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Abstract: We report the temperature dependences of the dielectric function ε = ε1 + iε2 and critical
point (CP) energies of the uniaxial crystal GaSe in the spectral energy region from 0.74 to 6.42 eV and
at temperatures from 27 to 300 K using spectroscopic ellipsometry. The fundamental bandgap and
strong exciton effect near 2.1 eV are detected only in the c-direction, which is perpendicular to the
cleavage plane of the crystal. The temperature dependences of the CP energies were determined by
fitting the data to the phenomenological expression that incorporates the Bose–Einstein statistical
factor and the temperature coefficient to describe the electron–phonon interaction. To determine the
origin of this anisotropy, we perform first-principles calculations using the mBJ method for bandgap
correction. The results clearly demonstrate that the anisotropic dielectric characteristics can be directly
attributed to the inherent anisotropy of p orbitals. More specifically, this prominent excitonic feature
and fundamental bandgap are derived from the band-to-band transition between s and pz orbitals at
the Γ-point.

Keywords: uniaxual crystal GaSe; spectroscopic ellipsometry; dielectric function; exciton; first-
principles calculations

1. Introduction

Gallium selenide (GaSe) is a compound in the III–VI group that has gained consider-
able interest recently due to its exceptional properties and potential applications in various
fields including photodetectors [1–6], water splitting [6–8], lasers [9–12], and nonlinear
optics [13–15]. GaSe can crystallize in four different polytypes, namely β-, ε-, γ-, and
δ-phase structures, which correspond to the space groups P63/mmc (D4

6h), P6m2(D1
3h),

R3m (C5
3v), and P63mc (C4

6v), respectively. These structures are characterized by hexagonal-
layer stacking sequences that consist of two to four layers. As a result, GaSe exhibits highly
anisotropic properties perpendicular to the cleavage planes, which are held together by
van der Waals forces.

Knowledge of the optical properties of materials over a wide photon energy range
is important for designing photonic and photovoltaic devices as well as for verifying the
predictions made by the calculations of the electronic energy band structure. Numerous
studies have reported on the optical properties of this material using various methods,
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such as Raman scattering [16–19], photoluminescence (PL) [20–24], absorption [25–27], and
spectroscopic ellipsometry [28–30]. However, most of these studies have focused on the
isotropic characteristics of the material on the cleavage plane, while the anisotropic prop-
erties are crucial for nonlinear applications. In 1971, Bourdon and Khelladi [31] reported
the absorption spectra of a GaSe cleavage sample under oblique incidence. They investi-
gated the polarization of the incident light, whether it was parallel or perpendicular to the
incidence plane. Their findings revealed that the transmission coefficient, T∥, was greater
than four times that of T⊥ in the energy range above the absorption edge at 13 K and the
same behavior and the same values of T∥/T⊥ at 77 and 300 K. In 1979, the systematic study
on temperature dependence of optical absorption for GaSe (on cleavage plane) near the
fundamental band edge was performed firstly by Antonioli et al. [32] in the temperature
range from 65 K to room temperature. In 2008, Cui et al. [33] reported the photolumi-
nescence (PL) of GaSe and GaSe:In at 9 K. They discovered that the peak of the exciton
bound to the acceptor disappeared and the peak of the donor–acceptor pair appeared in
the GaSe crystal after indium doping. Zhang et al. [34] studied the temperature-dependent
PL emission from unstrained and strained GaSe nanosheets and found that the formation
of new peaks in strained samples can be attributed to the recombination of bound excitons.
In 2022, Usman et al. [23] investigated the thickness and temperature dependencies of PL
in a few-layer GaSe. They observed that the PL intensity linearly increases with the number
of layers, while the peak position increases as the layer number decreases.

Spectroscopic ellipsometry (SE) is an optical technique that accurately and sensitively
investigates the dielectric properties of materials. Unlike other methods, SE does not rely
on Kramers–Kronig analysis [35]. It can determine both the real and imaginary parts of
the dielectric function (ε) simultaneously. In 1973, Meyer et al. [30] conducted the first
measurement of GaSe using SE at room temperature. The study aimed to determine the
ordinary and extraordinary optical indices within the range of 220 (5.6 eV) to 800 nm
(1.55 eV). However, it is important to note that this measurement did not include the
majority of critical point (CP) energies. More recently, Choi et al. [29] and Isik et al. [36]
determined CP energies on the cleavage plane of GaSe over a wider range.

