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Abstract: Herein, we present the preparation of solid-state photoactive starches with a large Stokes
shift, along with the resulting materials. In this investigation, 2-(2′-hydroxyphenyl)benzazole deriva-
tives responsive to intramolecular proton transfer in the excited state (ESIPT) were covalently bonded
to the polymeric structure of starch through a reaction involving an isothiocyanate group and the
hydroxyl groups of starch. These compounds exhibit absorption at approximately 350 nm, which is
related to fully spin- and symmetry-allowed π → π* electronic transitions, and solid-state fluores-
cence at approximately 500 nm, which features a significant separation between the absorption and
emission maxima (~9000 cm−1). Due to the minimal use of fluorophores in functionalized starch
preparation, this modification does not affect the original properties of the starch. Finally, photoactive
starch-based films with significantly high transparency were successfully produced.
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1. Introduction

Plastics have become ingrained in daily routines, as they find applications across
various industries [1]. Originating from synthetic polymers derived from nonrenewable
petroleum sources, these materials present environmental challenges due to their resistance
to degradation and prolonged persistence in the environment [2]. As concerns about their
environmental impact intensify, there is growing interest in alternative materials that can
replace traditional polymers. In response to these concerns, biopolymers are emerging as
promising substitutes, primarily sourced from renewable raw materials and often exhibiting
biodegradable properties [3–5]. Starch, an abundantly available natural resource, serves as
a cost-effective renewable raw material for biopolymer production [6–10]. The conversion
of starch into a thermoplastic polymer, known as thermoplastic starch (TPS), is facilitated
through the incorporation of plasticizers [11,12]. Plasticizers, such as glycerol, sorbitol,
glycols, and urea, enable the processing of TPS by reducing intermolecular hydrogen bonds
within starch grains. The type and proportion of plasticizer used significantly impact
the physical properties of the processed TPS, including the glass transition temperature
and mechanical characteristics. Due to its hydrophilic nature, TPS is highly susceptible
to moisture absorption, which affects its mechanical properties. Efforts to alleviate this
sensitivity involve blending TPS with other materials to enhance its final properties and
reduce vulnerability to environmental factors such as humidity, temperature, and radiation
exposure [13–16].

Starch can undergo functionalization by introducing chemical groups through
hydroxyl groups, significantly broadening the range of applications for the resulting
material [17–19]. This expansion is not limited to the acquisition of thermoplastic materials.
In the literature, light-emitting groups are attached to polysaccharide skeletons, demon-
strating diverse applications [20–23]. However, there are currently few reports on the
functionalization of starch with fluorescent compounds using excited-state intramolecular
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proton transfer (ESIPT), usually related to advancing methods for detecting and visualizing
latent fingermarks, with improvements in sensitivity, selectivity, and ease of visualization
on diverse substrates [24,25].

