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Abstract: In this paper, using the surface plasmon and Fabry–Pérot (FP) cavity, the design of a
symmetric silicon grating absorber is proposed. The time-domain finite difference method is used for
simulation calculations. The basic unit structure is a dielectric grating composed of silicon dioxide,
metal and silicon. Through the adjustment of geometric parameters, we have achieved the best of the
symmetric silicon grating absorber. A narrowband absorption peak with an absorption rate greater
than 99% is generated in the 3000–5000 nm optical band, and the wavelength of the absorption
peak is λ = 3750 nm. The physical absorption mechanism is that silicon light generates surface
plasmon waves under the interaction with incident light, and the electromagnetic field coupling of
surface plasmon waves and light causes surface plasmon resonance, thereby exciting strong light
response modulation. We also explore the influence of geometric parameters and polarization angle
on the performance of silicon grating absorbers. Finally, we systematically study the refractive
index sensitivity of these structures. These structures can be widely used in optical filtering, spectral
sensing, gas detection and other fields.

Keywords: plasmon resonance; Fabry–Pérot resonance; symmetric silicon grating; refractive
index sensor

1. Introduction

In recent years, the resonance phenomenon of nanostructures has been widely studied
in periodic structures. The resonance mode can be excited by surface plasmon or photon,
which affects the absorption characteristics of the structure [1–4]. Among them, the ideal
absorber with a wide working wavelength is very useful in photon detection and light
energy absorption [5–7], while the ideal absorber with narrow working bandwidth has
great advantages in sensing, filtering and selective thermal radiation [8–15]. The refractive
index (RI) sensors based on perfect narrowband wave absorbers have broad application
prospects because of their simple construction and high sensitivity [16–21]. Researchers
have proposed such a sensor with good performance [22,23]. In addition, photothermal
detection can also be realized by a narrowband ideal absorber [24].

To obtain narrowband perfect absorbers, many people have studied all-metal struc-
tures or three-layer or multi-layer metal insulator metal (MIM) structures [25–30]. However,
they are not compatible with the complementary metal-oxide-semiconductor (CMOS) pro-
cess and have high manufacturing costs [31]. Therefore, people are paying attention to
the realization of narrowband perfect absorbers through the dielectric structure on the
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metal system [32–34]. Compared with the perfect metal absorber, this absorber can save
manufacturing costs [35]. More important, it can avoid complicated lithography processes.
To produce ultra-narrow absorption, we usually insert a dielectric layer between grat-
ing and metal. However, the structure is relatively complex. Therefore, to simplify the
structure, we can place the dielectric on top of the metal substrate [36–40]. For example,
Fitio et al. systematically studied the perfect absorption spectrum of dielectric grating on
metal structure [41]. Later, Liao et al. proposed a narrowband perfect wave absorber
composed of dielectric and composite dielectric on the metal substrate [42,43]. At the same
time, they can provide enough narrow bandwidth.

Here, we propose a narrowband perfect absorber based on symmetric silicon (Si)
grating. We realize perfect absorption by placing Si grating on the metal film. Simulta-
neously, a low-loss resonance mode is adopted, and the Si grating is composed of two Si
strips in each unit structure. Therefore, the absorber produces resonance absorption at
the wavelength of 3750 nm, and the absorptivity is as high as 99%. The absorber can be
used for the spectral detection of signals. When used as a sensor, its sensitivity (S) and
figure of merit (FOM) can reach 2780 nm/RIU, 92.67. Many researchers have reported that
periodic grating structures with metal layers have achieved perfect absorption of light.
For example, the two-dimensional aluminum grating absorber based on the dielectric
waveguide structure proposed by Zhou et al. can absorb light up to 99.16% [44]. The gold
nanodisk array absorber based on metal–insulation–metal structure proposed by Zhang
et al. can achieve perfect absorption in three bands [45]. Moreover, the absorber is based
on the dielectric grating on the silver film proposed by Abutoama et al. [46]. Compared
with their work, the absorber we proposed is simple in structure, has higher sensitivity
and FOM, and can be made with advanced CMOS technology [47].

