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Abstract: Brain–computer interface (BCI) for motor imagery is an advanced technology used in the
field of medical rehabilitation. However, due to the poor accuracy of electroencephalogram feature
classification, BCI systems often misrecognize user commands. Although many state-of-the-art feature
selection methods aim to enhance classification accuracy, they usually overlook the interrelationships
between individual features, indirectly impacting the accuracy of feature classification. To overcome
this issue, we propose an adaptive feature learning model that employs a Riemannian geometric
approach to generate a feature matrix from electroencephalogram signals, serving as the model’s
input. By integrating the enhanced adaptive L1 penalty and weighted fusion penalty into the sparse
learning model, we select the most informative features from the matrix. Specifically, we measure
the importance of features using mutual information and introduce an adaptive weight construction
strategy to penalize regression coefficients corresponding to each variable adaptively. Moreover,
the weighted fusion penalty balances weight differences among correlated variables, reducing the
model’s overreliance on specific variables and enhancing accuracy. The performance of the proposed
method was validated on BCI Competition IV datasets IIa and IIb using the support vector machine.
Experimental results demonstrate the effectiveness and superiority of the proposed model compared
to the existing models.

Keywords: electroencephalogram; feature selection; mutual information; penalty term; weighted fusion

1. Introduction

Motor imagery (MI) involves the subject’s mental imagery of body movements without
actual physical movement. The electroencephalogram (EEG) signals generated by MI
exhibit special characteristics linked to the conscious activation of brain areas, and these
signals can be extracted using signal processing techniques [1]. Brain-computer interface
(BCI) is a highly significant class of interaction strategy between the brain and machines, as
it can collect, amplify, and process neural signals from the brain. The most important core
of the BCI system is able to decode the user’s subjective action intention from the detected
EEG signals, and then the EEG can be translated into a control signal of external devices
by an appropriate pattern recognition algorithm, enabling direct communication between
humans and machines [2]. In recent years, BCI has emerged as a promising technology with
significant contributions towards medical applications, such as stroke rehabilitation [3],
wheelchair control [4], and prosthetic limb control [5]. However, the current BCI system
frequently identifies erroneous user commands which leads to low accuracy and message
transfer rates. Therefore, it is highly desirable to propose a technique that can improve the
accuracy of decoded MI-EEG signals for the BCI system [6].

Generally, the decoding process of MI-EEG signals primarily involves feature extrac-
tion and classification. The challenge of feature extraction, namely extracting various signal
features, is a fundamental issue that garners significant attention in the literature [7,8].
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Various approaches have been proposed, for instance, Wavelet Transform [9], Short-Time
Fourier Transform [10], spectrogram and autoregressive [11], and Common Space Pattern
(CSP) [12]. Among them, the CSP algorithm is considered to be one of the most effective
feature extraction algorithms for the MI-EEG [13]. However, the calculation of the covari-
ance matrix in the CSP algorithm is prone to interference from noisy or abnormal samples.
Original EEG data are high-dimensional with a low signal-to-noise ratio; therefore, a large
number of high-dimensional features will be generated by the CSP algorithm [14]. On the
other hand, Riemannian geometry (RG), one of the machine learning techniques, has been
utilized for classification since it can better capture the correlation and internal structure
of EEG signals and perform well in handling high-dimensional data [15,16]. Therefore,
the first motivation of this paper is to explore a new computational algorithm that can
simplify the signal processing and improve the signal-to-noise ratio of the MI-EEG via the
Riemannian manifold.

As feature extraction will generate large feature sets, feature selection is crucial in the
analysis of EEG signals, particularly when addressing the challenges posed by big data
characteristics such as velocity and variety [17]. Classically, based on the relationships
among classification models, feature selection methods can be categorized as the filter
method, wrapper method, and embedded method [18]. The filter method in EEG signal
processing involves selecting a subset of features based on their statistical properties or
relationships with the target variable, such as Correlation-Based Feature Selection (CFS) [19]
and the t-test algorithm [20]. The CFS algorithm calculates a subset of the feature by
following the initial hypothesis to identify features that are highly correlated with the
target variable. Even though it is computationally efficient and easy to implement in the
feature selection process for EEG signals, CFS ignores feature interactions that might not
capture non-linear relationships. By applying statistical tests to identify features of the
EEG signals, the t-test method provides information about the statistical significance of
differences in means between groups. The mutual information algorithm selects features
with high information content by measuring the information gain or mutual information
between each feature and the target variable [21]. It is worth noting that the methods
mentioned above primarily focus on individual feature selection, potentially missing the
complex relationships among features. By the global search in EEG signal processing,
wrapper methods for feature selection involve evaluating subsets of features based on the
performance of a specific machine learning model, such as Recursive Feature Elimination
(RFE) [22] and Genetic Algorithms (GAs) [23]. RFE and GAs not only consider the feature
interactions but the least important features are removed until the desired number of
features is reached. However, wrapper methods are computationally intensive for high-
dimensional data.

