF_QNRF is a significant and challenging dataset for crowd counting and analysis
and was proposed by [14]. The dataset contains a total of 1535 images, with varying
resolutions, spanning from high resolution to low resolution, with an average image size of
2013 × 2902 pixels. The density within the images also exhibits a significant variation, with
the maximum count reaching 12,865, while the minimum count is 65, and the average is
815 per image. The dataset provides 1,251,642 dot annotations, ensuring an abundant re-
source for training crowd-counting models. In addition to varying resolution and densities,
the dataset also covers real-world scenarios, including outdoor events, public gatherings,
and urban environments, which offer several complexities, including occlusions, scale
variations, and perspective distortions.

ShanghaiTech The ShanghaiTech Part A is also a prominent dataset for evaluating the
performance of crowd-counting models. The dataset was proposed by [12] and comprises
a total of 482 images with an average resolution of 589 × 868 pixels. The data contains
241,677 dot annotations, with the highest count per image being 3139 individuals, while
the average count per image is 501. This reflects that the dataset contains a diverse set of
crowd densities.

4.2. Evaluation Metrics

To evaluate the performance of the proposed crowd-counting framework, we use promi-
nent evaluation metrics, Mean Absolute Error (MAE) and Mean Squared Error (MSE). These
metrics are commonly used metrics in quantifying the accuracy of crowd-counting algorithms.

Mean Absolute Error (MAE) measures the average absolute difference between the
predicted crowd count and the ground-truth count. The lower value of MAE represents a
more accurate prediction, while the higher value of MAE represents the error. Since MAE
computes the absolute difference between predicted and ground-truth count, it sometimes
overestimates or underestimates the predictions. The purpose of using MAE is to know
how closely the model’s predictions match the actual crowd counts in the images. MAE
is formulated as: 1

n ∑n
i=1|yi − ŷi|, where n represents the number of samples, yi is the

ground-truth count while ŷi is the predicted count.
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Mean Squared Error (MSE), on the other hand, computes the squared differences
between predicted and ground-truth counts. While MSE is a widely used metric, it tends
to penalize larger errors more heavily due to the squaring operation. It is essential to
consider both MAE and MSE together to gain a comprehensive understanding of the
model’s performance. MSE highlights the robustness of the models. The lower the value of
MSE, the better the performance of the model, while the higher the value of MSE, the lower

the performance. MSE is formulated as:
√

1
n ∑n

i=1(yi − ŷi)2.

4.3. Performance Evaluation

To gauge the effectiveness of our proposed framework comprehensively, we first
evaluate the performance of the Crowd Classifier, which is a critical component that
significantly impacts the overall framework performance. For this experiment, we utilize
UCF_CC_50 dataset. We train the Crowd Classifier over 60 epochs and monitor the
training loss and validation loss trends, as illustrated in the figure. From Figure 6, it is
observed that the training loss consistently remains lower than the validation loss. This
divergence between the training and validation loss may be attributed to the learning
process. During the training process, the model minimizes the training loss by adapting
to the training data and optimizing its parameters to fit the specific examples provided
during training. However, during the validation stage, the network is evaluated on the
unseen data during training.

We present the results of our evaluation using two key performance metrics, which
are depicted in Figure 7. From Figure 7, it is observed that our Crowd Classifier achieves an
impressive top-1 accuracy of 97%. This implies that, in most cases, the classifier accurately
assigns the single most probable crowd class to an image.

Additionally, we present the class-wise performance comparisons of the different
classifiers, including AlexNet [55], VGG-16 [56], ResNet-50 [57], and ResNet-152 [57] in
Table 1. Precision (P), recall (R), and F1-score (F1) metrics are employed to evaluate
the performance of crowd classifiers across all classes in the dataset. From Table 1, it is
obvious that ResNet-152 demonstrates superior performance across all classes compared to
other methods, achieving high precision, recall, and F1 scores consistently. Based on the
performance, ResNet-152 is selected as the preferred model for crowd classification within
the proposed framework.

Figure 6. Illustrates training loss and validation loss during training.



Information 2024, 15, 275 13 of 22

Figure 7. Performance of Crowd Classifier in terms of top-1 accuracy metrics.

Table 1. Class-wise performance comparison of different methods.

