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Abstract: This article proposes a temperature-controlled absorber based on VO,, which consists of
five layers: a disk-shaped VO, layer array, a dielectric layer, a circular hole VO, array, a SiO; layer,
and a gold substrate from top to bottom. We optimized the thickness of the other four layers of the
absorber, except for the gold layer, using PSO. After ten iterations, we determined that the optimal
parameters for the top-to-bottom four-layer thicknesses were 0.183 um, 0.452 um, 0.557 um and
1.994 um. At this point, our absorber reached the optimal absorption parameters, and we plotted
the absorption spectrum under these conditions. We found that the absorption rate at 29.1-47.2 THz
was higher than 90%, and the absorption bandwidth was as high as 18.1 THZ. This frequency band
covers most of the atmospheric window area (23-37.5 THz), so it will have good practicality. At
30.8 THz and 43.12 THz, there were perfect absorption peaks with absorption rates of 99.99% and
99.99%, respectively. We explained the cause of absorption from the perspective of electric field, and
then we studied the change in the absorption curve of the absorber when the temperature of VO,
changed, and we can directly observe the changes in the electric field to explain this. Finally, we
can tune the bandwidth and absorption rate of the absorber by changing the structure of the VO,
pattern. After comparing with other absorbers developed in recent years, our absorber still has good
competitiveness, and we believe that our solution is expected to have outstanding performance in
fields such as photothermal conversion and thermal stealth in the future.

Keywords: VO,; evolutionary algorithm; broadband absorber; mid-infrared

1. Introduction

A metamaterial is a synthetic material, which means it is not naturally occurring.
Because of metamaterial’s customizable electromagnetic properties, it can readily exhibit
electromagnetic characteristics that natural materials lack, thus greatly expanding the
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potential applications of metamaterials [1-6]. In the field of absorbers, the research of
Landy’s team in 2008 led to the upsurge of applying metamaterials to absorbers [7]. Since
then, metamaterial absorbers have been widely used in thermal radiation absorption,
optical stealth, intelligent windows and other fields [8-12], while metamaterial narrowband
absorbers have outstanding performance in sensor, detection and other fields [13-17].

At present, metamaterials such as Dirac metal, Graphene, and VO, are most widely
used in metamaterial absorbers [18-22]. This is due to the phase-change characteristics of
VO, discovered by Bell Labs in 1959 [23], namely that VO, is in an insulating state at room
temperature, and when it is heated to 340 K, it transitions into a metallic state. Because the
phase-change temperature is closer to room temperature than other materials, researchers
have always been enthusiastic about VO, research. In 2021, Zhong [24] proposed an
absorber based on a combination of gold and VO, layers. The pattern of the absorber
is composed of a cross-shaped array, with a broadband absorption rate of over 90% at
17-26 THz. In 2023, Kwang’s [25] team proposed an absorber based on a toroidal VO,
array. The absorber has three broadband absorption peaks with an absorption bandwidth
of more than 2.42 THz and an absorption rate of more than 90% in the terahertz band. So
far, the proposed broadband absorber based on VO, has an absorption rate of more than
90%, and the absorption bandwidth is mostly within 10 THz, rarely more than 10 THz.
The development direction of broadband absorber must aim for a broader absorption
bandwidth while maintaining high absorption rates, which is the direction that researchers
need to focus on.

Particle swarm optimization (PSO) is a randomized algorithm proposed by James and
Russell in 1995. Inspired by the foraging behavior of birds, PSO initializes the algorithm
to randomly assign each particle in the search space, and at the same time, it gives each
particle an adaptive speed. Particles can remember the best position they have ever been
to, and particle are influenced by three factors: the best position it has ever been to, the best
global position, and the initial velocity, resulting in a composite acceleration that iterates
to the optimal solution [26]. Compared with other optimization algorithms, PSO has the
advantages of wide application range, high computing efficiency, and adaptive adjustment
of search strategies.

In this article, we propose a double-layer VO, absorber based on a circular hole and
disk array, and we optimize its parameters with an improved PSO. The results show that
in the frequency range of 29.1-47.2 THz, the absorption rate is above 90%, and the total
absorption bandwidth is as high as 18.1 THz. When VO, transitions from an insulating
state to a metallic state, the highest absorption rate of the absorber increases from 10.3% to
99.99%. We explained the reason for this transition from the perspective of an electric field.
Furthermore, we discussed the impact of changing structural parameters on the absorber
and addressed the effect of changing the incident angle on the absorber toward the end of
the article. Our absorbers have good application prospects in fields such as solar energy
absorption and stealth coatings.

