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Abstract: Similar to the field of human intelligence, artificial intelligence (AI) has experienced a
long history of advances and controversies regarding its definition, assessment, and application.
Starting over 70 years ago, AI set out to achieve a single, general-purpose technology that could
overcome many tasks in a similar fashion to humans. However, until recently, implementations were
based on narrowly defined tasks, making the systems inapplicable to even slight variations of the
same task. With recent advances towards more generality, the contemplation of artificial general
intelligence (AGI) akin to human general intelligence (HGI) can no longer be easily dismissed. We
follow this line of inquiry and outline some of the key questions and conceptual challenges that must
be addressed in order to integrate AGI and HGI and to enable future progress towards a unified field
of general intelligence.
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1. What Have AI People Been Doing? Machine Learning (ML) and Large Language
Models (LLMs)

The main goal of artificial intelligence (AI) research is to engineer more capable
AI systems, ultimately creating a single system that can perform any task that requires
intelligence at the same level as or exceeding the proficiency level of a human. The majority
of the AI advances in the past two decades have stemmed from a particular subfield of AI,
known as machine learning (ML), which is any system where measurable performance
can be improved upon just by consuming more data (Mitchell 1997). In order to train an
ML system, a developer must have a mathematically specified objective for the system.
During the training, an ML system receives a score based on that objective function and
tries to compute the best internal changes it can make in order to obtain a higher score later
(Russell and Norvig 2020).

For instance, if the objective of the system is to achieve a higher score in a Go match,
one can assign “winning at Go” as an apparent goal for the system. Through the training
stage, the system would receive a score based on each Go performance, ultimately learning
to achieve higher scores by improving its performance in the game of Go. Such a system
cannot play a match of Chess, a game that (arguably) requires less-demanding cognitive
skills, no matter how well it performed at Go (Silver et al. 2016). For that reason, all AI
systems we have been able to implement so far can be considered ‘narrow’ AI.

In contrast, AI researchers seek to build a single system that can perform many things
without any need to specify, or to explicitly train for, the task in advance. This ability in
such a system has been coined artificial general intelligence (AGI; Goertzel and Pennachin
2006), as an analogy to human general intelligence (HGI). For almost all AI researchers,
AGI remained elusive until quite recently, when powerful Large Language Models (LLMs),
such as GPT4, were publicly released.

Current LLMs are trained by next-token prediction with giant models on very large
amounts of data. Similar to previous, smaller ML models, LLMs are also trained by a
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single objective for the system (Zhao et al. 2023). That reason could be used to still justify
considering LLMs to be narrow AI. Yet, the model has gained the ability to perform an
unbounded number of ML tasks (although not an unbounded number of human tasks),
whereas previous models needed explicit training for a single or just a few tasks. Optimizing
one single, but highly abstract, objective seems to achieve intelligent behavior that was
not expected previously, which suggests that our reasoning to judge the generality of AI
systems needs to be revisited.

These broad capabilities of powerful LLMs have reignited debates over how soon AGI
will be achieved, or whether the state-of-the-art LLMs possess any general intelligence
at all. The debates cover various aspects of intelligence. For example, Franceschelli and
Musolesi (2023) argue that LLMs can create content that meets the highly cited creativity
criteria developed by Boden (1991), which require that created products are “new, sur-
prising and valuable.” They admit, however, to only observe weak forms of creativity as
opposed to transformational creativity, likely due to a lack of processes such as motivation.
Andreas (2022) argues that LLMs possess intentions but in the narrow sense as modules
within communicative agents. There are also some claims that AGI has already been
achieved (Wei et al. 2022) and that these models have shown actual signs of intelligence
(e.g., Bubeck et al. 2023) by citing selected cases of impressive performance on previously
challenging ML tasks. Others argue that, while the recent advances are very impressive,
it is still premature to conclude that AGI has been achieved or that it will be achieved
soon (Mitchell 2023). For example, Mitchell and Krakauer (2023) argue that LLMs lack true
understanding by showing documented mistakes that humans would likely never make.

Indeed, there is no unanimous agreement in the AI field on any working definition of
intelligence, which has prevented the field from converging on any accepted benchmark
as a valid test for general intelligence. The concept of general intelligence itself remains
undefined in AI with only one available example, the general intelligence in humans (e.g.,
Hernández-Orallo 2017b; Magine 2022; Moskvichev et al. 2023). The increased interest
in AI among the public has pressured governments to create proper regulations and has
hastened the need to clarify and understand the differences and similarities between AGI
and HGI. These clarifications are needed to be able to formulate existing debates in better
ways, allowing further progress on current and future debates.