Class
AlexNet [55] VGG-16 [56] ResNet-50 [57] ResNet-152 [57]

P R F1 P R F1 P R F1 P R F1

High Crowd 0.92 0.9 0.91 0.95 0.96 0.95 0.97 0.94 0.95 0.98 0.98 0.98

Low Crowd 0.94 0.92 0.93 0.94 0.95 0.94 0.95 0.96 0.95 0.98 0.97 0.98

Medium Crowd 0.92 0.94 0.93 0.96 0.94 0.95 0.96 0.95 0.95 0.99 0.97 0.98

No Crowd 0.92 0.9 0.91 0.95 0.96 0.95 0.96 0.95 0.95 0.98 0.97 0.98

We further investigate the performance of the Crowd Classifier using a confusion
matrix, and the results are reported in Figure 8. From Figure 8, it is illustrated that, in
most instances, the classifier effectively identifies and categorizes most samples correctly.
However, there are cases where the classifier faces challenges and makes misclassifications.

For example, the classifier occasionally misclassifies some samples of ‘High Crowd’
as ‘Medium Crowd’. This misclassification may be attributed to the inherent challenges
associated with distinguishing high-density crowds from those with a slightly lower density.
Factors such as occlusions, overlapping individuals, or variations in head sizes within
the ‘High Crowd’ class may lead to misclassifications as ‘Medium Crowd’. Similarly, the
classifier may misclassify ‘Low Crowd’ samples as ‘No Crowd’. This misclassification
might occur when the crowd density is very sparse, making it challenging for the classifier
to detect the presence of a crowd. In such cases, the lack of obvious crowd patterns or
the presence of large empty spaces within the images could lead to misclassifications as
‘No Crowd’.

We present the visualization of the output generated by our proposed framework
in Figure 9, where we select random samples from the dataset to assess the framework’s
performance against the corresponding ground truth. Each sampled frame is divided into
a 40 × 40 grid, and the counting framework is applied to predict the count within each
grid cell. The results demonstrate that the proposed framework produces outputs closely
aligned with the ground truth. Notably, certain grid cells exhibit an overestimation of the
count, while others show an underestimation. The overestimation may be attributed to
instances where the Crowd Classifier module erroneously classifies medium crowds as
high-density crowds, leading the router to assign the corresponding patch to the Crowd-
Regression Module instead of the Head-Detection Module. Conversely, misclassifications
may occur when the Crowd Classifier identifies High Crowd patches as a medium crowd,
assigning them to the Head-Detection Module rather than the Crowd-Regression Mod-
ule. We also note that the framework achieves exceptional performance in accurately
classifying “No Crowd” patches, as demonstrated by the precise alignment between the
predicted and the corresponding ground truth. This experiment highlights the pivotal role
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of the crowd-classification module in shaping the overall performance of our proposed
crowd-counting framework.

Figure 8. Performance of Crowd Classifier using the Confusion matrix.

Figure 9. Visualization of random samples from the UCF_CC_50 dataset and their corresponding ground-
truth count and predicted count. Each sample is divided into a grid of size 40 × 40. Each number in the
cell of the grid represents the people count. The first column shows random samples. The second column
represents the corresponding ground-truth count. The third column represents the predicted count.
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4.4. Comparisons and Discussion

We compare the proposed framework with other relevant methods. To ensure fair
comparisons, we carefully select methods to validate the effectiveness of the proposed
framework. These methods include MCNN [12], Idrees et al. [14], CSRNet [23], GauNet
(MCNN) [58], URC [24], SRNet [59], Switching CNN [13], DSPNet [60], and Khan et al. [39].
All of these approaches utilize regression techniques, except for the method proposed by
Khan et al. [39], which adopts a detection-based approach.

Table 2 displays the performance of various methods in terms of MAE and MSE on
the UCF-QNRF dataset.

Table 2. Performance comparisons of different models on the UCF-QNRF dataset.