Here, we provide data on the dielectric functions along the principal axes of uniaxial
crystal GaSe. The data cover the spectral range of 0.74 to 6.42 eV and includes temperatures
ranging from 27 to 300 K. The sample was prepared using the temperature gradient method
at 980 ◦C, as explained in detail below. The SE measurements were conducted under ultra-
high vacuum conditions. The measured pseudodielectric function data were processed to
eliminate the impact of surface roughness, resulting in the bulk εa and εc values. Along
the c-axis, band-to-band transitions at the Γ-point revealed a fundamental bandgap and an
excitonic feature around 2.1 eV. This feature primarily stems from s and pz orbitals. In the
a(b)-axis, the first critical point, observed at 3.36 eV (at 27 K), is attributed to band-to-band
transitions at the Γ-point involving s and px (py) orbitals. To determine the critical point (CP)
energies, we utilized the second derivative function of ε with standard analytic expressions.
This information will be valuable for device engineering and enhancing our understanding
of the fundamental optical properties of GaSe.

2. Materials and Method
2.1. Sample Growth and Preparation

The temperature gradient method was used to grow GaSe single crystals. The process
involved preparing high-purity (99.999%) Ga and Se powders in a stoichiometric ratio
for growth. The mixture was then loaded into cylindrical quartz tubes with a conical
bottom and evacuated to an atmosphere of 10−4 Torr before being sealed using an oxygen–
hydrogen flame. To protect the inner tube from breakage due to the high vapor pressure of
the materials and the different thermal expansion coefficients between the samples and the
quartz ampoule, another quartz tube was sealed outside. The ampoules were then placed
into a vertical furnace and gradually heated to 980 ◦C, which is approximately 20 ◦C above
the melting point of GaSe. They were maintained at this temperature for 16 h to prepare the
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compounds. After this, the molten material was cooled down at a very low rate of about
1 ◦C per hour, below the melting point.

2.2. Band Structure Calculation

GaSe exists in multiple polytypes, such as β, ε, γ, and δ. Our theoretical calculations
specifically focused on the simplest structure, β-GaSe. Previous studies have examined the
energy band calculations for both β-GaSe [37,38] and ε-GaSe [39–41]. Since the β and ε

polytypes have nearly identical crystal structures, it is expected that their electronic band
structures and optical properties would be similar [39]. The GaSe layers consist of two
planes of Ga atoms sandwiched between two planes of Se atoms, as shown in Figure 1a. In
each plane, Ga and Se atoms arrange themselves in a two-dimensional hexagonal lattice.
The anisotropy of the P63/mmc (D4

6h) structure is clearly demonstrated by the Brillouin
zone (BZ) shown in Figure 1b.
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Figure 1. (a) The hexagonal β-GaSe crystal structure. The Ga atoms are orange and the Se atoms are
green. (b) Brillouin zone of the GaSe structure. (c) XRD pattern on a GaSe single crystal aligned along
the (001) plane. (d) HR-TEM image of the sample in the c-plane and the inset shows the SAED pattern.

First-principle density functional theory (DFT) calculations were conducted using the
projector-augmented-wave formalism [42], which was implemented in the Vienna ab initio
simulation package (VASP v. 5.2) [43]. The experimental determination of the structural
parameters for GaSe was reported in Ref. [44]. The exchange correlation functional was
described using the generalized-gradient-approximation (GGA) with Perdew, Burke, and
Ernzerhof (PBE) parameterization [45,46]. It is important to note that the GGA method
consistently underestimates the band gap. To obtain more accurate band gap values, the
modified Becke-Johnson (mBJ) exchange potential was used in conjunction with L(S)DA
correlation [47,48]. The mBJ method offers the advantage of providing band gaps that
are comparable in accuracy to those obtained using hybrid functional or GW methods,
while also being computationally less expensive, similar to standard DFT calculations. The
plane-wave kinetic energy cutoff was set at 350 eV and the BZ integrations were performed
with a 8 × 8 × 3 Γ-centered k-points grid.