2. Materials and Methods

Figure 1A presents the structure of a narrowband perfect absorber of a symmetric Si
grating. It is made of a quartz substrate and a Si grid on the surface of the Au thin layer.
The optical parameters of Si and Au are obtained from reference [48]. The grating period
is A1, and each period has a Si grating structure with two secondary periods (A2); (B) is
the section of the single-period grating. h1 is the height of the Si gate. h2 is the thickness
of the Au thin layer. w is the thickness of the Si gate. After systematic optimization, the
optimal parameters of the absorber are as follows: A1 = 3100 nm, h1 = 630 nm, h2 = 90 nm,
w = 260 nm, A2 = 700 nm. For simulating the optical performance of the perfect absorber,
we use the FDTD method [49–51]. The incident light source is TM (The direction of the
electric field is along the X-axis) plane light wave, and the direction of the light source
is perpendicular to the grating surface. The X-axis and Y-axis directions are periodic
boundary conditions; the Z-axis direction is a perfectly matched layer boundary condition.
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3. Results

As shown in Figure 2, in the case of normal incident light waves, we calculate the
data of reflectance, transmittance, and absorbance. From Figure 2, we can observe that the
transmittance is basically zero, and there is only one reflection inclination within the range
of the study spectrum. Then, we use A = 1-R-T to get the reflectance of the structure, and
the reflectance of the absorption peak is more than 99%. This reflection peak angle appears
at λ = 3750 nm with the full width at half (FWHM) = 30 nm. The structure can be used as
an infrared filter.
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Figure 2. Spectrogram of reflectance (R), transmittance (T), and absorbance (A) under the normal
incidence of symmetrical Si grating.

The symmetric Si grating divides the incident light into many orders. The wave
vectors of different orders can be determined by the formula: k(i) = k0sinα + 2πi/A1.
In which k0 and k(i) are the wave vectors of incident light and order, i = 0, ±1, ±2...
±n, α is the incident angle. With proper parameters, the order (+1, −1) can connect the
plane propagating surface plasmon waves. It can be seen that the coupling resonance
between the surface plasmon mode and the incident light leads to strong absorption.
Through the wave vector matching condition [52], the coupling process can be expressed
as Equations (1) and (2):

2πneff(+1)/λ(+1) = k( + 1) = k0sin α+ 2πi/A1 (1)

2πneff(−1)/λ(−1) = k(− 1) = k0sin α − 2πi/A1 (2)

In which neff represents the effective refractive index of the surface plasmon model.
λ(+1) and the λ(−1) all mean resonance wavelength. In the case of vertical incidence, α = 0
and λ(+1) = λ(−1), so only one absorption peak occurs. As shown in Figure 3, it is the
wave vector matching diagram of the structure.
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To better understand the physical mechanism of the symmetrical gratings, electric
and magnetic fields are simulated for the peak wavelength [53–55]. Figure 4 shows the
distribution of the electric field and magnetic field at λ = 3750 nm, respectively. The electric
field mainly distributes in the upper inner corner of the horizontal Si grating, and the
magnetic field mainly distributes in the groove of the Si grating. This is because of the
interaction of light waves with free electrons on the surface, and the motion of the surface
plasmon produces surface plasmon waves. Surface plasmon resonance is caused by the
coupling between the surface plasmon wave and the electromagnetic field of light. Through
the distribution of electric field and magnetic field, we can analyze that a strong rectangular
displacement current is formed between the cracks of the Si grating, which is also verified
by the distribution of magnetic fields. Both of them meet the right-handed spiral rule.
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To systematically study the influence factors of Si grating structure on absorption
performance, we use the control variable method to change the geometric parameters of
the structure. Figure 5A,B shows the influence of period change and Si grating spacing
on the absorption performance of Si grating. Figure 5A shows that the absorption peak
wavelength shifts to red, and the absorption peak increases first and then decreases with
the change of the Si grating period. Simultaneously, we also notice that the half-height and
half-width of the absorption peak gradually decrease with the increase of the period length.
This is because the longer the period, the smaller the neff. The influence of the change in
the spacing width of the Si grating on the redshift of the peak wavelength is much smaller
than that of the period length (In Figure 5B). Similarly, the absorption peak first increases
and then decreases with the change of the spacing between the two secondary gratings.
The half-height and half-width of the absorption peak decrease with the increase of the Si
grating spacing width, which is because the smaller the Si grating spacing is, the stronger
the excited electric field is and the greater the displacement current is generated, thus
widening the half-height and half-width. In addition, we also note that the absorbance of
the absorption peak does not decrease significantly (about 2%) when the Si grating spacing
is 540 nm because the Si grating spacing corresponding to the maximum absorbance
changed within a certain range, which would not have a great impact on the absorbance.

