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Abstract: An integrated optical isolator is a crucial part of photonic integrated circuits (PICs). Existing
optical isolators, predominantly based on the silicon-on-insulator (SOI) platform, face challenges in
integrating with active devices. We propose a broadband, compact TM mode Mach–Zehnder optical
isolator based on InP-on-insulator platforms. We designed two distinct magneto-optical waveguide
structures, employing different methods for bonding Ce:YIG and InP, namely O2 plasma surface
activation direct wafer bonding and DVS-benzocyclobutene (BCB) adhesive bonding. Detailed
calculations and optimizations were conducted to enhance their non-reciprocal phase shift (NRPS).
At a wavelength of 1550 nm, the direct-bonded waveguide structure achieved a 30 dB bandwidth of
72 nm with a length difference of 0.256 µm. The effects of waveguide arm length, fabrication accuracy,
and dimensional errors on the device performance are discussed. Additionally, manufacturing
tolerances for three types of lithographic processes were calculated, serving as references for practical
manufacturing purposes.

Keywords: optical isolator; non-reciprocal phase shift; magneto-optical; Mach–Zehnder interferometer;
InP-on-insulator

1. Introduction

An optical isolator is a critical non-reciprocal component in optical communication
systems [1]. It prevents interference caused by reflected light, thus protecting active
components and enhancing system stability [2–4]. Optical isolation can be achieved through
magneto-optical (MO) effects [5–8], nonlinear photonic effects [9–11], and spatio-temporal
modulation [12–14]. Among them, MO isolators are highly promising, owing to their
simple device structure, low insertion loss, and large isolation bandwidth. MO materials,
such as yttrium iron garnet (YIG), exhibit non-reciprocal phase shifts (NRPSs) due to their
asymmetric dielectric constant matrix after magnetization [15–18]. YIG doped with cerium
(Ce) or bismuth (Bi) has a large Faraday rotation coefficient and low optical absorption loss
in the near-infrared band, making it a good candidate for optical isolation in communication
systems [19–21].

Currently, integrating MO isolators with CMOS-compatible semiconductor platforms
remains challenging due to factors such as lattice mismatch and shape-induced birefrin-
gence. The most widely studied MO isolators are based on silicon-on-insulator (SOI)
platforms [22–26]. SOI waveguides are compatible with CMOS technology but the inte-
gration of light sources made of III-V compound semiconductors with SOI platforms is
difficult [27–29]. Heterogeneous integration of both MO isolators and III-V compound
semiconductor lasers with Si photonics platforms is important but has rarely been studied.

Indium phosphide (InP) is widely used in low-loss optical communication fields
at 1310 nm and 1550 nm wavelengths due to its high refractive index and photoelectric
conversion efficiency [30–32]. Heterogeneous integration of InP-based active-layer lasers
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with SiO2/Si substrates has reached the commercial stage [33–35]. Reniers et al. devel-
oped an on-chip magneto-optical circulator on the InP-on-insulator platform with good
performance [36]. However, there remains an absence of development and simulation of
integrated optical isolators.

In this work, we compare two NRPS waveguide structures, employing different meth-
ods for bonding Ce:YIG and InP, namely O2 plasma surface activation direct wafer bonding
and DVS-benzocyclobutene (BCB) adhesive bonding. We demonstrate a fundamental TM
mode optical isolator based on the InP-on-insulator platform. The device adopts an asym-
metric Mach–Zehnder interferometer (MZI) structure, composed of two 1 × 2 multi-mode
interferometric (MMI) couplers, asymmetric reciprocal phase shift (RPS) waveguides, and
NRPS waveguides. We design two non-reciprocal waveguide structures based on the direct
bonding process and the BCB bonding process. The variation in NRPS with different InP
thicknesses and widths of the two waveguide structures is calculated and compared. The
maximum NRPS of direct-bonded waveguides is 6488.34 rad/m, which is three times
greater than that of BCB-bonded waveguides. This result is attributed to the longitudinal
distribution gradient of Hx. To meet the needs of device miniaturization, we choose the
direct-bonded waveguide structure for our subsequent calculations. The impact of varying
lengths of RPS waveguides on both isolation and bandwidth is discussed. Noteworthy,
the 30 dB isolation bandwidth exceeds 70 nm and the isolation is much greater than 50 dB
when the length difference of RPS waveguides is supposedly 0.256 µm. In addition, we
discuss the impact of size error with the waveguide arms and the InP waveguide on the
isolation performance and the shift in the transmission spectra, which was rarely mentioned
in previous studies. Finally, the manufacturing tolerances of three process precisions are
simulated, which can be used as references in future experiments.