Since the spin-orbit effects are expected to be insignificant for III–VI compounds [49–51],
we have excluded the spin-orbit interaction from our calculations.
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2.3. Characterization

The sample structure was characterized using X-ray diffraction (XRD) with the XD8
Advance Bucker instrument and Cu-Kα radiation. XRD data were collected in the 2θ range
from 10 to 70 degrees with a scanning rate of 2.4o/min. Raman scattering measurements
were recorded using Raman spectroscopy (XploRA PLUS, Horiba, Kyoto, Japan) with an
excitation wavelength of 532 nm, a neutral-density filter of 1%, and a 2400 grooves/mm
grating. A 100× objective lens (N.A. = 0.8) was used to focus the laser to a spot of approxi-
mately 1 µm diameter and to collect the scattered light from the sample.

For morphological analysis, high-resolution transmission electron microscopy (HRTEM),
selected-area electron diffraction (SAED), and energy dispersive x-ray spectroscopy (EDS)
observations were performed using a JEM-2010 (JEOL, Kyoto, Japan) transmission elec-
tron microscope operating at an accelerating voltage of 200 kV. GaSe flakes prepared by
ultrasonic exfoliation in ethanol were transferred onto a TEM grid through direct trans-
fer. To minimize oxidation of GaSe under ambient conditions, the transfer should be
completed quickly.

For temperature-dependent SE measurements, a sample surface containing the c- and
a (or b)-axes was prepared by polishing with a 0.05-µm colloidal silica suspension applied
on a polishing cloth. The sample was then loaded into a cryostat and evacuated using a
turbomolecular pump with a base pressure of approximately 10−8 Torr. Pseudodielectric
function values were obtained from 0.74 to 6.42 eV at temperatures of 27 K, with a 25 K
interval from 50 to 300 K, using a rotating-compensator SE (J.A. Woollam Inc., RC2 model,
Lincoln, Nebraska, USA) at the Multi-dimension Material Convergence Research Center of
Kyung Hee University at an angle of incidence (AOI) of 68.80 degrees.

3. Results and Discussion
3.1. Structural Characteristics

Figure 1c shows the XRD pattern of the GaSe single crystal in the c-plane, in which
diffracted peaks at 11.14, 22.34, 33.77, 45.50, and 57.80◦ corresponding to (002), (004), (006),
(008), and (020) planes were clearly observed. This result is well in agreement with previous
reports of the hexagonal structure of GaSe [52,53]. To further explore the crystal quality
of this material, HRTEM is employed for high-resolution imaging. Figure 1d shows the
HRTEM image of the c-plane of the GaSe structures with the d-spacing (100) lattice plane
of 3.2 nm. The SAED pattern confirms the six-fold rotational symmetry of the hexagonal
structure of single-crystal GaSe. The stoichiometry of the crystals is determined by the
energy-dispersive X-ray spectroscopy (EDS) analysis, as shown in Supplementary Figure
S1. Since we used a TEM grid made of copper with several layers of graphene, the spectrum
shows the copper and carbon peaks.

GaSe has a hexagonal structure with a space group D4
6h; thus, 24 normal modes of

vibration at the Γ-point of the Brillouin zone are presented as [18,19]

Γ = 2A1g + 2A2u + 2B2g + 2B1u + 2E1g + 2E1u + 2E2g + 2E2u (1)

of which there are six Raman active modes. The pertinent Raman tensors expressed in the
hexagonal crystal principal axes for the A1g modes can be described as below [37,54]

A1g :

a 0 0
0 a 0
0 0 b

 (2)

The intensity dependence of A1g now is

I(A1
1g) ∝

[
a cos2 θ + b sin2 θ

]2
(3)
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where θ is the polarization angle relative to the c-axis. Figure 2a shows the Raman spectra of
single crystal GaSe on the in-plane (black curve) and out-of-plane with different polarized
angles. Here, 0o denotes the polarization of the incident where polarized light is parallel to
the c-axis. In the (ab) plane, the A1