Embedded methods integrate feature selection into the model training process, selecting
important features by optimizing the objective function [24]. These methods are computa-
tionally less intensive than wrapper methods and exhibit superior performance compared
to filter methods [25]. The regularization model is a vital embedded method capable of
shrinking features on a continuous scale and achieving automatic feature selection. One
representative individual regularization model is the least absolute shrinkage and selection
operator (LASSO), which minimizes the combination of loss functions and L1 regularization
terms to eliminate the weight of irrelevant features [26]. It selects one feature from a group
of highly correlated features, which can help simplify models and improve generalization
performance by effectively providing a form of dimensionality reduction. However, LASSO
assumes a linear relationship between the features and the target variable. While LASSO
demonstrates effectiveness in feature selection within EEG signal processing, it may exclude
potentially vital features that hold significance in the overall analysis. Therefore, another
motivation of this paper is to consider the interaction features of each feature for EEG feature
selection, with a particular focus on capturing the complex relationships among the features
in the high-dimensional data of the selected features.
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In this paper, we present a novel machine learning framework designed to address the
challenges associated with decoding the MI-EEG signals. Our framework is built upon RG
and incorporates variants of adaptive LASSO. The Riemannian distance serves as a metric
to assess the redundancy of features in the detected EEG signals. Relevant features are then
extracted to reduce the dimensionality of the feature data. Then, to enhance the classifica-
tion accuracy of the system, we integrate mutual information-based and pairwise-fused
(MIPF) LASSO to selectively identify features with interactions and redundancies. Finally,
support vector machine (SVM) classification is employed to process high-dimensional data
and capture non-linear relationships within feature sets. The primary contributions of this
paper can be summarized as follows:

1. A new adaptive MIPF-LASSO model is developed for feature selection in MI-EEG sig-
nals classification. We improve the original LASSO model by using two regularization
terms: adaptive L1 and weight fusion. The former aims to adaptively assign different
weights to different feature coefficients, and the latter aims to group variables by using
relevant information data.

2. A new adaptive weight construction strategy is proposed that can adaptively penalize
the regression coefficients corresponding to each variable by measuring the importance
of each feature through mutual information.

3. A new pattern recognition framework for MI-EEG signals is proposed. Experimental
results show that extracting the most informative features is expected to improve the
accuracy and feasibility of EEG analysis and provide a powerful tool for neuroscience
research and brain imaging applications.

The remainder of this paper is structured as follows: Section 2 provides a brief
overview of related studies on feature selection methods. Section 3 outlines the proposed
method. Section 4 presents comparative experimental results and discussions. Finally,
Section 5 concludes the paper and outlines directions for future research.

2. Related Work

In recent years, considering the challenges posed by big data characteristics like ve-
locity and variety, feature selection is crucial in the analysis of EEG signals. LASSO can
perform automatic feature selection from a group of highly correlated features by introduc-
ing an L1 regularization term, effectively providing an expression of the dimensionality
reduction [27]. However, in the case of highly correlated features, LASSO may exhibit
instability, manifested as inconsistency in feature selection. To overcome this issue, grouped
LASSO models play a crucial role in maintaining the spatial or functional consistency of
the selected features. This is achieved by considering the similar functionality of features
and applying common penalties to the entire group of features [28]. However, the effective-
ness and the performance of these models may be sensitive to the accurate definition of
groups [29]. Determining the optimal grouping structure can be a challenge to the choice
of groups. As these models use the same tuning parameters for all regression coefficients,
the resulting estimators may have significant biases.

To ameliorate this shortcoming, by using constructed adaptive weights, the adaptive
LASSO is proposed to adaptively select the relative feature, in which adaptive weights
are employed to penalize different coefficients in the L1-penalty [30]. So, adaptive LASSO
has the ability to adapt the strength of the regularization to different features, particularly
useful in dealing with EEG signals. Even though the oracle properties of identifying the
correct subset model are preserved in adaptive LASSO, the weights established by these
methods are constructed based on the initial consistent estimator, which is sensitive to
noise or abnormal signal values in the EEG dataset. To modify adaptive LASSO, numer-
ous weight construction techniques have been proposed to select features with complex
relationships. Since the EEG signals often involves non-linear interactions, these weights
are highly dependent on the actual values of the original data. Therefore, many feature
selection methods based on information theory have been developed to characterize the
complex dynamic behaviors of EEG signals [31,32]. Mutual information, a typical method
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of information theory, is used to analyze relationships among different EEG channels or
EEG signals and external stimuli [33]. In summary, mutual information is a powerful tool
for capturing dependencies and interactions in EEG signals, especially in cases involv-
ing non-linear relationships [34]. While candidate feature relevancy is considered to be
equivalent to selected feature relevancy in mutual information, some less relevant features
may be misinterpreted as salient features. To overcome these issues, the fusion LASSO
enhances the trade-off between the relevancy of each individual feature [35]. However, due
to the structured penalties, the fusion LASSO cost is computationally high when dealing
with EEG dataset. Since fusion LASSO involves tuning parameters, it is important to note
that the method is sensitive to noise. Therefore, the performance of the method may be
affected by the choice of tuning parameters. In [36], the segmentation-denoising network is
proposed to improve the sensitivity and specificity of EEG signals.

Most of the aforementioned studies have often overlooked the potential of correlated
features in improving EEG classification performance. Therefore, this paper combines
the advantages of the adaptive LASSO algorithm and proposes a weight construction
strategy that utilizes mutual information to measure feature relevance, aiming to improve
the classification performance of EEG signals.