Method MAE MSE

MCNN [12] 277.0 426.0

Idrees et al. [14] 132.0 191.0

CSRNet [23] 119.2 211.4

GauNet (MCNN) [58] 204.2 280.4

URC [24] 128.1 218.1

SCLNet [61] 109.6 182.5

SRNet [59] 108.2 177.5

Switching CNN [13] 228.0 445.0

DSPNet [60] 107.5 182.7

Khan et al. [39] 112.0 173.0

Proposed 97.20 156.4

From Table 2, it is obvious that the proposed framework demonstrates notable su-
periority over other related methods. The related methods, including MCNN, GauNet
(MCNN), and Switching CNN, achieve higher Mean Absolute Error (MAE) and Mean
Squared Error (MSE) values, indicating that these models could not handle diverse crowd
densities, occlusions, and perspective variations. Among the competing methods, MCNN
and Switching CNN exhibit relatively lower performance compared to other methods. This
could be attributed to the fact that MCNN employs multiple CNN columns (three columns)
to adapt to variations in people/head size within the scene. However, the reality is that
there is a significant amount of variation in the size of human heads, posing a challenge
for models with limited scales. As a result, MCNN encounters difficulties in accurately
estimating crowd count when confronted with highly dynamic and diverse crowd scenes.
Switching CNN utilizes multiple independent CNN regressors with different receptive
fields to address the diverse range of scales in human head size. Nevertheless, the network
encounters a similar challenge as MCNN, struggling to cover a broad spectrum of scale.
Therefore, it faces difficulties in accurately counting people in complex scenes. The limita-
tions in handling the extensive variations in crowd density and scale within diverse scenes
may hinder the overall performance of Switching CNN, especially in highly dynamic and
challenging crowd scenarios. SRNet [59] achieves comparable performance by producing
lower MAE and MSE values. This is because the network introduces a Scale-aware Feature
Learning Module (SAM) that captures multi-scale features at different levels, adjusting to
various receptive field sizes, which contributes to improved counting accuracy.

The performance of reference crowd-counting methods on the UCF_CC_50 dataset
is provided in Table 3. Among the competing models, Idrees et al. [14] exhibit relatively
high errors with an MAE of 419.5 and MSE of 541.6. This is because the model could not
robustly handle such scale variations and encounters difficulties in accurately counting
and localizing individuals in scenes with diverse crowd densities. In contrast, CSRNet [23]
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and SCLNet [61] show improved performance, achieving an MAE of 266.1 and 258.92, and
MSE of 397.5 and 326.24, respectively. However, the proposed framework achieves better
performance by exhibiting a lower MAE of 201.6 and MSE of 286.4.

Table 3. Performance comparisons of different models on the UCF_CC_50 dataset.

Method MAE MSE

MCNN [12] 377.6 509.1

Idrees et al. [14] 419.5 541.6

CSRNet [23] 266.1 397.5

GauNet (MCNN) [58] 282.6 387.2

URC [24] 294.0 443.1

SCLNet [61] 258.92 326.24

Switching CNN [13] 318.1 439.2

Cascaded-MTL [62] 322.8 397.9

DSPNet [60] 243.3 307.6

Proposed 201.6 286.4

The performance of different methods on the ShanghaiTech Part A dataset is presented
in Table 4. Among the compared methods, DSPNet [60] achieves a relatively low MAE
of 68.2 and MSE of 107.8, demonstrating its effectiveness in estimating crowd counts in
complex scenes. However, the proposed method outperforms the other models, achieving a
notable improvement with an MAE of 57.7 and MSE of 97.5. This suggests that the proposed
approach is highly effective in accurately estimating crowd counts in the ShanghaiTech Part
A dataset, showcasing its potential for robust performance across diverse crowd scenarios.

Table 4. Performance comparisons of different models on the ShanghaiTech Part A dataset.

Method MAE MSE

MCNN [12] 110.2 173.2

CSRNet [23] 68.2 115.0

GauNet (MCNN) [58] 94.2 141.8

URC [24] 72.8 111.6

SCLNet [61] 67.89 102.94

Switching CNN [13] 90.4 135.0

Cascaded-MTL [62] 101.3 152.4

DSPNet [60] 68.2 107.8

CP-CNN [25] 73.6 106.4

PCC Net [63] 73.5 124

U-ASD Net [64] 64.6 106.1

Proposed 57.7 97.5

It is to be noted that in Tables 2–4, we directly assess the performance of the methods
using the dataset we employed. Some entries are missing for certain methods, as they did
not evaluate their performance on these datasets. Hence, the corresponding performance
values are absent.

From the above Tables 2–4, we observe an interesting finding that the crowd-counting
models exhibit notably better performance on the ShanghaiTech Part A dataset compared to
their performance on the UCF-QNRF and UCF_CC_50 datasets. This is because the scenes
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in ShanghaiTech Part A exhibit clearer and more organized crowd structures, allowing
models to learn and generalize patterns effectively. Furthermore, the crowd density in
ShanghaiTech Part A is relatively less and uniform, making it easier for models to estimate
counts accurately.

On the other hand, the UCF-QNRF and UCF_CC_50 datasets present more diverse
and challenging crowd scenarios. UCF-QNRF is characterized by a wide range of crowd
densities, including both high-density and sparse crowds, which poses a challenge for
models to adapt to varying scales and levels of congestion. Similarly, UCF_CC_50 features
complex scenes with diverse crowd compositions and occlusions, which pose challenges to
the crowd-counting model to precisely estimate the crowd count.