1g and A2
1g peaks at 132.96 and 306.45 cm−1, respectively,

and the E1
2g peak at 211.45 cm−1 are clearly seen, while the E2

1g peak is mostly absent.
However, the E2

1g peak can be clearly observed when measurements are conducted out-of-

plane. It is interesting that the relative intensity of the A1
1g peak to others is maximum when

the polarization of incident light is parallel to the c-axis. Figure S2 in the Supplementary
Material shows further detail of the Raman intensity depending on the polarization angles.
Figure 2b shows the dependence of A1

1g measured on the out-of-plane to the polarization of
incident light fitted by Equation (2). This result confirms the two-fold rotational symmetry
of the out-of-plane.
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3.2. Critical Point (CP) Analysis

In order to remove the contribution of surface roughness to the intrinsic dielectric
function of GaSe single crystal, point-by-point fitting has proceeded (Figure S3). Figure 3a,b
show the dielectric function of single-crystal GaSe along the c- and a(or b)- axes, respectively,
from 27 to 300 K, with offset by increments of 2 relative to the 27 K spectrum for the c-axis
and 5 for the a(or b)-axis. The blue shift and sharpening of CPs with temperature decreasing
are clearly seen. There are 8 CPs observed in the c-axis and marks as Ec

exc for exciton and
Ec

0 to Ec
6 for others as shown in Figure 3a. For the a-axis, only six CPs are detected from 1 to

6 eV and denoted by Ea
1 to Ea

6, as shown in Figure 3b. The anisotropy in the out-of-plane
of single crystal GaSe is clearly presented by the difference in bandgap and lineshapes
along the c- and a-axes. The direct bandgap in the c-axis is about 2.1 eV and dominance
the of excitonic feature is observed. This result is similar to previous work [22,24–27,32].
In the a-axis, the bandgap is up to 3.2 eV and intensity is significantly higher than in the
c-axis. This result is in good agreement with previous SE measurements by Choi et al. [29].
As mentioned above, Meyer et al. [30] published the dielectric functions of a GaSe single
crystal along the principal axes. It is worth comparing their results with current work, as
shown in Figure S4.

To enhance the resolution of the overlapping CP structure, the second derivatives
d2ε/dE2 were performed numerically. Linear interpolation and Gauss–Hermite filtering
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were applied for noise reduction with minimal lineshape distortion [55,56]. The standard
analytic CP expression then was fitted to extract CP parameters

dε2

dE2 =

{
n(n − 1)Aeiϕ(h̄ω − E + iΓ)n−2, n ̸= 0

Aeiϕ(h̄ω − E + iΓ)−2, n = 0
, (4)

where A, ϕ, E, and Γ are the amplitude, phase, energy, and broadening of CP, respectively.
The exponent n has values of −1, −1/2, 0, and 1/2 corresponding to excitonic, one-, two-,
and three-dimensional CPs. Both real and imaginary parts of ε are fitted simultaneously.
All CPs show the best results with the excitonic lineshape (n = −1) except for the Ec

0 and
Ec

1 structures. This is similar to the CP analysis of the a-axis data reported in ref. [29].
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Figure 3. Real (ε1) and imaginary (ε2) parts of the dielectric function of single-crystal GaSe along the
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the c- and a-axes, respectively.

Figure 4a,b show the second derivative and their best fits of ε at 27 K along the c-
and a-axes, respectively. The data are open circles, while the best fits of d2ε1/dE2 and
d2ε2/dE2 correspond to the solid and dashed lines. For clarity, the number of data points
was approximately reduced; only the data for d2ε1/dE2 are shown and the data from 3.5
to 6.0 eV are multiplied by three as shown in Figure 4a. The existence of both exciton Ec

exc
and fundamental bandgap Ec

0 are clearly identified in the second derivative spectrum. We
note that this observation of the separation and binding energy of excitons may play an
important role in clarifying the operation and efficiency of nanodevices. See Figure S5 for a
comparison between single and two CPs of the fitting.
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3.3. Identification of CPs