3. Material and Methods

In this study, we propose an innovative framework for EEG signal classification. The
algorithmic overview of this framework is illustrated in Figure 1. Specifically, we divide the
original EEG signals into different time windows. Within each time window, we perform
spectral analysis to obtain significant features of EEG signals in different frequency ranges.
Secondly, we use the feature extraction algorithm of RG, which directly manipulates the
covariance matrix of EEG signals in space. This step allows us to obtain structural information
about the synergistic activity between brain regions. Then, we introduce the MIPF-LASSO
model proposed in this paper, which provides an efficient and accurate feature representation
for classification tasks by learning and selecting informative features. Finally, the obtained
features are input into an SVM classifier to obtain the classification results.

Figure 1. The overview of our proposed framework for motor imagery classification.

3.1. EEG Datasets

In this study, we use two publicly available datasets to evaluate the effectiveness of
our proposed method.

BCI Competition IV Dataset IIa: The dataset recorded 22 EEG signal channels from nine
subjects at a sampling rate of 250 Hz. Each participant in the trial was given instructions to
perform four different kinds of MI tasks using visual cues: left hand, right hand, foot, and
tongue. Two sets of MI task data were recorded by each individual. One set was used to
train the model, and the other to assess the model’s effectiveness. Participants completed
six different sets of MI tasks in each phase; each set was repeated twelve times, for a total of
144 experimental trials in each phase. The timing scheme of each trial is shown in Figure 2a.
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In this paper, the time interval of single EEG data is limited to 2.5∼6 s. The details of this
dataset are available in [37].
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Figure 2. Timing paradigm of each trial. (a) BCI competition IV dataset IIa. (b) BCI competition
IV dataset IIb.

BCI Competition IV Dataset IIb: The dataset recorded 3 EEG signal channels (C3, Cz, and C4)
from nine subjects at a sampling rate of 250 Hz. Each participant in the trial was given
instructions to perform two different kinds of MI tasks using visual cues: left hand and
right hand. Each data collection session consisted of 120 trials of data. The subject was
indicated by a visual cue to perform the MI task for 4.5 s. The timing scheme for each trial
is shown in Figure 2b. The details of this dataset are available in [37].

3.2. Preprocessing

Given that the number of subjects obtaining EEG data collection in reality is relatively
small, this is not conducive to learner training [38] due to the high temporal resolution
nature of the signals, i.e., the large amount of information that can be provided in a short
period of time. We can use effective data enhancement methods to increase the diversity
and quantity of training data. First, we divide the data from 0.5 s before the start of the MI
task to the end of the task into time windows and divided them into six different windows.
The time segments (T1 to T6) that contain the temporal information of MI classification are
successively 2.5–4.5, 4–6, 2.5–6, 2.5–3.5, 3–4, and 4–5. In this study, we choose the largest
time window (T3) for the experiment.

MI can cause event-related desynchronization (ERD) and event-related synchroniza-
tion (ERS), i.e., power changes in specific frequency bands of EEG signals, specifically
sensory-motor rhythms mu (8–13 Hz) and beta (15–30 Hz). As a result, the band-pass
filter of 8–30 Hz is usually used to filter the MI signals [39]. However, since the frequency
response of MI is subject-specific, it is difficult to separate the most discriminative features
only in the mu and beta rhythms [29,40]. Therefore, it is crucial to extend the frequency
band of the EEG signals and divide it into multi-scale spectral parts before the feature
extraction stage. Therefore, we choose 5 different types of frequency bandwidth (2 Hz,
4 Hz, 8 Hz, 16 Hz, and 32 Hz) for multi-scale spectral segmentation and employed a
second-order Butterworth band-pass filter, which is an infinite impulse response (IIR) filter
with frequency bands ranging from 4 to 40 Hz to perform multi-scale spectral segmentation,
further helping us enhance or select the signal components in a specific frequency range.
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3.3. Feature Extraction

The decomposition of the EEG signals into frequency sub-bands after preprocessing
results in increased dimensionality [41]. To address this issue, it is necessary to extract
effective features for use in EEG recognition. In contrast to the classic CSP algorithm series,
which attempts to find the best spatial filter only for binary classification, the use of RG
broadens the horizons of MI-EEG decoding beyond spatial filters. On the one hand, the
traditional decoding methods assume that the EEG signals is located in high-dimensional
Euclidean space and then directly process the signal based on the Euclidean distance.
However, since each dimension of EEG corresponds to a different channel, in addition to
the presence of phase information, the representation of EEG in multidimensional space
exhibits non-Euclidean properties. RG provides a framework for exploring non-Euclidean
spaces, which aids in precisely describing the internal relationships of high-dimensional
EEG data [42]. On the other hand, RG can explain the geometric properties on matrix
manifolds. It is more appropriate to deal with MI-EEG covariance matrices, which can
directly process the covariance features of EEG signals, thereby improving the accuracy of
EEG decoding [15].