5. Ablation Study

The proposed crowd-counting framework contains two important modules, namely
the Head-Detection Module and the Crowd-Regression Module. These modules play a
crucial role in accurately estimating crowd counts across diverse scenarios. To understand
the impact of these modules and evaluate the effectiveness of various configurations within
the Crowd-Regression Module, a series of methods with different settings and configu-
rations are generated. Table 5 presents a comprehensive ablation study of the proposed
crowd-counting framework using the UCF-QNRF dataset. Each method represents a
distinct configuration, allowing for a systematic exploration of how variations in these
configurations influence the overall performance of the crowd-counting framework. We
first provide the details of each method as follows:

Table 5. Effect of different configurations on the performance of crowd-counting framework using
the UCF-QNRF dataset.

Method Head
Detection

Crowd Regression

MAE MSE
ACG-Row-1 ACG-Row-2 ACG-Row-3

No. of Layers Dilation Rate No. of Layers Dilation Rate No. of Layers Dilation
Rate

M1 Yes 1 × Conv 6 1 × Conv 12 1 × Conv 18 127.03 194.36

M2 Yes 2 × Conv 3,6 2 × Conv 8,12 2 × Conv 12,18 117.54 186.28

M3 Yes 3 × Conv 2,3,4 3 × Conv 5,7,11 3 × Conv 8,12,18 105.72 172.10

M4 Yes 3 × Conv 6,12,18 No 125.20 192.72

M4 No 4 × Conv 1,2,3,4 4 × Conv 5,7,9,11 4 × Conv 8,10,11,13 132.42 195.37

M5 Yes 5 × Conv 2,4,6,8,9 5 × Conv 4,7,8,10,11 5 × Conv 8,12,16,18,20 107.82 178.75

M6 Yes No 187.23 221.14

M7
(Proposed) Yes 4 × Conv 1,2,3,4 4 × Conv 5,7,9,11 4 × Conv 8,10,11,13 97.20 156.4

1. Method M1: This method comprises the Head-Detection and crowd-regression mod-
ules. However, the Atrous Convolution Grid (ACG) of the Crowd-Regression Module
consists of three branches, each containing one convolutional layer, resulting in a total
of three convolutional layers with dilation rates of (6,12,18).

2. Method M2: This method comprises Head-Detection and crowd-regression modules.
Similar to M1, the Atrous Convolution Grid (ACG) of the Crowd-Regression Module
consists of three branches. Each branch contains two convolutional layers, resulting in
a total of six convolutional layers with dilation rates of (3,6) in the first branch, (8,12)
in the second branch, and (12,18) in the third branch.

3. Method M3: Similar to previous methods, the M3 method comprises Head-Detection
and a Crowd-Regression Module. The Atrous Convolution Grid (ACG) of the Crowd-
Regression Module consists of three branches. Each branch contains three convolu-
tional layers, resulting in a total of nine (9) convolutional layers with dilation rates of
(2,3,4) in the first branch, (5,7,11) in the second branch and (8,12,18) in the third branch.

4. Method M4: Similar to previous methods, the M4 method comprises a Head-Detection
and Crowd-Regression Module. However, the Atrous Convolution Grid (ACG) of the



Information 2024, 15, 275 18 of 22

Crowd-Regression Module consists of only one branch. The branch contains three
convolutional layers with dilation rates of (6,12,18).

5. Method M5: The M5 method comprises only a Crowd-Regression Module and
does not have a Head-Detection Module. The Atrous Convolution Grid (ACG) of
the Crowd-Regression Module consists of three branches. Each branch contains
four convolutional layers, resulting in a total of twelve (12) convolutional layers
with dilation rates of (1,2,3,4) in the first branch, (5,7,9,11) in the second branch and
(8,10,11,13) in the third branch.

6. Method M6: Similar to previous methods, the M6 method comprises Head-Detection
and a Crowd-Regression Module. The Atrous Convolution Grid (ACG) of the Crowd-
Regression Module consists of three branches. Each branch contains five convolutional
layers, resulting in a total of fifteen (15) convolutional layers with dilation rates of
(2,4,6,8,9) in the first branch, (4,7,8,10,11) in the second branch and (8,12,16,18,20) in
the third branch.