Figure 5 shows the energy band structure obtained using the mBJ method for bandgap
correction. Figure S6 shows the energy and structure of the density of state obtained using
and not using the mBJ method. As indicated in previous studies [49,57,58], the difference
between band structures with and without spin-orbit coupling (SOC) is small enough to be
negligible in the current analysis of low-energy bandgaps; hence, non-SOC computation is
conducted here. This is plotted with partial orbitals, where blue, brown, green, and red
represent the orbitals s, px, py, and pz, respectively. As shown in the energy band structure,
the top of the valance band (VB) and the bottom of the conduction band (CB) are localized
at the Γ-point; therefore, the direct optical transition is allowed in this situation, as marked
by Ec

0.
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Figure 5a shows the band structure with the distribution of the orbitals s and pz,
which are considered to be the main contributors to band-to-band transitions of the c-axis.
The fundamental direct bandgap Ec

0 occurs between the first VB and the first CB at the
Γ-point corresponding to the contribution of pz (at VB) and s (at CB) orbitals; this leads
to the dominance of Ec

0 in the c-axis while it is absent in the a(or b)-axis. The fact that the
bandgap transitions of GaSe occur between the pz and s orbitals should provide valuable
information for characterizing excitonic behavior in this material. The calculated result
indicates that the energy of this CP is about 2.29 eV. This value is in good agreement with
the experimental data extracted by the second derivative analysis, which estimates 2.108 eV
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at 27 K as listed in Table 1. As considered before, Meyer et al. [30] were the first to report
the dielectric functions of the two principal axes of GaSe; however, no CP values were
obtained for comparison. The binding energy is lower than the ground state of 27 meV
(at 27 K) similar to those of previous reports [22,24,59,60]. These other CPs are noted by
arrows from Ec

1 to Ec
6 as shown in Figure 5a and their values are listed in Table 2.

Figure 5b indicates the band-to-band transitions of CPs along the a(or b)-axis and
denoted from Ea

1 to Ea
6, in which all CPs are assigned from the main contribution of s, px,

and py orbitals. The theoretical values of CP energies are well consistent with the SE data
as listed in Table 1. The previously reported results [28,29,61] are also comparable to our
theoretical and experimental values, which confirm the validity of our work.

Table 1. CP energies (eV) at 27 K and room temperature (RT) compared to previously reported data
and band calculations.

Axes CPs

This Work References This Work

SE SE a SE b PL c PL d PL e MWS f DFT
27 K 300 K RT RT 6 K c RT 80 K 300 K

c-axis

Ec
exc 2.081 1.967 _ _ 2.11 2.00 2.098 _ _

Ec
0 2.108 1.997 _ _ _ _ _ _ 2.29

Ec
1 3.89 3.77 _ _ _ _ _ _ 3.94

Ec
2 4.06 4.03 _ _ _ _ _ _ 4.12

Ec
3 4.65 4.53 _ _ _ _ _ _ 4.72

Ec
4 4.78 4.75 _ _ _ _ _ _ 4.83

Ec
5 5.32 5.26 _ _ _ _ _ _ 5.39

Ec
6 5.95 5.91 _ _ _ _ _ _ 5.90

a-axis

Ea
1 3.36 3.18 3.23 3.23 _ _ _ 3.22 3.30

Ea
2 3.78 3.66 3.67 3.75 _ _ _ 3.68 3.79

Ea
3 4.80 4.68 4.60 4.69 _ _ _ 4.78 4.82

Ea
4 5.04 4.93 4.80 5.02 _ _ _ 5.07 5.00

Ea
5 5.34 5.23 _ 5.45 _ _ _ 5.48 5.50

Ea
6 5.76 5.74 _ 5.72 _ _ _ 5.75 5.79

a Ref. [28], b Ref. [29], c Ref. [24], d Ref. [62], e Ref. [59], f Ref. [61] modulation wavelength spectra (MWS).