2. Particle Swarm Optimization

Earlier, we mentioned the basic concept of PSO. We know that the most important
thing in PSO is to iterate the position and speed of particles as well as the optimization
strategy [27,28]. Although the traditional PSO is convenient to search the optimal solution
globally, it takes a long time to search locally, so we chose the improved particle swarm
optimization algorithm. The iteration formula of speed and position is as follows [29,30]:

newv = wv + c1 * rand x (gbest — x) + cp * rand x (pbest — x) 1)
newx = x + newv 2)
W = Wmax — * Winin 3)

maxd
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where w is the inertia weight, v and x are the current velocity and position, newv and
newx are the updated velocity and position, c; and c, are acceleration constants, rand is
a random number within 1, and gbest and pbest are global and local optimal parameters,
respectively. We have defined the weight w that varies with the number of iterations, as
shown in Formula (3). We define wy,x as 0.9 and w,,;, as 0.4. This way, as the iteration
progresses, the algorithm switches from searching for global optimal values to searching
for local optimal values, greatly enhancing the accuracy and efficiency of the search [31].

In the combination of absorbers and the PSOs in the past, most researchers often
choose the average absorption rate of the region as the figure of merit (FOM), which ignores
the need for broadband absorbers to meet a wider absorption bandwidth. Therefore, after
discussion, we define the formula of FOM as follows [32-34]:

FOM = wayg/bwtOtal (4:)

where bw, is the absorption bandwidth with an absorption rate higher than 90%, and
bwyiq s the total bandwidth selected.

Unfortunately, due to the inherent nature of the algorithm, PSO algorithm cannot be
well applied in the current hot field of hypersurface inverse design, like random forest
(RF) and deep learning (DP). However, in terms of optimization problems, PSO has rare
advantages compared to the above two algorithms.

3. Design and Method

As shown in Figure 1a, the absorber we designed has a five-layer structure, consisting
of a disk VO, array, a Topas layer, a circular hole VO, array, a SiO; layer, and a gold
layer from top to bottom. Among them, the radius of circular VO, is ry = 0.5 um, the
thickness t; = 0.183um, the refractive index of dielectric layer is 2.35 [35,36], the thickness
tp = 0.452 pum, the radius of circular hole VO, is r, = 0.29 um, the thickness t3 = 0.557 um,
the refractive index of SiO; layer is 1.90, the thickness t; = 1.994 pm, and the dielectric
constant of the bottom gold layer is described using the drude model, where the plasma
frequency w, = 1.37 x 10'® s7!, and the damping constant v = 1.23 x 10 s~!, with a
thickness t5 = 0.2 um [37,38]. Due to the difficulty in making the absorber we proposed,
we have proposed the following production method: first, we deposit a layer of gold on a
silicon wafer as the base, and then we prepare a SiO, layer on the gold through chemical
vapor deposition. Then, VO; thin films are generated through magnetron sputtering, and
circular holes are generated through chemical etching. For the top layer of VO, disk, due
to its small thickness, ion beam etching can be used to generate it.

(@

- vo.

- dielectric
I sio.

AU

Figure 1. (a) 3D diagram of the array absorber structure; (b) 3D diagram of unit absorber structure;
(c) top VO, plan view; (d) bottom VO, plan view.
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The dielectric constant of VO, can be described by the following drude model [39,40]:

2
Wp

fw) =t = o v i)

Q)
where e, = 12, damping frequency 7 = 5.75 x 10'® rad/s, plasma frequency
wp(0) = wp(00)\/0/0n, where wy(0p) = 1.4 x 10° rad/s 0y = 3 x 10° S/m, and without
specific instructions, we use the conductivity ¢ = 2 x 10® S/m of VO, at a temperature of
345 K. We use FDTD Commercial software (Lumerical_2020 R2) for simulation, and the
input light wave is the TE wave perpendicular to the absorber surface [41,42]. (See Table 1).

Table 1. Selected parameters and their ranges and minimum accuracy.