2. Challenges in Comparing AI and HI

Making direct comparisons between the advances in AGI and HGI remains challenging
because of the different ways both constructs have evolved and been assessed throughout
their respective histories. While it was easier to ignore these differences in the past due to
AI’s lack of impressive capabilities, this is clearly no longer the case. Below are (some of)
the challenges that are currently preventing AGI and HGI from getting on an equal footing
and thereby informing each other in an effective manner.

2.1. Benchmarks and Reporting on Intelligence

Just like any other field of scientific research, progress needs to be measured using
benchmarks and defined outcomes. However, since the performance of previous AI systems
was poor, the reporting of results in AI engineering focused on what an AI did right as
opposed to what it did not. For instance, a report that cites a very high accuracy of an
image classification system on a large dataset consisting of many classes may fail to report
particular instances of misclassification (such as higher misclassifications for female faces
compared to male faces), that can contain more insights about the true competency of
the AI system (Burnell et al. 2023). This approach makes it difficult to develop a true
understanding of the level of intelligence and limitations of an AI system. With recent
advances in AI, the need to rethink the reporting of the intelligence of these systems closer
to or on par with human intelligence science has become more important than before
(Burnell et al. 2023).
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HGI, on the other hand, has over a century of research with IQ tests and other intel-
ligence assessments that allow for standardized benchmarks and outcomes. While there
are significant controversies surrounding the use and interpretation of these measures,
especially within the context of culturally diverse and under-represented populations (e.g.,
Jonson and Geisinger 2022), these measures provide scores based on a norming distribution
that can have immediate ‘real-world’ interpretations and implications for humans. For
example, an individual’s IQ score plays a prominent role in their disability status and edu-
cational opportunities, including Intellectual Disability and Learning Disability diagnoses
and entrance into Gifted programs (Kanaya et al. 2022).

Creating formal ways to connect AGI and HGI benchmarks and measurements will
enable opportunities to expand upon our knowledge of both intelligences. Notable collabo-
rations have already been made with neuroscience, allowing for substantial advances in our
understanding of human neural activity (Macpherson et al. 2021). For example, artificial
neural networks have been used to understand and measure neural activity related to the
brain’s visual system (e.g., Federer et al. 2020; Jacobs and Bates 2019). Similar advances
could lead to a better understanding of the age-related differences in human memory
and vocabulary performances (e.g., Baltes et al. 2006) or sex differences in the tails of the
HGI distributions (Halpern and Kanaya 2020). In addition, extending benchmarks for
multi-modal LLMs (LLM models that can take and generate text, image, music, etc.) could
assist in developing standardized assessments for human abilities that have been difficult to
measure in the past, such as assessments of neuro-atypical humans (e.g., Banire et al. 2023).

2.2. Factoring in the Effect of Methodology

Even if benchmarks are established and achieved, an AI system can perform a task via
methods that humans would consider shortcuts. Having vastly more storage, computing
power, and speed is often the enabler, allowing for methodologies that humans may not
consider true intelligence. For instance, for games such as Chess or Go, having superhuman
ability to store and crunch a vast number of branches in the game tree of possibilities
within seconds makes the stellar performance of the AI system unrelatable to human
intelligence (Hernández-Orallo 2017a). While there have been multiple attempts to develop
assessments that can serve as IQ test equivalents for machines (e.g., allowing people to
determine which AI system is ‘smarter’ than the other), these efforts have not seen massive
success (e.g., Chollet 2019; Moskvichev et al. 2023).

If two systems perform similarly across an array of tasks, the internal efficiency with
which the performance has been achieved should be considered when determining which
system is more intelligent. Humans have access to vastly smaller resources (e.g., short-term
memory, computational power, exposure to training data, etc.) compared to machines, and
therefore, they tend to utilize more efficient methodologies than current AI systems. But,
the way to account for differences in the efficiency of a methodology is not clear and must
be identified in order to make comparisons between AGI and HGI.