7. Method M7: The M7 method is comprised of only head detection and does not have
a Crowd-Regression Module.

8. Method M8: The M8 method comprises Head-Detection and crowd-regression mod-
ules. The Atrous Convolution Grid (ACG) of the Crowd-Regression Module consists
of three branches. Each branch contains four convolutional layers, resulting in a total
of twelve (12) convolutional layers with dilation rates of (1,2,3,4) in the first branch,
(5,7,9,11) in the second branch and (8,10,11,13) in the third branch.

Each method is evaluated based on its Mean Absolute Error (MAE) and Mean Squared
Error (MSE) metrics. From Table 5, it is obvious that Method M7 achieves higher MAE
and MSE values compared to other methods. This is because M7 does not utilize a crowd-
regression model. Without the Crowd-Regression Module, Method M7 solely relies on
head detection for crowd counting. As a result, it cannot accurately estimate the crowd
count by capturing the spatial distribution and density variations within the crowd.

Method M1 achieves moderate performance due to simpler architecture (limited depth
of the ACG) with one convolutional layer in each branch of the Atrous Convolution Grid
(ACG). In contrast, M2 improves upon M1 by doubling the depth of the ACG, leading
to better feature extraction and, consequently, lower MAE and MSE values. Method
M3 further enhances performance by adding a third convolutional layer in each branch,
capturing more intricate spatial relationships within the crowd. It is noted that as the
number of convolutional layers increases in the ACG, such as in Methods M1, M2, and
M3, there is a notable improvement in performance. It is further observed that increasing
the depth of the ACG may initially lead to improved feature extraction and representation;
however, beyond a certain point, additional layers may introduce redundancy or overfitting,
resulting in a degradation of performance as illustrated by Method M5.

This experiment shows that even deeper architectures could help capture more com-
plex features within the crowd; the reduced improvements seen in Method M5 necessitate
the need to find the right balance between the complexity of the model and its performance.

The proposed method, M8, achieves the lowest Mean Absolute Error (MAE) and Mean
Squared Error (MSE) values compared to other methods in Table 5. Despite incorporating
a crowd-regression model with four convolutional layers in each branch of the Atrous
Convolution Grid (ACG), M8 maintains a balance between complexity and performance.
From the experiments, we observe that by carefully selecting the number of layers and their
dilation rates in ACG, M8 effectively captures the complex spatial relationships within the
crowd while avoiding excessive model complexity.

6. Computational Complexity

To investigate the effectiveness of the proposed framework further, we compared it
with other methods in terms of computational complexity. The computational complexity of
different methods, including the proposed one on the ShanghaiTech dataset, is reported in
Table 6. The computational complexity during the inference time is denoted in milliseconds
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(ms) and frames per second (fps). From Table 6, it is evident that PCC Net and U-ASD
Net achieve relatively faster inference times, with 89 milliseconds and 94 milliseconds,
respectively. Among the evaluated methods, CP-CNN is relatively slower, achieving the
longest inference time. While the proposed framework’s inference time of 146 milliseconds
lags behind PCC Net and U-ASD Net, it still outperforms the compared methods. Although
it does not surpass all methods in computational efficiency, the proposed framework
outperforms them in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE).
This suggests that the proposed framework strikes a balance between computational
complexity and performance, making it a promising solution for crowd-counting tasks.

Table 6. Comparisons of different crowd-counting methods in terms of computational complexity.

Method Inference Time (Milliseconds) Frames per Second MAE MSE

Switching CNN [13] 153 6.54 90.4 135

CSRNet [23] 330 3.0 68.2 115.0

CP-CNN [25] 5113 0.195 73.6 106.4

PCC Net [63] 89 11.24 73.5 124.0

U-ASD Net [64] 94 10.63 64.6 106.1

Proposed 146 6.84 57.7 97.5

7. Conclusions

In this work, we proposed a framework that effectively leverages the strengths of
both regression and detection models for estimating crowd counts in diverse scenes. The
performance of the framework is evaluated on challenging datasets. From the experiment
results, we draw the following conclusions:

1. The proposed framework demonstrates superior performance across all datasets,
demonstrating its effectiveness and versatility in addressing the challenges posed by
various complex scenes.

2. The proposed framework employs a unique way of handling the scale problem in
crowd counting by adopting a routing strategy that directs image patches to one of two
counting modules based on their density levels. In this way, based on the complexity
of the crowd, the network can effectively handle the scale problem and achieve high
performance across all datasets.

For future work, we will refine the proposed framework to enhance its adaptability
to even more diverse and complex scenes. Additionally, we will focus on investigating
ways to extend the framework’s scalability and efficiency for real-time crowd-counting
applications, potentially through optimization techniques or architectural enhancements.
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