Variable Range (um) Minimum Accuracy (um)
ty 0.1-0.3 0.001
to 0.3-0.6 0.001
t3 0.5-0.6 0.001
ty 1.5-2.5 0.001

The iterative operation of FOM is shown in Figure 2b. When the iteration reaches the
tenth time, the optimal solution is obtained. Compared with DP, which requires thousands
of training sets and genetic algorithms that require at least fifteen iterations [43], PSO has
better speed to achieve the optimal value. The optimal values of the four parameters we
obtain are t; = 0.183 pm, t; = 0.452 pm, t3 = 0.557 pum, and t4 = 1.994 pm, respectively. At
this point, our absorber reaches its maximum bandwidth above 90%:

Generation = Generation + 1
Absorption calculation of |

each particle

1.00 —a—a—8—8—8

—a—n—"
FOM calculation of each
— 0.98
o—
Update position
and velocity
0.96

=
Update local and global O
best =
0.94
Satisfy cycle 0.92 -
‘:‘unditinns No L L
0 5 10 15
Generation
(b)

(@)

Figure 2. (a) PSO algorithm flowchart; (b) optimizing the FOM process using PSO.

4. Results and Discussions

Figure 3 shows the absorption spectrum of our absorber. The black curve in the figure
shows the absorption curve when both the upper and lower layers of VO, are present,
the orange curve shows the absorption curve when removing the top VO,, the blue curve
shows the absorption curve when removing the bottom VO; layer, the green curve shows
the absorption curve when removing the upper dielectric layer, and the red curve shows
the absorption curve when removing the SiO; layer. At this point, we can clearly see that
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when we remove any layer structure, the absorption rate can reach up to 97.23%, and the
absorption bandwidth above 90% can only reach up to 6.73 terahertz. However, when the
five-layer structure is present, the absorption rate can reach up to 99.99%. The absorption
bandwidth above 90% is 29.1-47.2 THz, with a maximum of 18.3 THz. The absorption rates
at frequencies of 30.74 THz and 43.36 THz reach 99.99% and 99.98%, respectively, achieving
perfect absorption. At this time, our absorber has good bandwidth and absorption rate.
At the same time, the range of 23-37.5 THz is the atmospheric window, which has a high
overlap with our absorption frequency band, which expands the application range of
our absorber.

1.0
\“ """
g —zlhulrhlixvll
g 08 i
} = without dielectric
8 without SiO,
207
<«
0.6
0.5 1 1 1 1
30 35 40 45 50
Frequency(THz)

Figure 3. The black curve represents the original absorption curve of the absorber, the orange curve
shows the absorption curve when removing the top VO, layer, the blue curve shows the absorption
curve when removing the bottom VO, layer, the green curve shows the absorption curve when
removing the upper dielectric layer, and the red curve shows the absorption curve when removing
the SiO; layer.

In order to explore the reason for the change of absorption rate and absorption band-
width, we give an explanation from the perspective of electric field.

Figures 4a and 5a show the absorption spectra in the XY direction when both the
double layer VO; layer and only the top VO, layer exist. From these two figures, we can
intuitively see that when the bottom VO, layer is removed, the intensity of the electric
field in the upper layer VO, decreases. At the same time, the electric field attached to
the x direction of the disk undergoes some dissipation, flowing towards the surrounding
medium, resulting in a decrease in absorption [44,45]. Figures 4b—d and 5b—d shows the
absorption spectra of the bottom VO, layer in the XY, XZ, and YZ directions. Figure 4b—d
show the absorption spectra when the top VO; layer exists, and Figure 5b—d show the
absorption spectra when the top VO, layer is removed. From Figure 5b—d, we can see that
when there is only the bottom VO; layer, the electric field undergoes large-scale resonance
in the cavity inside the circular hole and the upper layer of the ring. Local surface plasmon
resonance occurs at the bottom of the circular hole, and the intensity of the electric field is
also low [46,47]. From Figure 4b—d in comparison, we can see from the electric field graph
in the XY direction that the large-scale resonance inside the circular hole has disappeared.
By observing the electric field patterns in the XZ and YZ directions, we found that surface
plasmon resonance appeared in the upper layer of the circular hole, and the overall electric
field intensity also increased significantly, enhancing the absorption of light [48,49]. In
summary, the presence of double-layer VO, enhances the local surface plasmon resonance
of VO,, reduces large-scale resonance, and increases the absorption of light via the absorber,
which explains why we use double-layer VO,.
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Figure 4. (a) The electric field diagram of the upper VO, layer of the absorber we proposed in the XY
direction; (b) the electric field diagram of the lower VO, layer of the absorber we proposed in the XY
direction; (c) the electric field diagram of the lower VO, layer of the absorber we proposed in the XZ
direction; (d) the electric field diagram of the lower VO; layer in the YZ direction of our proposed absorber.
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Figure 5. When removing the lower layer VO,, (a) shows the electric field diagram of the upper layer
VO; in the XY direction of our proposed absorber; when removing the upper layer VO,, (b) shows
the electric field diagram of the lower layer VO, in the XY direction of our proposed absorber; (c) the
electric field diagram of the lower VO, layer of the absorber we proposed in the XZ direction; (d) the
electric field diagram of the lower VO, layer in the YZ direction of our proposed absorber.
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The specific crystal structure of VO, results in its phase transition [50,51]. As shown
in Figure 6a, we have plotted the effect of VO, at different temperatures on the absorption
curve of the absorber under heating, At the same time, we can see the phenomenon
of conductivity hysteresis during the heating and cooling processes, which is usually
considered to be caused by the combined effect of thermal expansion coefficient and
internal stress [52,53]. We found that when VO, is at 318 K, which is maintained at a
low temperature, the overall absorption rate of the absorber is within 12%. However,
when the temperature is heated to 340 K, VO, begins to phase change, and the overall
absorption rate of the absorber increases, with the highest absorption rate reaching 28.7%.
As the temperature further increases, we can see that the absorption bandwidth and
overall absorption rate of the absorber are also increasing. At 342 K, the absorption
bandwidth with an absorption rate of more than 90% reaches 14 THz, and at 345 K, when
the maximum absorption at both ends reaches perfect absorption, the absorption rate is
higher than 90%, and the absorption band width reaches 16.9 THz. In conclusion, we can
adjust the temperature to make the VO, phase change, so as to tune the absorption rate
and absorption bandwidth of the absorber, which makes our absorber more flexible in
practical applications.