In this study, we apply the Riemann geometry technique to reduce dimensionality and
improve the discriminability of the datasets between different MI classes. Specifically, we com-
pute the covariance matrix for each sub-band to obtain a symmetric positive definite matrix,
and every real symmetric positive definite matrix corresponds to a point on a Riemannian
manifold. We employ logarithmic mapping for the vector projection from a sub-manifold to its
corresponding tangent space and utilize exponential mapping to project points back onto the
sub-manifold from the tangent space. Given the eigenvalues of the MI-EEG covariance matrix,
we use the geodesic distance to quantify the differences between the covariance matrices.
For the different classes, we consider the measures between numerous covariance matrices
from the mean perspective. By using the Riemann mean matrix based on MI-EEG signals, we
generate a new feature matrix which is then vectorized. These steps constitute the Riemann
covariance method, which realizes the robust feature extraction of MI-EEG by capturing the
dynamic features of the MI-EEG signals.

3.4. Adaptive LASSO with Mutual Information and Weighted Fusion

After obtaining feature representations on a Riemannian manifold, the accuracy of the
decoding may potentially be improved. However, this will result in the generation of a
huge number of features. So, we propose an adaptive feature selection model. Based on the
LASSO algorithm, the regression coefficients corresponding to each variable are adaptively
penalized by introducing weighting coefficients constructed based on mutual information.
At the same time, it enables the automatic grouping effects of regression coefficients. In
this way, the model can select the features related to the target variables more accurately,
reduce the selection bias, and maintain the consistency of model selection.

3.4.1. Adaptive Weight Strategy

In this section, we propose a new adaptive weight construction strategy, in which the
key point is to measure the importance of each feature to the target task based on mutual
information. To ensure completeness, we give some basic concepts of information theory.
In this theory, due to entropy’s ability to quantify the uncertainty of random variables and
effectively measure the amount of information shared between random variables, it has
been widely used in many fields [43].

Let X = [x1, x2, · · · , xn]T be the set of discrete random variables, and its uncertainty
can be measured by entropy H(X), which is represented as:

H(X) = − ∑
x∈X

p(x) log p(x) (1)

where p(x) is the probability distribution of each x. The greater the entropy H(X) of
random variable X is, the more information it contains. When certain variables are known
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and others are not, the remaining uncertainty is measured by the conditional entropy. The
conditional entropy of two random variables X and Y is defined as follows:

H(X|Y) = −∑
yϵY

p(y) ∑
xϵX

p(x|y) log p(x|y) (2)

where p(y) and p(x | y) are the probability of y and probability of x given y, respectively.
Here, the conditional entropy H(X | Y) represents the degree of uncertainty of X given Y.

Mutual information is a metric of interdependence between random variables. Thus, it
provides a way to assess the relevance of a subset of features. In the following, we introduce
mutual information. Let Ij represent the individual importance of the j-th feature, which
can be expressed as:

Ij = I(X(j); Y) = ∑
xj∈X

∑
y∈Y

p(xj, y) log
p(xj, y)

p(xj)p(y)
(3)

where p(xj, y) denotes the joint probability density function of xj and y. Here, I(X(j); Y) can
indicate the correlation between feature x(j) and class y. From this definition, if I(x(m), y)
exceeds I(x(n), y), it means that the m-th feature x(m) contains more information about class
y than the n-th feature x(n). Therefore, Ij can be regarded as a specific index to measure the
significance of features, that is, the higher the value of Ij, the more significant the feature
x(j). In particular, if the feature x(j) does not provide any substantial information for the
class label, then Ij = 0.

In order to impose different penalties on each feature according to its importance for
the classification, we construct the weight coefficient of the j-th feature based on Ij, which
can be defined as:

αj = e−rIj (4)

where r is the trade-off parameter. In this study, the kernel transformation is applied to the
construction of the weighting coefficients. Through repeated experimental validation, we
observe that the performance of the model reaches the optimal level when r = 5. Therefore,
we decide to set r to 5 during further model tuning.

After computing the weight coefficient corresponding to the j-th ( j = 1, · · · , p) feature,
we describe the weights matrix as:

A = diag(α1, · · · , αp) (5)

3.4.2. The MIPF-LASSO Model

We propose a feature learning model based on adaptive weights and paired fusion
LASSO. For extracting the most distinctive features, we choose the features extracted from
the RG as the input feature matrix X = [x1, x2, · · · , xp] ∈ Rn×p, which consist of n samples
with p-dimensional features. In this model, the features corresponding to the non-zero
elements of these sparse β̂ in the input feature matrix X are selected as candidate features
in the classification task.

Let y = (y1, · · · , yn)T be the response vector. Then, our model is formulated as:

β̂(λ1, λ2) = argmin
β

∥y− Xβ∥2 + λ1

p

∑
j=1

αj
∣∣β j

∣∣+ λ2 J(β) (6)

where β ∈ Rp is the vector of regression parameters. λ1 and λ2 are tuning parameters that
are used to regulate the degree of different penalties. The model has two penalty terms.
The first term is a new adaptive L1 penalization, and the second one is pairwise-fused
penalization, which are described below, respectively:
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(1) For adaptive L1 penalization, we propose a new weight coefficient construction strategy,
where αj can be calculated as Equation (4), λ1 controls the degree of sparsity of the β̂, and
a higher λ1 results in a rarer β̂, and thus a smaller number of features can be extracted.