In 1955, Weller discovered the excited-state intramolecular proton transfer (ESIPT)
process in salicylic acid, which exhibited a remarkable Stokes shift compared to that of
analogs [26]. ESIPT-active fluorophores, known for their photophysical stability and large
Stokes shift (6000 to 12,000 cm−1), have become a focal point in research [27–30]. These
compounds, which have dual fluorescence emission and sensitivity to the environment,
have diverse applications [31–42]. ESIPT in benzazole derivatives relies on factors such as
intramolecular hydrogen bonds, electronic effects of donor (–OH) and acceptor (–C=N–)
groups, and molecular geometry. The delicate balance between structural and electronic as-
pects determines the occurrence of ESIPT, which is essential for its successful execution [31].
Benzazole heterocycles, aromatic compounds with a benzene-azole ring fusion, play a
crucial role in heterocyclic compounds, forming benzoxazoles, benzimidazoles, benzothia-
zoles, or benzoselenazoles [43]. These compounds, which contain diverse heteroatoms, are
fundamental building blocks in medicinal chemistry for synthesizing biologically active
molecules [44–47] and photoactive polymeric materials [48–53]. Regarding ESIPT and
benzazoles, hydroxyphenylbenzazoles, which can undergo proton transfer in the excited
state, exist predominantly as enol (E) species in the ground state (Figure 1) [28]. Upon
excitation, a redistribution of charges leads to intramolecular proton transfer, giving rise to
a new keto tautomer and fluorescence emission with a large Stokes shift. In addition, these
fluorophores can also exhibit dual fluorescence emission, with distinct bands corresponding
to additional enol conformers (blue line) and keto tautomers (red line) influenced by the
surrounding medium [54].
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In this context, our investigation focused on creating fluorescent starches by introduc-
ing excited-state intramolecular proton transfer (ESIPT) dyes through starch functionaliza-
tion. The objective of this study was to incorporate the inherent photophysical properties of
the ESIPT process, such as solid-state emission, fluorescence with a large Stokes shift, and
photostability, into starch matrices. The ultimate aim is to produce novel biocompatible
and biodegradable fluorescent materials. The development of these new materials is cru-
cial for merging the advantages of fluorescence with environmentally friendly attributes.
These materials have diverse applications, ranging from environmental monitoring to
medical imaging, aligning with the increasing demand for sustainable and eco-friendly
solutions. For this purpose, benzazoles functionalized with isothiocyanate will be used to
covalently attach these fluorophores to starch, forming a thiocarbamate bond. The result-
ing functionalized starches will be employed in the fabrication of solid-state photoactive
thermoplastic films.
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2. Experimental Section
2.1. Materials and Methods

Natural corn starch (Amisol 3408, Ingredion Brasil Ing. Ind. Ltda, Mogi Guaçu, SP,
Brazil) was used as received. Commercially available reagents and solvents (acetone,
dichloromethane, dimethylsulfoxide, methanol, glycerin, and distilled water) were used as
received without additional purification. Thin-layer chromatography (TLC) was performed
using the supported silica gel GF254 (0.25 mm thickness). For visualization, TLC plates
were placed under UV light at 254 nm. X-ray diffraction analyses were performed on a
diffractometer (Shimadzu XRD 6000, Shimadzu, Kyoto, Japan) with k-α radiation and a
wavelength of 1.5406 Å. The reading range was from 4 to 45◦ with a step of 2◦ min−1.
Thermogravimetric analysis (TGA) of the photoactive starches and respective thermo-
plastic films was conducted using a Shimadzu TGA-50 (Shimadzu) thermogravimetric
analyzer under a nitrogen atmosphere with a flow rate of 50 mL·min−1 and a heating rate
of 10 ◦C·min−1. Fourier transform infrared (FT-IR) spectra were recorded on a Shimadzu
IR Prestige-21 (Shimadzu) spectrometer in the range of 400–4000 cm−1 with a spectral
resolution of 4 cm−1 using KBr pellets. UV–Vis absorption spectra were obtained using
a Shimadzu UV2450PC (Shimadzu) spectrophotometer. All the experiments were con-
ducted at room temperature (25 ◦C) for both the powder and film samples. Solid-state
measurements utilized an ISR2200 integrating sphere. Barium sulfate (BaSO4) (Wako Pure
Chemical Industries, Ltd., Tokyo, Japan) was used for the experiments at room temperature.
Fluorescence emission spectra were obtained using a Shimadzu RF5301PC (Shimadzu)
spectrofluorometer. All the experiments were conducted at room temperature (25 ◦C) for
both the powder and film samples. The wavelength of the maximum UV–Vis absorption
band was used as the excitation wavelength for fluorescence emission measurements. For
solid-state samples, support was used where the angle of incidence of radiation was 45◦

relative to the detector. The solid-state relative fluorescence quantum yields were deter-
mined by employing sodium salicylate as the standard (QYSS = 0.55) [55,56]. This involved
a comparison of the integrated area of the emission spectrum of the benzazole derivatives
(ABZ) with that of sodium salicylate (ASS). The percentage reflectance of the benzazole
(RBZ) and the reference sodium salicylate (RSS) was measured relative to a plate coated
with barium sulfate at the wavelength of maximum excitation. The fluorescence quantum
yield of the benzazoles (QYBZ) was calculated using Equation (1), where ΦFL ss represents
the fluorescence quantum yield of the reference material. In this experiment, the samples
were treated as powders.