2. Device Structure and Principle

The magnetization of MO material induces the MO effect, which is utilized for phase
modulation to achieve isolation. The dielectric constant tensor of an MO material magne-
tized along the x direction can be expressed as follows:

ε =

εx 0 0
0 εy jγ
0 −jγ εz

 (1)

where εx = εy = εz = nCe:YIG
2, and γ is the off-diagonal term of the dielectric constant

tensor, which is determined by the refractive index nCe:YIG and the Faraday rotation θF of
the MO material, as 2nCe:YIGθF/k0, where k0 is the wavenumber in vacuum.

Due to the presence of the off-diagonal term in the dielectric constant matrix, light
propagating along the z-axis in the MO waveguide exhibits varying propagation constants
(β f , βb) based on the direction of propagation or magnetization. The NRPS is defined as the
difference between propagation constants (∆βTM). The relationship between the NRPS and
the dielectric constant tensor can be derived by incorporating it into Maxwell’s equations
and applying the perturbation principle [15,37].

NRPS = ∆βTM =
2βTM
ωε0 p

x γ

n4
0

Hx∂yHxdxdy (2)

where P = (
s

E × H∗ + E∗ × H)Zdxdy is the normalized power flow along the z direction,
βTM is the propagation constant for the fundamental TM mode, and ω and ε0 are the
frequency and vacuum dielectric constant, respectively.

The overall structure of the asymmetric MZI isolator is shown in Figure 1a. It consists
of RPS waveguides, NRPS waveguides, and two 3 dB 1 × 2 MMI couplers. A permanent
magnet is positioned on one side of the device to fully saturate the magneto-optical film
with magnetization. With horizontal magnetization, vertically asymmetrical MO waveg-
uides can generate NRPS. However, achieving NRPS in the TE mode necessitates vertical
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magnetization and horizontal asymmetry, which can pose challenges in manufacturing.
Integrating a TE-TM converter before the TM mode isolator offers an alternative approach
to realizing the functionality of the TE mode isolator [38]. The operating principle is illus-
trated in Figure 1b,c. During forward light transmission, by optimizing the length of the
upper and lower waveguide arms, the RPS waveguides can generate a phase difference
of π/2 + 2 mπ, while the NRPS waveguides create a phase difference of −π/2. The phase
difference is added to 2 mπ. Light undergoes constructive interference within the right
MMI coupler, resulting in high transmission. When light is transmitted backward, the
RPS waveguides induce a phase difference of π/2 + 2 mπ, while the NRPS waveguides
produce a phase difference of π/2. The cumulative phase difference is π + 2 mπ. The light
undergoes destructive interference in the left MMI coupler, leading to low transmission.
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Figure 1. Overall sketch and operating principle of MZI magneto-optical isolator. (a) Overall sketch;
(b) forward transmission; (c) backward transmission.

The length difference of RPS waveguides and the length of NRPS waveguides are
determined by the propagation constant:

LNRPS =
π

2(β f − βb)
=

π

2NRPS
(3)

∆LRPS =
(4m + 1)π

2β0
(4)

where β0 is the propagation constant of the InP waveguide. m is an integer, and different
values of m correspond to different ∆LRPS. The performance of the isolator, including
isolation and bandwidth, is largely affected by the selection of waveguide arm length.
Achieving precise waveguide arm dimensions during actual manufacturing is crucial for
ensuring high-quality transmission performance. Hence, the transmission performance
of a device can be notably influenced by various manufacturing processes, which we will
discuss in detail in the following sections.