(2) For pairwise-fused penalization, it penalizes the pairwise difference of the estimated
coefficients by using the correlate-driven weights with the help of relevant information
in the data. λ2 focuses on correlations between spectral features, and strongly corre-
lated features are retained or removed at the same time. This allows our model to be
very suitable for handling the data with strongly correlated, multi-collinear predictors.
Let ρij = xT

i xj denotes the sample correlation between the predictors xi and xj. The
weighted fusion penalty J(β) is defined as:

J(β) =
p−1

∑
j=1

∑
i>j

{
(βi − β j)

2

1− ρij
+

(βi + β j)
2

1 + ρij

}
(7)

According to [44], the function (7) possesses the fusion weight characteristics. By
definition, we can see that for the strong positive correlation (ρij ≈ 1), the first term
dominates and β̂i will be close to β̂ j. The method explicitly utilizes the correlation be-
tween predictors in the weighted fusion penalty term. The coefficients corresponding
to pairs of covariates are weighted according to their marginal correlations. From an
application point of view, edge weights can be used to measure the similarity between
two vertices. By considering edge weights, the weighted fusion method can select
highly correlated variables as a group. Even though the true coefficients of this group
of variables may not be equal, the use of edge weights allows the model to more
flexibly deal with these highly correlated variables and make predictions as a whole,
achieving a group effect, which improves the model’s adaptability to the group of
highly correlated variables, thus improving the accuracy of the prediction.

Consider an optimization algorithm when λ = 0. The solution of our proposed
algorithm can be transformed into:

β̂RF(λ2) = (XT X + λ2W)−1XT y (8)

where

W=



∑j ̸=1
1

1−ρ2
1j

− ρ12
1−ρ2

12
. . . − ρ1p

1−ρ2
1p

− ρ12
1−ρ2

12
∑j ̸=2

1
1−ρ2

2j
. . .

...

...
...

. . . − ρp−1,p

1−ρ2
p−1,p

− ρ1p

1−ρ2
1p

. . . − ρp−1,p

1−ρ2
p−1,p

∑j ̸=p
1

1−ρ2
pj


The matrix W is symmetric and semi-definite, and β̂RF is defined as the solution to

the ridge fusion estimation. When the number of features (p) is greater than the number of
samples (n), the covariance matrix XT X may become a singular matrix. Ridge regression
increases the rank of the covariance matrix by adding a constant to it, and the ridge fusion
method increases the rank of XT X by adding a matrix W , i.e., by adjusting the magnitude
of the correlation coefficient, which also solves the correlation-based p > n problem.

We have improved the MIPF-LASSO algorithm to solve the penalty least squares
problem. Our main idea is to introduce data augmentation so that the weighted fusion
problem can be transformed into a cable problem. A nice characteristic of the function (7) is
that it may be expressed as a simple quadratic form, which allows to provide the resulting
estimator in closed form:

J(β) = βTW β (9)
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We can rephrase the optimization problem as:

β̂(λ1, λ2) = argmin
β

{
∥y− Xβ∥2 + λ1

p

∑
j=1

αj
∣∣β j

∣∣+ λ2βTW β

}
(10)

Because W is positive semi-definite, we can use Cholesky decomposition to obtain
W = RT R, where R is the upper triangle matrix. Let

ŷ(n+p) =

(
y
0

)
, X̂(n+p)×p =

(
X√
λ2R

)
(11)

The formula (10) can further be rewritten as:

β̂(λ1, λ1) = argmin
β

{∥∥ŷ− X̂β
∥∥2

+ λ1

p

∑
j=1

αj
∣∣β j

∣∣} (12)

Define X∗ = X̂/α, then we have

β̂∗(λ1, λ1) = argmin
β

{
∥y∗ − X∗β∗∥2 + λ1∥β∗∥1

}
(13)

which implies that the computation of the MIPF-LASSO estimator can be handled by
available algorithms for LASSO, such as Least Angle Regression (LARS) or coordinate
descent (CD) algorithms [45]. Among them, the coordinate descent method only updates
the coefficient of one feature in each iteration, while the coefficients of other features remain
unchanged, which makes the algorithm run faster. Through repeated iterations, one can
eventually find the parameters that minimize the objective function. Therefore, our model
adopts the coordinate descent algorithm, which can be seen in Algorithm 1. Given that
the objective function of problem (13) is divided into two parts, the first part being a
differentiable convex function and the second part being a convex function, we can ensure
the convergence of Algorithm 1 according to Theorem 1. Assuming that n is the number of
samples and p is the number of features, the computational complexity of Algorithm 1 is
O(np).

Theorem 1. Reference [46] assumes that the level set X0 =
{

x : f (x) ≤ f (x0)
}

is compact and
that the function f is continuous on X0. Then, the sequence

{
xr = (xr

1, . . . , xr
N)

}
r=0,1,... generated

by the coordinate descent method using the essentially cyclic rule is defined and bounded. In addition,
if for every i, k ∈ {1, . . . , N}, the function f (x1, . . . , xN) in (xk, xi) is pseudoconvex and f at every
x ∈ X0 is regular, then every cluster point of {xr} is a stationary point of f .