QYSS = QYBZ
ABZ

ASS

100 − RSS

100 − RBZ
(1)

2.2. Synthesis

The studied 2-(2′-hydroxyphenyl)benzazole derivatives 4a–4b were prepared as de-
scribed in the literature [57,58]. In general, the respective amino precursors 2-(5′-amino-2′-
hydroxyphenyl)benzazoles 3a–3b were prepared from the condensation of 5-aminosalicylic
acid (1) with o-substituted anilines 2a or 2b in polyphosphoric acid, resulting in the forma-
tion of the corresponding aminobenzazoles 3a–3b [59]. For purification, chromatography
in a column was performed on silica gel (230–400 mesh) using dichloromethane as the
eluent. To obtain isothiocyanate derivatives 4a–4b (Scheme 1), a solution of 3a (or 3b) in dry
acetone was slowly added dropwise to a solution of thiophosgene (Cl2CS) in dry acetone
(1:5) at 0 ◦C. The reaction mixture was stirred for two hours at room temperature, leading
to the formation of the desired products. The resulting precipitate was filtered, washed
with cold acetone, and subsequently dried at 60 ◦C. Purification was accomplished through
chromatography in a column on silica gel (230–400 mesh) using dichloromethane as the
eluent. The spectroscopic characterization aligns with the literature and conforms to the
anticipated chemical structures.
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Scheme 1. Synthetic route for obtention of isothiocyanate derivatives 4a–4b.

2-(5′-Isothiocyanate-2′-hydroxyphenyl)benzoxazole (4a). Yield: 90%. M.p.: 169–171 ◦C.
1H NMR (400 MHz, CDCl3) δ (ppm): 11.62 (s, 1H), 7.08 (dd, 1H, J = 8.8 Hz), 7.88
(d, 1H, J = 2,4 Hz), 7.74 (m, 1H), 7.62 (m, 1H), 7,42 (m, 2H), 7.42 (m, 2H), 7.28 (dd, 1H,
J = 9.2, 2.8 Hz). FTIR (wavenumber, cm−1): 3062, 2100, 1629, 1488, 1231.

2-(5′-Isothiocyanate-2′-hydroxyphenyl)benzothiazole (4b). Yield: 92%. M.p.: 152–157 ◦C.
1H NMR (400 MHz, CDCl3) δ (ppm): 12.74 (s, 1H), 7.99 (m, 1H), 7.92 (m, 1H), 7.53 (m, 2H),
7.45 (m, 1H), 7.24 (dd, 1H, J = 8.8, 2.4 Hz), 7.06 (d, 1H, J = 8.8 Hz). FTIR (wavenumber,
cm−1): 3022, 2101, 1585, 1483, 1263.

2.3. Preparation of Fluorescent Starch

The general procedure used to prepare the fluorescent starch is presented in Scheme 2.
An amount of 2 g of pure starch was dissolved in 50 mL of DMSO at 65 ◦C for 30 min.
Subsequently, different amounts of fluorophore 4a or 4b were introduced into the reaction
system, and the mixture was stirred at 65 ◦C for an additional 4 h. During this phase, we
conducted reactions using different amounts of fluorophores to starch (w/w), as outlined
in Table 1. The aim was to evaluate the properties of the resulting materials concerning
fluorophore concentration. After this period, the solution was allowed to cool to room tem-
perature (25 ◦C). Following the completion of the reaction, 150 mL of methanol was added
to this solution. The resulting precipitate was then filtered and washed with methanol
(3 × 20 mL) and acetone (3 × 20 mL) to remove the unbound fluorophore. The resultant
precipitate was air-dried for 24 h at room temperature (25 ◦C) and for an additional 24 h
at 65 ◦C under vacuum. Finally, the dried precipitate was comminuted in a mortar for
characterization purposes.