Nanomaterials 2024, 14, 709 4 of 13

3. Results and Discussion
3.1. NRPS, Loss, and Waveguide Structural Determination

We designed two waveguide structures on the InP-on-insulator platform, correspond-
ing to the feasible processes of direct bonding [39,40] and BCB adhesive bonding [36,41],
respectively, as shown in Figure 2a,b. For the direct-bonded waveguide structure, a single
crystalline layer of Ce:YIG was grown on a (111)-oriented substituted gadolinium gallium
garnet (SGGG) substrate. The surface of the target wafer was then activated by O2 plasma at
100 W in RF power. Subsequently, the activated surface was brought into contact with InP
and strengthened their bond under uniform pressure. Detailed procedures are documented
in [40]. Given the substantial difference in thickness between the SGGG substrate and
the Ce:YIG film, its removal proves challenging. Therefore, SGGG was used as the upper
cladding for simulation and discussion. In the BCB-bonded waveguide structure, a layer of
SiO2 was first deposited on the InP waveguide. Then, a layer of adhesion promoter AP3000
was applied and gently baked at 135 ◦C for 5 min to enhance the adhesion of BCB. Finally,
under vacuum and continuous pressure, the Ce: YIG mold was placed into contact with the
upper surface of the BCB [36]. Both waveguide structures exhibited asymmetric refractive
index distributions in the y-direction and the underlying SiO2 cladding was thick enough
to block out the influence of the substrate.
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At a wavelength of 1550 nm, the refractive indices of InP and SiO2 were nINP = 3.17
and nSiO2 = 1.45, respectively. Ce:YIG had a Faraday rotation coefficient of θF = −4500 ◦/cm
and a refractive index of nCe:YIG = 2.2. The variation in NRPS with different InP thicknesses
and widths of the two waveguides was simulated, as illustrated in Figure 2c,d. We used the
finite element method (FEM) with ideal conductor boundary conditions in COMSOL and
partitioned the two-dimensional waveguide structure into 76,772 elements and 1364 bound-
ary elements. The direct-bonded waveguide exhibited a maximum NRPS of 6488.34 rad/m,
whereas the BCB-bonded waveguide showed only 2136.94 rad/m, nearly three times lower.
The impact of varying SiO2 and BCB thicknesses on NRPS was evaluated, as depicted in
Figure 3. When other factors were fixed, NRPS increased as the thickness of the adhesive
decreased. Equation (2) implies that the NRPS of the TM mode depends on the gradient
distribution of the Hx components along the y-direction across the waveguide cross-section.
The Hx mode field distributions of direct-bonded waveguides and BCB-bonded waveg-
uides with HSiO2 = 30 nm, HBCB = 50 nm and HSiO2 = 70 nm, HBCB = 100 nm are
depicted in (1), (2), and (3) in Figure 3. The refractive indices of SiO2 and BCB are smaller
than those of Ce:YIG and InP, which leads to a decrease in the evanescent field entering the
Ce:YIG layer. The upper and lower interfaces of the Ce:YIG cladding exhibit a smaller Hx
gradient, resulting in a reduced NRPS. Direct-bonded waveguides can be conceptualized
as a scenario where the thickness of the adhesive used is zero, thus yielding a higher NRPS.
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The propagation loss of the TM mode light in the NRPS waveguide is defined
as follows:

αNRPS = ΓInP × αInP + ΓCe:YIG × αCe:YIG + ΓClad × αClad (5)

where αInP, αCe:YIG, and αclad represent the optical absorption loss of the InP waveguide,
Ce:YIG film, and cladding materials, respectively. The loss of the InP waveguide based on
the Si substrate is assumed to be 4 dB/cm [42], while Ce:YIG has a loss of 42 dB/cm [43].
The propagation losses of SiO2, SGGG, and DVS-BCB are small enough to be regarded as 0
at the 1550 nm wavelength. ΓInP, ΓCe:YIG and ΓClad denote the confinement factors of the
composite waveguide, which can be calculated as follows:

Γ =
nc0ε0

s
|E|2dxdys

∞ Re(E × H∗) · z̃ · dxdy
(6)

We simulated the Γ of each material in the two composite waveguides, as listed in
Table 1. The two structures had MO waveguides of lengths 242.442 µm and 735.068 µm,
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resulting in losses of 0.687 dB and 1.064 dB. Considering the compactness and loss of the device,
the direct-bonded waveguide structure in Figure 2a was adopted for subsequent calculations.

Table 1. The confinement factors of two composite waveguides.