2.3. Factoring in the Priors

A prior can be defined as any internal preparedness that a cognitive system has a
priori for performing any task (Griffiths et al. 2008). For example, brain architecture,
initial wiring in humans, and their particular sensory apparatus are rich sources of priors.
Core knowledge, which enables humans to understand and learn about objects, language,
spatial navigation, and numeracy from birth, could also be seen as priors that have a direct
relationship with HGI (Spelke and Kinzler 2007).

In AI, the architecture of a computation model or hand-designed elements in the
training process are sources of encoding priors. Powerful and useful priors can be encoded
into machines to fool humans of general competency, yet can lack the generality that HGI
may possess. For example, humans know the position of objects does not affect the identity
of objects. This very useful fact can be inserted into the architecture of an AI model by
what is known as convolutional filters. They are used in the most well-known AI vision
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systems, namely, Convolutional Neural Networks (CNNs), which are widely used in the
self-driving car technology stack. While a CNN leverages translational symmetry in the
world via encoding this prior, perhaps it still misses other priors compared to humans’
much more robust visual system (Anselmi and Poggio 2022).

The vision system of self-driving cars can be brittle and prone to being fooled in
non-human ways (Zhang et al. 2023). To compensate, these systems need vastly more
training data (many millions of miles of driving data) than a human would need to be
reliable (Chen et al. 2023). Therefore, it is important to study the priors that humans and AI
systems use further and to take them into account when comparing different AI systems or
making conclusions between AGI and HGI.

2.4. Environmental Influences

While our priors may prepare us well for certain tasks, the environment can interact
with us in a variety of ways, boosting our ability to leverage our priors in some situations
and rendering them useless if the environment changes too much in other situations. For
example, some AI systems may have access to internet-scale data created by human users
around the world, while others may only have access to proprietary data purchased by
the developers of the system, and others may have restricted access to that proprietary
data (e.g., for copyright reasons). A fair comparison of these two types of systems in their
performance on tasks, no matter how generic, may not be a straightforward task. The
element of receiving external help, developmentally or otherwise, remains among the most
ignored facets in the broader discussion of machine intelligence.

The field of HGI has plenty of experience in this debate. Indeed, environmental
influences have provided valuable insights into understanding HGI. For example, in the
Carolina Abecedarian Early Intervention Project, low-income children in North Carolina
were provided intensive, high-quality, educational experiences for 5 years. Longitudinal
analyses revealed that the positive impact of this environment resulted in significant
improvements, including increases in HGI, neurological activity, and adulthood outcomes
(Nisbett 2009).

The research literature on stereotype threat has shown that smaller changes in the
environment can also lead to significant changes in HGI. Humans underperform on ability
tests when they believe they may be confirming a negative stereotype about their identity,
such as Black Americans and women on math tests or older people on a memory test.
Simple interventions, such as de-emphasizing a person’s identity status (e.g., not asking
for a person’s race or gender), can reduce the threat and improve cognitive performance
(Spencer et al. 2016).

In addition, the Flynn effect refers to the global rise in IQ seen over the last 70 years
(Flynn 2012). The size of these gains varies based on the type of assessment. Specifically,
gains are higher in tests that measure fluid intelligence, such as the Ravens Matrices, but
are very small on tests of crystallized intelligence, such as the Information subtest of the
Wechsler IQ norms (Kanaya and Ceci 2011). Recently, the Flynn effect has shown plateaus
and reversals in some countries (Dutton et al. 2016; Vainikainen and Hautamäki 2022),
emphasizing the dynamic role of the environment in HGI and the need to develop a
better understanding of the various roles of the environment in interpreting AGI and HGI
performance (Flynn 2012).

While the Flynn effect gains have been slow and systematic, AI gains have increased
rapidly over the past few decades, and future advances could serve as a source of stronger
Flynn effect gains. Further, the reasons behind the advances in AI have been extensively
documented, while the reasons behind the Flynn effect are still poorly understood (e.g.,
Trahan et al. 2014). Charting the longitudinal advances within AI with the longitudinal
trends within the Flynn effect by location, task, and cohort (e.g., Kanaya et al. 2005; O’Keefe
and Rodgers 2020) could provide valuable insights into the trajectory of HGI across the
lifespan and the ways in which human gains can lead to technological gains and vice versa.
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2.5. Human vs. Artificial Errors