Figure 6 shows the dependence of CP energies on temperature from 27 to 300 K. The
open dots are results of the second-derivative analysis and the solid lines are the best fits
obtained by a phenomenological expression that contains the Bose–Einstein statistical factor
for phonons [63,64]:

E(T) = EB − aB

(
1 +

2
eΘ/T − 1

)
, (5)

where Θ is the mean frequency of the phonons and aB is the interaction strength between
electrons and phonons. The temperature dependence of the Ec

5 to Ec
7 in the c-axis and Ea

5 to
Ea

6 in the a-axis are described by the linear equation

E(T) = EL − λT, (6)

where λ is the temperature coefficient and dE/dT is an adjustable parameter along with
EL. The best-fit parameters of Equations (5) and (6) for these CPs are listed in Table 2.
We obtained the mean phonon frequencies and interaction strengths of Ec

exc and Ec
0 peaks,

which have similar values. This observation indicates that both transitions originate from
the same origin, providing important insights into the excitonic properties.
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Table 2. The best-fitting parameters of the temperature dependences of the CPs of single crystal GaSe
along the c- and a-axes.

Axes CPs EB (eV) aB (meV) Θ (K) EL (eV) λ (10−4 eVK−1)

c-axis

Ec
exc 2.15 ± 0.01 65 ± 6 232 ± 15 _ _

Ec
0 2.17 ± 0.01 67 ± 6 238 ± 15 _ _

Ec
1 3.96 ± 0.02 72 ± 19 238 ± 44 _ _

Ec
2 4.09 ± 0.02 37 ± 22 419 ± 133 _ _

Ec
3 4.77 ± 0.03 117 ± 36 345 ± 63 _ _

Ec
4 _ _ _ 4.79 ± 0.01 1.15 ± 0.08

Ec
5 _ _ _ 5.32 ± 0.01 1.85 ± 0.15

Ec
6 _ _ _ 5.95 ± 0.01 1.99 ± 0.40

a-axis

Ea
1 3.44 ± 0.03 86 ± 30 209 ± 55 _ _

Ea
2 3.84 ± 0.01 59 ± 3 209 ± 10 _ _

Ea
3 4.84 ± 0.01 37 ± 8 139 ± 24 _ _

Ea
4 5.15 ± 0.02 104 ± 22 309 ± 41 _ _

Ea
5 _ _ _ 5.35 ± 0.01 3.69 ± 0.32

Ea
6 _ _ _ 5.76 ± 0.01 0.62 ± 0.24

4. Conclusions

In summary, this study presents the anisotropic dielectric responses of GaSe, a uniaxial
crystal, along its principal axes. These responses were measured across a wide range
of energy, from 0.74 to 6.42 eV, and at various temperatures ranging from 27 K to 300
K. The results show that the fundamental bandgap and exciton are only observed in the
c-direction. These observations are consistent with the first-principles calculation, which
confirms that the band-to-band transition of s and pz orbitals at the Γ-point is the main
contributing factor. The temperature dependences of CP energies were determined using
either a linear equation or a phenomenological expression incorporating the Bose–Einstein
statistical factor. These showed a blue shift and enhanced structure at low temperatures as
a result of reduced lattice constant and electron–phonon interactions. This study expands
our understanding of the optical characteristics of GaSe and can provide valuable insights
into the precise engineering of optoelectronic devices.



Nanomaterials 2024, 14, 839 10 of 12

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/nano14100839/s1. Figure S1: EDX spectrum of GaSe single
crystal; Figure S2: Out-of-plane Raman spectra of the GaSe single crystal with various polarization
angles. The incident light polarized parallel to the c-axis is denoted by 0◦; Figure S3: Point-by-point
fitting method used to remove surface roughness artifacts for the pseudodielectric functions along
(a) the c-axis and (b) the a-axis of GaSe at 27 K. Data are given by dashed curves and fitted results
by solid curves; Figure S4: The graph shows the imaginary part ε2 of the dielectric functions of
GaSe. The solid lines represent the data from the present work. For comparison, digitized versions of
previously reported data from Ref. [30] are also included; Figure S5: Comparison of c-axis lineshape
fitting assuming one and two critical points in the exciton region of the GaSe single crystal at 27 K;
Figure S6: The energy band structure of GaSe calculated before (solid curve) and after (dashed curve)
bandgap correction using the mBJ method.
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