250000 P { phase change | 1 1d (
200000 | “a s
51
150000 .
g go_s 345K
100000 |
® 204
| =
—w— Heating 03
50000 A= Cooling 0.2 /\_/,‘_\
ol 0.1+
AL A A A A A A A A 0.0 A N 1 A
315 320 325 330 335 340 345 350 355 360 30 35 40 45 50
Temperature(K) Frequency(THz)

Figure 6. (a) Changes in conductivity of VO, with temperature under heating and cooling conditions;
(b) absorber absorption spectra at different temperatures.

Similarly, we also studied the electric field diagrams of absorbers under different
temperature conditions. As shown in Figures 7 and 8, we have plotted the electric field
diagrams of the top and bottom VO; layers of the absorber when VO, is heated from 318 K
to 345 K. We find that when the temperature rises, VO, changes from an insulating state to
a metallic state, and the electric field intensity of the absorber increases. At the same time,
local surface plasmon resonance occurs around the top disc-shaped VO, and the bottom
circular hole VO, inner cavity, which enhances the absorption of light [54-56]. The electric
field diagrams in Figures 7 and 8 also prove this.

In order to expand the application field of our absorber, we also conducted research
on the structure of the circular hole in VO, thin film and VO, circular disk. We first studied
the radius of the circular hole. With the change in the radius, the absorption curve of the
absorber has changed, as shown in Figure 9a. When the circular hole radius is 0.23 um, the
maximum absorption rate of the two peaks from left to right is 30.24 THz and 44.03 THz,
respectively, 99.95% and 99.64%. The minimum absorption rate between the two peaks
is 88.24%. At this time, the absorption rate at 29.13-35.04 THz and 39.08-47.51 THz is
higher than 90%, and the absorption bandwidth is 14.33 THz; When the radius of the
circular hole gradually increases to 0.35 pm, the maximum absorptivity of the two peaks
from left to right is 30.31 THz and 42.53 THz, 99.99% and 99.53%, respectively, and the
minimum absorptivity between the two peaks is 93.04%. At this time, the absorptivity at
29.02-46.24 THz is higher than 90%, and the absorption bandwidth is 17.12 THz. In
conclusion, when we adjust the radius of the circular hole from 0.23 pm to 0.35 pm, there is
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no significant impact on the absorptivity of the two absorption peaks of the absorber, But
the absorption peak on the right has undergone a red shift, and the lowest absorption rate
between the two peaks has increased [57,58]. Therefore, we can control the frequency of

the absorption peak on the right and the lowest absorption rate of broadband absorption
by adjusting the radius of the ring.

]
(5

¥ (um)
¥ (um)

¥ (um)

¥ (um)

X (um)

¥ (um)

¥ (um)

¥ (um)

¥ (um)

X (um) X (um)

Figure 8. (a—d) Electric field diagrams of VO, in the lower layer of the absorber at different temperatures.