Remark 1. When the number of features p is much larger than the number of samples n, the
traditional LASSO method may encounter limitations in variable selection because in this case,
the number of parameters in the model far exceeds the number of available data points, which may
lead to over-fitting problems. Typically, the coordinate descent algorithm is used to speed up the
optimization process in LASSO solving, but it does not solve the challenge of the number of features
being greater than the number of samples. To overcome this problem, an improvement is proposed by
applying the coordinate descent algorithm to augmented data (y∗, X∗). This improvement not only
extends the applicability of LASSO to effectively deal with situations where the number of features
is larger than the number of samples but also resembles the traditional LASSO method in terms
of variable selection. Therefore, by using augmented data in the coordinate descent algorithm, the
limitation of traditional LASSO in the p > n dilemma is successfully overcome.
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Algorithm 1: Algorithm for MIPF-LASSO.
Input: The Matrix X, label y, parameters λ1 and λ2.
Output: β̂, the feature set F .

1 F ← ∅, β̂
(0)
j ← 0 (j = 1, · · · , p), s = 0;

2 for j = 1 to p do
3 Ij ← I(X(j); Y);
4 αj ← e−rIj

5 A = diag(α1, · · · , αp)
6 While not convergence

7 h(s)t = ∑n
i=1xit(yi −∑

p
j=1,j ̸=t xijβ j)

8 z(s)t = βt∑n
i=1x2

(it)

9 β
(s)
t =


h(s)t −λ1/2

zt
, h(s)t < −λ1/2

0, −λ1/2 < h(s)t < λ1/2
h(s)t +λ1/2

zt
, h(s)t > λ1/2

10 end s = s + 1
11 Extract the non-zero coefficients and produce the appropriate feature set F
12 return β̂, F .

3.5. EEG Classification

After obtaining the EEG features learned from the MIPF-LASSO model, a variety of
classical classifiers are available for detection tasks, such as random forest, linear discrimi-
nant analysis and SVM. SVM is a typical classification method that has been widely used
in MI-BCI, which maps the original feature to the higher dimensional space by kernel
function and deals with the linear indivisible problem in the original feature space, making
it more flexible in the classification of high-dimensional data. In addition, SVM pursues a
hyperplane that maximizes spacing, making it more robust to small sample datasets and
more sensitive to core samples, helping to resist the effects of noise. Considering that the
features selected by the proposed model still involve high-dimensional feature spaces and
small sample datasets, to effectively deal with this challenge, this paper adopts SVM as the
classifier. Kernel functions typically employed in SVM include linear, polynomial, radial
basis function (RBF), and sigmoid functions. The RBF kernel function is a typical non-linear
kernel function that can map data to a high-dimensional feature space while also having
outstanding generalization and adaptability, making it particularly ideal for dealing with
non-linear separable classification issues. As a result, we choose to train SVM with RBF
kernel functions to accurately identify the MI tasks.

4. Results and Discussion
4.1. Experimental Setting

To assess the effectiveness of our proposed framework, we use two widely accepted
evaluation metrics, including accuracy and G-mean. Accuracy is the ratio of the number
of correctly classified samples to the total number of samples, and it is one of the most
commonly used indicators in classification performance evaluation. However, in the case
of dealing with unbalanced datasets, accuracy may not provide sufficient information. The
F1 score is a harmonic average of the accuracy rate and sensitivity, which takes into account
the accuracy and sensitivity performance of the model and is particularly suitable for
balancing different aspects of performance. G-mean is a complete assessment statistic that
incorporates the classifier’s recall and accuracy rates and can comprehensively evaluate the
classifier’s performance. When working with unbalanced datasets, this index is extremely
useful for analyzing the categorization effect.
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The following is the mathematical formula for these indicators:

Accuracy = (
TP + TN

TP + FP + TN + FN
) (14)

F1− score =
2TP

2TP + FP + FN
(15)

G−mean =

√
TP

TP + FN
× TN

TN + FP
(16)

where TP (true positive) and TN (true negative) represent the count of accurately identified
true abnormal and true normal instances, respectively. FP (false positive) characterizes
instances that are incorrectly classified as abnormal, while FN (false negative) denotes
instances erroneously labeled as normal.

4.2. Comparison with Other State-of-the-Art Studies

To verify the efficacy of the proposed MIPF-LASSO method, we implement a compre-
hensive series of experimental comparisons. The experiments involve pitting our method
against other cutting-edge methodologies through rigorous evaluations of identical datasets.
This meticulous and extensive examination was undertaken to validate and demonstrate
the superior performance of the MIPF-LASSO method in comparison to the state-of-the-art
alternatives. The dataset used is the same as that of the work of Autthasan P. et al. [47]. These
state-of-the-art methods include the following:

• FBCSP+SVM [48]: The FBCSP technique was devised to apply the original CSP
algorithm to each sub-band of EEG signals, thereby extracting discernible EEG features
from multiple frequency bands, which can maximize the variance of different EEG
signals. Subsequently, the SVM is trained to classify the extracted features. Finally, the
SVM classifier with optimal parameters is used for testing.

• FBCSP+LDA [49]: Reference [49] evaluates the performance of five popular MI-BCI
pipelines, allowing BCI researchers to select the best BCI pipeline for their purpose.
We choose one of the FBCSP+LDA algorithms to simulate on datasets IIa and IIb.
Specifically, the FBCSP algorithm divides the preprocessed EEG signals into a series of
band-pass filtered signals, then applies the CSP algorithm and LDA classifier to each
band individually, followed by score fusion and classification.