Figure 6A,B, shows the influence of the Si grating width and the Si grating geometric
thickness parameters on the absorption performance of the Si grating. From Figure 6A,
we can observe that the absorption peak redshifts as the width of the Si grating increases.
Moreover, the redshift distance is larger between the Si grating width of 200 nm and 260 nm.
With the redshift of these absorption peaks, the half-height and width of these absorption
peaks gradually increase. When the Si grating width is 300 nm, the half-height and width
reach the maximum. These absorption peaks also appear to redshift as the thickness of the
Si grating increases (As shown in Figure 6B). Although these absorption peaks first increase
and then decrease, there was no significant change in the absorption value. We note that
at the thickness of the Si grating of 630 nm to 730 nm, the change in the absorption peak
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is only about 2%. This also indicates that the thickness of the Si grating does not change
significantly within a certain height range.
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Figure 7 shows the relationship between reflection and polarization angle. Transverse
(TM) polarization is 0◦. TE polarization is 90◦, the electric field is along the Y-axis. The
polarization of the incident beam is changed from TM polarization to TE polarization with
an interval of 2◦. We can see that with the increase of polarization angle, the extinction
angle of reflection angle decreases. This means that the absorbance decreases with the
increase of polarization angle at λ = 3750 nm. This is because the grating in the wave
absorber is a three-dimensional grating with an asymmetric structure. We also note that if
the polarization angle is less than 20◦, the reflected inclination still has a good extinction
effect, indicating that the absorber has a good polarization tolerance [56,57].
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The perfect absorber also shows excellent sensing characteristics. Figure 8A shows the
absorption peak spectrogram of the Si grating when the refractive index (RI) of the detection
environment changes. We observe from the figure that the absorption peak appears to
redshift with the increase of the environmental RI. Although the absorbance is decreasing,
the absorbance of Si grating still remains 90% or above. However, at the same time, we
notice that the half-height and width of the absorption peak remain basically unchanged,
and the half-height and width are still around 30 nm. Figure 8B shows the absorption
peak wavelength corresponding to the RI with the change of the RI of the surrounding
environment. The diagonal data are obtained through our linear fitting. According to the
formula, the S and FOM of the grating can be calculated [58–61]. The slope (K) of the line
in Figure 8B is the S of the Si grating, whose value is 2780 nm/RIU. The FWHM of the
Si grating structure is 30 nm, FOM = S/FWHM = 92.67. This indicates that the structure
has high sensitivity and quasilinear response. The structure can be widely used in optical
filtering, spectral sensing, gas detection and other fields.

Coatings 2021, 11, x FOR PEER REVIEW 6 of 9 
 

 

 
Figure 7. Relation diagram of reflectance and polarization angle of Si grating. 