Coatings 2023, 13, 1604

90f13

(b)

0.9 - 0.9
- ———0.23 pm = / .60 um
=l 0.26 —

Sos o pm g 0.8 L 0.55 pm
E —0.29 ym 1=y —10.50 ym
H ——0.32 pm ‘5 ———0.45 um

207 ——0.35 um 207 ——0.40 um
< <

e
=
=
N
T

i

0.5 v v . ’ ” 0.5
30 40 4 50 30

35 5
Frequency(THz)

35 40 45 50
Frequency(THz)
Figure 9. (a) Absorption spectra of VO, hole with radius of 0.23, 0.26, 0.29, 0.32, and 0.35 um; (b) the
absorption spectra of VO, disks with radius of 0.60, 0.55, 0.50, 0.45, and 0.40 pum.

Next, we will explore the effect of changing the radius of the disk on the absorber.
Figure 9b shows the absorption spectrum when we adjusted the disk radius from 0.6 um to
0.4 um. We can intuitively see that as the radius decreases, the left peak of the absorber
shifts from 26.12 THz blue to 34.63 THz, the absorption rate increased from 97.54% to 99.99%
and then decreased to 98.12%, and the absorption rate of the right peak increases from
98.63% to 99.12%. However, the minimum absorption rate between the two peaks increases
from 75.36% to 97.21%, and at a radius of 0.4 um, the absorption rates at 34.11-44.36 THz
are all greater than 97%; that is, the perfect absorption with an absorption bandwidth of
10.25 THz is achieved.

In order to study the practical value and advantages of our absorber, we also discussed
the situation at different incidence angles [59,60]. The scanned images of TE and TM waves
are shown in Figure 10 and are compared with other absorbers developed in recent years,
as shown in Table 2 [61-65]. Figure 10a shows the scanning pattern of TE waves with
changes in incident angle. We can see that the absorption curve of the TE wave with an
absorption bandwidth of 30-47 THz at an incidence angle of 0-50° has always kept the
absorptivity above 80%, and the absorptivity of the two absorption peaks has always been
kept above 90%; since our absorber is asymmetric, the TM wave is slightly different from
the TE wave, as shown in Figure 10b. When the incident angle is 0-50°, the absorption
curve of TM wave is kept above 80% at the absorption bandwidth of 32-49 THz and above
90% at 41-45 THz. In summary, our absorber can still maintain a high absorption rate of
over 80% when the incident angle is 0-50°, so it has good practical value [66,67].

(a) Lo (b) "
60 . 60 !
o: 09 5 0.9
Z 50 08 I 50 08
Y 20
2 0 ‘ o 2, 0.7
« 0.6 < 0.6
E 30 0.5 E 30 | 0.5
2 ” 04 9 2 0.4
- . .
=10 e Wl =10 N .
0! - 0.0 0 : 0.0
30 35 40 45 50 30 35 40 45 50

Frequency(THz) Frequency(THz)

Figure 10. (a) TE wave scanning diagram; (b) TM wave scanning diagram.
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Table 2. Comparison of absorbers in this article with other absorbers developed in recent years.

Reference Operation Band Max Absoptivity Structure Layer
[61] 0.4-14THz 96.3% 5
[62] 4.5-9.95 THz 99.9% 5
[63] 4.04-9.41 THz 99.5% 3
[64] 0.52-1.2 THz 98% 6
[65] 11-13 pm 99.9% 3
This work 29.1-47.2 THz 99.99% 5

5. Conclusions

This article proposes a temperature-tunable absorber based on VO,, which consists of
a VO, layer, dielectric layer, VO, layer, SiO;, layer, and gold substrate from top to bottom.
The top VO, layer is an array composed of double-disk patterns, and the bottom VO, layer
is an array composed of four circular patterns, all of which are simple patterns and easy
to process. We applied the PSO algorithm to determine the structure of our absorber and
provided an optimization strategy suitable for our absorber, determining the optimal value
within ten iterations. We drew the absorption spectrum of the absorber and found that the
absorption bandwidth of 29.1-47.2 THz with an absorption rate higher than 90% was up to
18.1 THz, and there were two perfect absorption peaks in this range, with the absorption
rates of 99.99% and 99.98%, respectively. Then, we explained the generation of absorption
from the perspective of the electric field, and we studied the impact on the absorption
curve of the absorber under the change in VO, temperature, which can be seen intuitively
from the change in the electric field. Finally, we performed the change in absorption
bandwidth and absorption rate of the absorber by adjusting the structure of VO, at the
top and bottom. Through a comparison with other absorbers developed in recent years,
we believe that our absorber has advantages in multiple aspects and is expected to deliver
outstanding performance in fields such as photothermal absorption and thermal stealth
in the future.
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