Material Propagation Loss (α)
Direct-Bonded Waveguide BCB-Bonded Waveguide

Confinement Factors (Γ)

InP 4 dB/cm 45.5754% 39.5930%
Ce:YIG 42 dB/cm 63.1869% 30.6780%

SiO2 ~0 dB/cm 15.4238% 35.9880%
SGGG ~0 dB/cm 1.6389% 3.3344%
BCB ~0 dB/cm / 16.5910%

Figure 4 illustrates the variation in NRPS and Hx mode field distribution with the
thickness of Ce:YIG. As the Ce:YIG thickness increases, NRPS shows a trend of first
increasing and then flattening. When analyzing the magnetic field distribution, it is evident
that the majority of the Hx field gradually becomes contained within the Ce:YIG layer until
it is completely contained. The integrated area of the Hx magnetic field in the Ce:YIG layer
tends to be constant. An MO layer thickness of 500 nm was selected. At this thickness, a
large NRPS could be obtained, while also being sufficient to protect the evanescent field
from the SGGG substrate interference. Additionally, the flat top of the NRPS curve indicates
good manufacturing tolerances.
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The RPS waveguide with a ridged waveguide structure is composed of an InP core
and a SiO2 substrate. The structure and the mode field distribution of the RPS waveguide
are shown in Figure 5a,b. It should be noted that the size of the InP must match that of the
NRPS waveguide (WInP = 450 nm, HInP = 240 nm) to minimize mode mismatch at the
junction. Due to different transmission modes in RPS and NRPS waveguides, there is modal
overlap at the joint, leading to coupling loss. We simulated the mode field distribution at
the two waveguide interfaces for the RPS and NRPS waveguides, considering both identical
and different InP core sizes. Coupling loss is pronounced when there is a discrepancy
in size.
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sponds to higher isolation across a wider wavelength range, indicating greater band-
width. Figure 6b shows the FSR variation in the device with different m values. Smaller m 
values correlate with larger FSRs and beĴer isolation performance. Moreover, when the 
value of m is less than 40, the bandwidth becomes more sensitive to the difference in wave-
guide arm length. 

Figure 5. (a) Cross-section of the RPS waveguide. (b) Transverse electric field mode field distribu-
tion of the RPS waveguide. (c) Magnetic field distribution at the interface when the InP cores of
two waveguides are of equal size. (d) Magnetic field distribution at the interface when the InP cores
of two waveguides are of different sizes.

3.2. Isolation, Bandwidth, and Free Spectral Range

According to Equation (3), when NRPS is 6488.34 rad/m, the NRPS waveguide length
can be calculated as LNRPS = 242.4418 µm. Based on the adjustable length difference
between the upper and lower RPS waveguides, length differences of m = 0, m = 5, and
m = 15 in Equation (4) are calculated as ∆LRPS(m=0) = 0.2561 µm, ∆LRPS(m=5) = 5.3786 µm,
and ∆LRPS(m=15) = 15.5624 µm. For different m values, the transmittance of the device
at a wavelength from 1510 nm to 1590 nm was calculated according to Equation (5), as
shown in Figure 6a. The red curve represents forward transmission, while the blue curve
represents backward transmission transmittance.

TFOR,BACK = 10 log10
1 + cos(∓NRPS(λ)× LNRPS + β0(λ)× ∆LRPS)

2
(7)

A large RPS waveguide length difference makes the device more dependent on the
wavelength. At ∆LRPS = 0.26 µm, the 30 dB bandwidth exceeds 70 nm. With an increase
in ∆LRPS to 15.56 µm, the 30 dB bandwidth narrows to just 1.5 nm. Additionally, increased
∆LRPS leads to reduced isolation. The difference in length of the waveguide arm affects the
free spectral range (FSR) of the MZI transmission spectrum. A broader FSR corresponds to
higher isolation across a wider wavelength range, indicating greater bandwidth. Figure 6b
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shows the FSR variation in the device with different m values. Smaller m values correlate
with larger FSRs and better isolation performance. Moreover, when the value of m is less
than 40, the bandwidth becomes more sensitive to the difference in waveguide arm length.
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3.3. Manufacturing Accuracy and Error

The size and propagation constant of the waveguide arms play a crucial role in phase
matching. Hence, precise control over waveguide size during manufacturing is essential
to achieve optimal isolation and bandwidth. We simulated isolator reverse transmission
curves with varying waveguide arm manufacturing accuracies, as shown in Figure 7. It is
evident that low precision leads to a shift in the center wavelength of the reverse isolation,
with this shift diminishing as the length difference of the RPS waveguide arms increases.
This situation can be analyzed according to Equation (5). If the values of LNRPS and ∆LRPS
cannot be determined precisely, the desired phase difference at 1550 nm wavelength cannot
be achieved by multiplying waveguide arm length by NRPS and β0, but it can be achieved
at other wavelengths. This results in the maximum isolation of the curve occurring at other
wavelengths, causing drift.
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The precision of the waveguide arm length primarily impacts the maximum isolation
of the device and does not directly affect its bandwidth. By enhancing the manufacturing
accuracy, the isolation can be improved, provided that the device transmission curve does
not shift. This improvement is attributed to the more accurate waveguide arm achieving a
phase difference closer to the theoretical value. At m = 15, the waveguide arm’s accuracy
causes a difference in isolation of approximately 40 dB.