Colorants 2024, 3, FOR PEER REVIEW 4 
 

 

 
Scheme 1. Synthetic route for obtention of isothiocyanate derivatives 4a–4b. 

2-(5′-Isothiocyanate-2′-hydroxyphenyl)benzoxazole (4a). Yield: 90%. M.p.: 169–171 
°C. 1H NMR (400 MHz, CDCl3) δ (ppm): 11.62 (s, 1H), 7.08 (dd, 1H, J = 8.8 Hz), 7.88 (d, 1H, 
J = 2,4 Hz), 7.74 (m, 1H), 7.62 (m, 1H), 7,42 (m, 2H), 7.42 (m, 2H), 7.28 (dd, 1H, J = 9.2, 2.8 
Hz). FTIR (wavenumber, cm−1): 3062, 2100, 1629, 1488, 1231. 

2-(5′- Isothiocyanate-2′-hydroxyphenyl)benzothiazole (4b). Yield: 92%. M.p.: 152–157 
°C. 1H NMR (400 MHz, CDCl3) δ (ppm): 12.74 (s, 1H), 7.99 (m, 1H), 7.92 (m, 1H), 7.53 (m, 
2H), 7.45 (m, 1H), 7.24 (dd, 1H, J = 8.8, 2.4 Hz), 7.06 (d, 1H, J = 8.8 Hz). FTIR (wavenumber, 
cm−1): 3022, 2101, 1585, 1483, 1263. 

2.3. Preparation of Fluorescent Starch 
The general procedure used to prepare the fluorescent starch is presented in Scheme 

2. An amount of 2 g of pure starch was dissolved in 50 mL of DMSO at 65 °C for 30 min. 
Subsequently, different amounts of fluorophore 4a or 4b were introduced into the reaction 
system, and the mixture was stirred at 65 °C for an additional 4 h. During this phase, we 
conducted reactions using different amounts of fluorophores to starch (w/w), as outlined 
in Table 1. The aim was to evaluate the properties of the resulting materials concerning 
fluorophore concentration. After this period, the solution was allowed to cool to room 
temperature (25 °C). Following the completion of the reaction, 150 mL of methanol was 
added to this solution. The resulting precipitate was then filtered and washed with 
methanol (3 × 20 mL) and acetone (3 × 20 mL) to remove the unbound fluorophore. The 
resultant precipitate was air-dried for 24 h at room temperature (25 °C) and for an 
additional 24 h at 65 °C under vacuum. Finally, the dried precipitate was comminuted in 
a mortar for characterization purposes. 

 
Scheme 2. Synthetic route for obtention fluorescent starches. 

Table 1. Reaction conditions for the preparation of modified starches. 

Fluorophore Starch (g) Fluorophore Amount (w%) 1 Nomenclature 

4a 

2.0 

0.1 Starch@4a01 
0.5 Starch@4a05 
1.0 Starch@4a1 
5.0 Starch@4a5 

4b 

0.1 Starch@4b01 
0.5 Starch@4b05 
1.0 Starch@4b1 
5.0 Starch@4b5 

Scheme 2. Synthetic route for obtention fluorescent starches.

Table 1. Reaction conditions for the preparation of modified starches.