The perfect absorber also shows excellent sensing characteristics. Figure 8A shows 
the absorption peak spectrogram of the Si grating when the refractive index (RI) of the 
detection environment changes. We observe from the figure that the absorption peak 
appears to redshift with the increase of the environmental RI. Although the absorbance is 
decreasing, the absorbance of Si grating still remains 90% or above. However, at the same 
time, we notice that the half-height and width of the absorption peak remain basically 
unchanged, and the half-height and width are still around 30 nm. Figure 8B shows the 
absorption peak wavelength corresponding to the RI with the change of the RI of the 
surrounding environment. The diagonal data are obtained through our linear fitting. 
According to the formula, the S and FOM of the grating can be calculated [58–61]. The 
slope (K) of the line in Figure 8B is the S of the Si grating, whose value is 2780 nm/RIU. 
The FWHM of the Si grating structure is 30 nm, FOM = S/FWHM = 92.67. This indicates 
that the structure has high sensitivity and quasilinear response. The structure can be 
widely used in optical filtering, spectral sensing, gas detection and other fields. 

 
Figure 8. (A) Absorbance spectrogram and (B) relationship between RI and the corresponding peak 
wavelength of symmetrical Si grating under RI change. K and S represent the slope of the straight 
line and the sensitivity of the structure, respectively. 

4. Conclusions 
In summary, the main research is symmetrical Si grating, whose basic unit structure 

is that the base material is nonmetallic oxide Si dioxide, the middle layer is precious 
metal Au, and the top layer is two symmetrical Si grating. By adjusting the geometrical 
parameters, we achieve the optimal absorbance of the symmetrical Si grating absorber, 
that is, a narrow band absorption peak with an absorptivity greater than 99% in the op-
tical band range of 300 nm to 500 nm, and the absorption peak wavelength is λ = 3750 nm. 
We discuss the optical response mechanism from the principle and the distribution of 
electromagnetic fields. The main reason why symmetrical Si gratings can interact with 

Figure 8. (A) Absorbance spectrogram and (B) relationship between RI and the corresponding peak
wavelength of symmetrical Si grating under RI change. K and S represent the slope of the straight
line and the sensitivity of the structure, respectively.

4. Conclusions

In summary, the main research is symmetrical Si grating, whose basic unit structure is
that the base material is nonmetallic oxide Si dioxide, the middle layer is precious metal Au,
and the top layer is two symmetrical Si grating. By adjusting the geometrical parameters,
we achieve the optimal absorbance of the symmetrical Si grating absorber, that is, a narrow
band absorption peak with an absorptivity greater than 99% in the optical band range of
300 nm to 500 nm, and the absorption peak wavelength is λ = 3750 nm. We discuss the
optical response mechanism from the principle and the distribution of electromagnetic
fields. The main reason why symmetrical Si gratings can interact with light to generate a
strong light response is that the Si gratings stimulate the generation of surface plasmon
under the action of light, and the motion of the surface plasmon leads to the generation
of surface plasmon wave and the coupling between the surface plasmon wave and the
incident light results in surface plasmon resonance. In addition, when the period, spacing,
thickness and height of symmetrical Si grating change, the absorption peaks all show
redshift, among which the periodic change has the greatest influence on the redshift of the
absorption peak wavelength. The change of the Si grating spacing has the greatest influence
on the absorption peak efficiency and the half-height and width of the absorption peak,
indicating that the structure is the most sensitive to the change of the Si grating spacing.
Then, we obtain the polarization sensitivity of the symmetrical Si grating structure. With the
increase of polarization angle, the extinction angle of reflection angle decreases. When the
polarization angle is less than 20◦, the reflected dip angle still has a good extinction effect,
indicating that the structure has a certain polarization tolerance. In the end, we obtained
the sensitivity factor of the RI sensor S = 2780 nm/RIU and the FOM = 92.67. Finally, we
designed a structure with high sensitivity and quasilinear response. The structure can be
widely used in optical filtering, spectral sensing, gas detection and other fields.
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