Variations in propagation constants can also lead to shifts in the wavelength of the
isolator away from the center of backward loss. This is mainly reflected in the error with
the thickness and width of the InP layer. Figure 8 illustrates the deviation of the reverse
transmittance as a function of the errors in InP width and thickness. It is found that the
center wavelength shift is directly proportional to InP core size errors, and is more sensitive
to thickness errors. This sensitivity arises because changes in thickness can significantly
impact the Hx field entering the Ce:YIG layer, thereby influencing the propagation constant
and NRPS.
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3.4. Manufacturing Processes and Tolerances

Manufacturing accuracy significantly impacts phase deviations in isolators, making the
selection of an appropriate manufacturing process critical for achieving optimal isolation
performance. Currently, widely used processes include photolithography, nanoimprint
lithography (NIL), and electron beam lithography (EBL). Manufacturing films smaller
than sub-micron in size through photolithography is challenging. The accuracy of NIL is
considerable, which can reach up to tens of nanometers. EBL represents the smallest and
thinnest utility pencil known to be capable of producing pattern features down to a few
nanometers in size. Furthermore, improvements have been made to address the challenge
of heightened losses caused by lens aberrations and motorized stage instability [44]. Taking
m = 5 as an example, Figure 9 illustrates the impact of the maximum error in waveguide
arm length on the simulated transmission center wavelength shift for various processes,
focusing solely on reverse transmittance. With a more precise manufacturing process,
the three curves coincide more closely, resulting in reduced transmittance shifts due to
errors. For EBL, the maximum deviation of the curve is only 1 nm, indicating a negligible
curve shift caused by maximum process error. However, high-precision processes are
expensive, inefficient, and unsuitable for commercial applications. Therefore, during
the actual manufacturing process, a comprehensive assessment is necessary to select a
suitable process.
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Figure 10 illustrates the manufacturing tolerance required to achieve an isolation of
≥20 dB and ≥25 dB at a wavelength of 1550 nm using different processes. When employing
photolithography technology, the required degree of isolation cannot be achieved by the
theoretical value of the RPS waveguide length difference. However, this shortfall can be
compensated for by adjusting the actual length of the NRPS waveguides. In Figure 10a,b,e,
we calculate this compensation, providing a reference for actual manufacturing. The
solid lines represent achievable isolation requirements. Higher isolation requirements
correspond to smaller manufacturing tolerances. Isolators with large waveguide arm
length differences are more adaptable to low-precision processes. In summary, if high
accuracy is achievable in manufacturing, designs with small waveguide arm differences
are advantageous. However, when process accuracy is limited, we need to compromise on
the bandwidth and choose a larger RPS waveguide arm difference.
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4. Conclusions

In summary, we propose an MZI-type basic TM mode magneto-optical isolator lever-
aging InP/SiO2 heterogeneous integration technology. Using two achievable processes of
integrating InP and MO materials, two NRPS waveguide structures were constructed. The
direct-bonded waveguide exhibits three times more NRPS than the BCB-bonded waveg-
uide. Furthermore, given its smaller footprint and lower loss, the direct-bonded waveguide
was ultimately chosen. Through waveguide optimization, we obtained a maximum NRPS
of 6488.34 rad/m when WInP = 450 nm, HInP = 240 nm, and HCe:YIG = 500 nm. At
a wavelength of 1550 nm, the device has a maximum 30 dB bandwidth of 72 nm. The
reported NRPS and bandwidth of this work are superior to those of isolators based on other
platforms [8,23,26,45]. The effects of length difference of the waveguide arm and dimension
errors of the waveguide core layer on the isolation bandwidth and the central wavelength
of transmittance were analyzed. Manufacturing tolerances for three representative accu-
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racies of processes were calculated based on these simulation results. With its substantial
operating bandwidth, high isolation, compact footprint, and significant manufacturing
tolerance, this optical isolator holds promise for applications in the realm of non-reciprocal
photonic devices. Moreover, its integration into the InP-on-insulator platform offers an
innovative approach to achieving the integration of both active and passive components.
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