• Spectral–Spatial CNN [50]: The spectral–spatial relationship CNN is a novel spectral–
spatial feature representation framework based on CNNs from a large-scale MI-EEG
database. The framework learns the spectral–spatial input, extracting discriminative
properties from the different frequency bands of the EEG signals. It achieves cutting-
edge performance in subject-independent MI decoding.

• Deep ConvNet [51]: As a deep learning model, Deep Convolutional Neural Networks
are designed based on the classical CNN architecture and have been shown to be
effective for decoding MI-EEG signals. In our experiments, Deep ConvNet was
optimally configured as recommended in [51].

• EEGNet [52]: EEGNet is a lightweight CNN framework for classification in different
BCI paradigms. There are different versions of EEGNet depending on the network
parameters. In our experiments, we chose EEGNet-8,2 for a fair comparison and
followed the description in the original publication.

• MIN2Net [47]: MIN2Net develops by combining an autoencoder, deep metric learning, and
a supervised classifier, which simultaneously learns to compress, differentiate embedded
EEG, and classify EEG. MIN2Net performs excellently in terms of subject independence.

The comparisons between the proposed method and alternative approaches, as pre-
sented in Tables 1 and 2 using BCI Competition IV datasets IIa and IIb, emphasize the
efficacy of our proposed MIPF-LASSO method. Within the confines of Table 1, a com-
prehensive comparison unfolds to indicate the exceptional performance of MIPF-LASSO
alongside other methodologies, revealing a clear advantage in classification accuracy by a



Biosensors 2024, 14, 211 12 of 17

striking margin of no less than 7.39% when compared with state-of-the-art methodologies.
The F1-Score showcases an impressive lead of at least 8.2% in favor of MIPF-Lasso. Further-
more, the G-mean, a robust metric of performance, unfurls an extraordinary advantage of a
minimum of 7.07%, firmly placing MIPF-LASSO in a position of remarkable superiority.

Table 1. Performance comparison between MIPF-LASSO and baselines on dataset IIa.

Methods Accuracy (%) G-Mean (%) F1-Score (%)
(Mean ± std) (Mean ± std) (Mean ± std)

Traditional method FBCSP + SVM [48] 75.93 ± 14.76 72.69 ± 20.37 74.49 ± 18.47
FBCSP + LDA [49] 73.75 ± 14.28 70.73 ± 18.00 75.72 ± 12.89

Deep learning method

SpectralSpatialCNN [50] 76.84 ± 13.63 74.58 ± 15.44 76.95 ± 15.28
DeepConvNet [51] 64.34 ± 17.89 61.79 ±19.90 60.17 ± 22.70

EEGNet [52] 65.68 ± 18.22 55.94 ±29.14 64.18 ± 25.59
MIN2Net [47] 65.46 ± 15.60 64.13 ±16.60 64.54 ± 18.35

Proposed method MIPF-LASSO + SVM 84.23 ± 13.44 81.65 ± 19.05 85.15 ± 10.93

Table 2. Performance comparison between MIPF-LASSO and baselines on dataset IIb.

Methods Accuracy (%) G-Mean (%) F1-Score (%)
(Mean ± std) (Mean ± std) (Mean ± std)

Traditional method FBCSP + SVM [48] 69.25 ± 12.32 67.39 ±13.66 68.01 ± 12.98
FBCSP + LDA [49] 67.95 ± 12.22 67.17 ±12.76 67.90 ± 12.63

Deep learning method

SpectralSpatialCNN [50] 71.68 ± 13.27 70.34 ± 14.03 69.16 ± 14.88
DeepConvNet [51] 61.44 ± 16.23 59.76 ± 17.17 59.85 ± 18.44

EEGNet [52] 66.34 ± 15.83 62.23 ± 21.23 65.12 ± 21.32
MIN2Net [47] 60.06 ± 14.23 58.42 ± 15.17 59.87 ± 15.82

Proposed method MIPF-LASSO + SVM 76.47 ± 13.86 75.61 ± 14.13 76.42 ± 13.69

Expanding our analysis to BCI Competition IV dataset IIb, a comparison with the six
alternative methods not only reveals the excellence of our proposed methodology but also
demonstrates a substantial enhancement in both classification accuracy and G-means. The
proposed method, with its impressive ascendancy, showcases enhancements of no less than
4.79% in classification accuracy, 7.26% in F1-Score, and an even more pronounced elevation
of 5.27% in G-means. These consistent trends across two evaluation criteria emphasize the
superior performance of the MIPF-LASSO method.

Overall, the MIPF-LASSO method achieves excellent results in feature selection, which
not only helps improve the classification accuracy but also significantly enhances the
G-mean. The observation of small standard deviations is an indicator of the MIPF-LASSO
method’s consistent and stable performance. Therefore, the experimental results suggest
that the method is not only effective in achieving high average values for performance
metrics but also reliable and robust across different experimental conditions.