Current, state-of-the-art AI systems are based on autoregressive LLMs, which are
models that complete sequences one token at a time. Each token is conditioned on the
previous set of tokens including the last-generated one (Zhao et al. 2023). There is no
planning and backtracking involved in auto-regression, which is a big limitation. These
models are designed and trained to maximize the plausibility of the generated information,
not its truthfulness. Currently, AI researchers do not have a good mechanism to make
these models prioritize truth over plausibility, leading to errors that are easily detected by
humans, commonly referred to as hallucinations (Rawte et al. 2023). In other words, as the
model learns more, it can understand less (e.g., Azaria and Mitchell 2023; Mitchell 2023).
For this reason, current LLM systems are very sensitive to how they are prompted in ways
that humans are not. More specifically, two different phrasings of the same prompt can
result in vastly different responses from the AI, while being perceived similarly by humans
(Sclar et al. 2023).

On the other hand, humans are sensitive to variations in content references during
decision making in ways that AIs can easily avoid. For example, research on priming and
interference has shown that exposure to a stimulus can influence human memory retrieval
and lead to decision-making errors, especially if decisions are made quickly (Kahneman
2011). Algorithms, however, can easily avoid these errors without requiring the slower
processing time that humans usually need to avoid these errors. In other words, the types
of mistakes that can be expected from ‘smart humans’ versus ‘smart machines’ are not the
same. Acknowledging and identifying the specific parameters of this truth and error gap
will be important for future AGI-HGI comparisons.

2.6. Goals and Agency

Humans have opportunities for choosing their goals and experience benefits from
these choices. Educational research has consistently shown that parental and student
agency can lead to significant improvements in educational attainment and other learning
outcomes (e.g., Wong et al. 2023). Dickens and Flynn (2001) have also proposed a social-
multiplier model, where small changes, such as choosing an activity that provides strong
environmental support for HGI, can multiply and lead to large and systemic HGI gains.

ML systems, however, are trained for a single overall objective. While this task can be
highly abstract, leading the system to some general abilities, machines still lack the ability to
choose their own overall goal or to decide what would be beneficial to pursue (Summerfield
2022). From intelligence measurement and comparison to HGI perspectives, it is unclear
how to factor this fundamental ability, or lack thereof, into intelligence. While it is arguable
that we may not need machines that can choose their own goals, understanding the effects
of having a choice within HGI will be important and inspirational for understanding how
we can and should incorporate such a capability into AI systems and for advancing their
intelligence.

2.7. Accounting for Vastly Different Scopes

One can consider a calculator a very narrow AI system. However, carrying out fast
arithmetic on very large numbers is not the scope of HGI, which many researchers (e.g.,
Nisbett et al. 2012) define as “the ability to reason, plan, solve problems, think abstractly,
comprehend complex ideas, learn quickly and learn from experience, to “catch on,” “make
sense” of things, or “figure out” what to do”(Gottfredson 1997, p. 13). Similarly, some of the
problem-solving abilities observed in biological organisms at the cellular or multicellular
levels go beyond what we would ever demand of human intelligence (Levin 2019). For
instance, slime molds show signs that they are able to solve complex spatial problems in
intelligent ways (Jabr 2012). We may dismiss these examples of intelligence as non-relatable
to HGI. However, it is harder to dismiss other tasks that are superhuman extensions of
human abilities, such as being able to translate any text in any of the several hundred
human languages within seconds or to answer graduate-level questions in hundreds of
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disciplines. The question of whether or not a larger scope of abilities should be counted
towards intelligence is a growing challenge, given the growth in AI advancements. We call
this the scope challenge, and it has been revived by recent advances in LLMs.

3. Discussion and Future Directions

The recent advances in AI have made new opportunities for cross-pollination and
comparisons between AGI and HGI that were not possible until now. In order to create
an effective and productive dialogue between AGI and HGI, however, a broader under-
standing of how to measure AGI, with respect to what we know about HGI, is required.
Successful integration between AGI and HGI can play an influential role in many advances
within general intelligence, including the ability to analyze the unappreciated aspects of
an intelligent agent, to develop ways of improving human intelligence, and to develop
methods to work around the limitations of human intelligence. In this paper, we have
outlined some of the challenges and obstacles to this broader understanding. While this is
not an exhaustive list, we hope it will serve as a useful primer for identifying challenges
that need to be addressed before we can meaningfully combine AGI and HGI. Future
research within AGI and HGI should focus on embracing these challenges and allowing
them to expand our lines of inquiry in gaining a deeper understanding of intelligence and
its underpinnings.
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