4.3. Ablation Experiment

To thoroughly assess the effectiveness of our innovative framework, a series of ablation
experiments was executed to dissect the nuanced impact of variables within the model
on the classification performance of the dataset. The experiments commenced with the
application of a meticulously crafted feature selection framework, engineered to demon-
strate a feature subset with wielding a profound influence. Subsequently, armed with these
meticulously chosen feature subsets, the experiment delved into the classification tasks,
meticulously considering an array of evaluation indicators, ranging from classical classifi-
cation accuracy to nuanced metrics like G-mean and F1-Score, orchestrating a symphony
of assessments to holistically evaluate performance. This methodical process endowed us
with a profound understanding of the intricate influence wielded by the selected feature
subset on the model’s overarching generalization performance.
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The interaction information, adaptive L1 penalization, and L1 penalization are selectively
disabled from MIPF-LASSO in a meticulous sequence, birthing three distinct methodologies:
Riemannian Adaptive LASSO, Riemannian LASSO, and Riemannian. The same meticulously
experimental settings ensure an equitable stage for our comparative experiments in datasets
IIa and IIb, respectively. The captivating results shown in Figures 3 and 4, depicting the
average classification performance, bear witness to the ascendancy of the RG MIPF LASSO
method with the loftiest classification accuracy, G-mean and F1-Score.

Figure 3. Results of ablation experiments on dataset IIa.

Figure 4. Results of ablation experiments on dataset IIb.

In Figure 3, the classification accuracy, F1-Score and G-mean increase with the variable
L1 penalty, adaptive L1 penalty, and interaction information one by one. Delving deeper,
it becomes evident that the proposed method exhibits superior performance and surpasses
alternative methods by a noteworthy margin. Specifically, the sequential addition of the
three construct parameters manifests a remarkable improvement in classification accuracy,
soaring from the initial 78.46% to the zenith of 84.23%. The F1-Score value changes from
82.71% to 85.15%. Concurrently, the G-mean experiences a meteoric rise, ascending from
70.65% to a pinnacle of 81.65%. This analysis underscores the tangible influence of the model’s
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variables on feature selection, thereby elevating the accuracy of the classification. Therefore,
the proposed method showcases exceptional classification performance on dataset IIa.

Based on dataset IIb, the influence in classification accuracy and G-mean after adding
LASSO and adaptive LASSO to feature selection in the Riemannian geometric framework
is shown in Figure 4. The classification accuracy and G-mean of RG LASSO and RG adap-
tive LASSO were both found in the lower echelons compared to RG. This consequential
outcome is attributed to the assumption inherent in adaptive LASSO and LASSO; the
assumption leads the feature selection to potentially leave some relevant features out of
the consideration [53].The complex EEG data, harboring a non-linear relationship among
features, disrupt this assumption and cast a discernible impact on feature selection. How-
ever, the interactive information is increased into the adaptive LASSO method, and the
accuracy, F1-Score, and G-mean soar to 76.47%, 76.42%, and 75.61%, respectively, reaching
the apogees in Figure 4. This indirectly indicates the importance of mutual information for
feature selection. Furthermore, compared to the corresponding metrics of other methods
as illustrated in Figure 4, the accuracy, F1-Score, and G-mean achieved by the proposed
method are elevated by 0.14%, 0.17%, and 0.22%, respectively. This substantiates the efficacy
and enhanced capabilities of feature classification for the proposed method in comparison
to the other methods.

In addition to the above experiments, taking subject 1 from dataset IIa as an example,
the confusion matrix shown in Figure 5 is calculated from the classifier output, where the
rows represent the true classes and the columns represent the predicted classes by the SVM
classifier, indicating that the proposed methods significantly improve the classification
performance of each class.

Figure 5. The confusion matrix of the proposed model for subject 1 on dataset IIa.

In a concise summary of our experimental investigation utilizing the datasets IIa and
IIb, the classification accuracy and G-mean achieved by the comparison methods are vividly
illustrated in Figures 3 and 4. Remarkably, through the incorporation of interactive information
as a feature importance measure within the MIPF-LASSO model, the proposed MIPF-LASSO
algorithm demonstrates a substantial enhancement in classification accuracy. This pivotal
integration not only elevates its own performance but also establishes its superiority over
other competing methods, affirming its effectiveness in the context of our experimental study.

5. Conclusions

In this paper, we propose a novel feature learning model, MIPF-LASSO, for effec-
tively analyzing MI-EEG signals. To improve the classification performance, we fused the
interaction information between features into the penalty term. Then, we introduced an
adaptive L1 penalty and a weighted fusion penalty into the LASSO model to select the
most valuable features. On the one hand, we developed an adaptive weight construction
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strategy using mutual information to evaluate the importance of features. By multiplying
the regression coefficient corresponding to each variable by the adaptive weight, we were
able to impose a differential penalty on each feature. On the other hand, based on the
correlation information in the data, we introduced correlation-driven weights to penal-
ize pairwise-fused differences between the coefficients and performed group selection of
features. Furthermore, the coordinate descent algorithm was introduced to implement
the proposed MIPF-LASSO method numerically. Experimental results on benchmark in-
stances indicate that the proposed model is more suitable for classification and feature
selection than existing models. Although our proposed model focuses on solving binary
classification problems, it can also be applicable to multiple classification problems.

In the future, we will deepen and improve the MIPF-LASSO optimization scheme
by more fully considering the relationships between features, making it more flexible
and applicable to a variety of multiclassification scenarios. Further, apart from the time-
domain information of EEG signals, it is also potentially valuable to consider the use of the
information contained in the power features of some frequency bands for the recognition
of MI-EEG signals, which helps to improve the classification performance [54]. We can
explore incorporating a spectral feature extractor into the MIPF-LASSO model.
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