Fluorophore Starch (g) Fluorophore Amount (w%) 1 Nomenclature

4a

2.0

0.1 Starch@4a01
0.5 Starch@4a05
1.0 Starch@4a1
5.0 Starch@4a5

4b

0.1 Starch@4b01
0.5 Starch@4b05
1.0 Starch@4b1
5.0 Starch@4b5

1 Derived from the initial amount of starch employed in the calculation.
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2.4. Fluorescent Films Based on Starch

The casting technique was employed to prepare fluorescent starch films with glycerol
as the plasticizer in different proportions (Table 2). Natural corn starch (used as a blank
sample) or fluorescent starch (Starch@4a5 or Starch@4b5) was dissolved in deionized water
at 75 ◦C under mechanical stirring for 1 h. Glycerol was then introduced into the starch
solution, and the mixture was stirred for an additional 15 min. Notably, at this stage, starch
films were also produced through simple mixing, wherein fluorophores, without covalent
bonding to starch, were added during the dissolution of starch. This step served as a control
for evaluating the resulting fluorescent materials. The resulting solutions or mixtures were
poured into polypropylene Petri dishes and dried in an oven at 65 ◦C for 24 h.

Table 2. Reaction conditions for the preparation of fluorescent films based on modified starch.

Component
Amount (w%) 1

Film Starch Film Starch@4a Film Starch@4b

Starch 70 - -
Glycerol 30 30 30

Starch@4a5 - 70 -
Starch@4b5 - - 70

1 Derived from the initial amount of starch employed in the calculation.

3. Results and Discussion
3.1. Characterization

The characterization of photoactive-doped materials heavily relies on the concentration
of fluorophores, and various techniques can be employed to clarify binding, each operating
at different sensitivities. However, the literature notes the intricacy of this characterization
when a low content of fluorophores is utilized [60,61], which is precisely the situation with
the modified starches prepared in this study. The morphology of the modified starches
was first investigated using X-ray diffraction (XRD) (Figure 2). Substituting hydroxyl
groups in starch can cause alterations in its crystalline structure. For example, when
acetylation occurs on starch, a new X-ray diffraction pattern is generated, providing a
means to evaluate the effectiveness of these reactions [62–64]. The diffraction pattern of
natural starch displays peaks at approximately 15◦, 16◦, 17◦, and 23◦ (2θ), as expected for
corn starch [64,65]. X-ray diffraction analyses thus indicate a departure from the usual
crystalline structure observed in natural starch when examining photoactive starches.
The literature highlights that the processing of starch can induce significant structural
alterations. A widely employed processing step is gelatinization, which involves the heating
of starch in excess water within the temperature range of 50 to 70 ◦C. Throughout this
procedure, a cooperative transition occurs wherein water infiltrates the amorphous regions
of the granules, resulting in their swelling and destabilization of the crystalline regions.
Consequently, this induces rapid granule swelling, crystallite melting, and complete loss
of ordered structure [66–68]. Because starch modification occurs at 65 ◦C in the presence
of undried DMSO, the loss of crystallinity could be related to the gelatinization process.
Furthermore, due to the low water content, the efficiency of the process was not absolute,
allowing for the discernment of some degree of ordered structure. In addition, despite the
limited presence of fluorophores in starch reactions, which leads to minimal substitution of
starch hydroxyl groups, the influence of fluorophores on the loss of crystallinity observed
in modified starches compared to pure starch cannot be ruled out. With respect to the
substitution of starch hydroxyl groups, each repeating unit of α-D-glucopyranose in starch
has three hydroxyl groups available for reactions. The literature suggests a maximum
possible degree of substitution of 3.0 [69]. For instance, the calculated degree of substitution
for the highest concentration (5%) of 2-(5′-isothiocyanato-2′-hydroxyphenyl)benzoxazole
(4b), assuming 100% reaction with starch, would be 0.06. Consequently, only approximately
2% of the hydroxyl groups in the α-D-glucopyranose units would undergo substitution.
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According to the thermogravimetric analyses, presented in Figure 2 (bottom), the mod-
ified starch exhibited behavior reminiscent of that of natural starch, revealing two distinct
stages below 500 ◦C. Note that an additional sample was prepared for comparison, the
so-called StarchP. This sample was processed in the same manner as the modified starches
but without the addition of a fluorophore. The initial stage, marked by a slight mass loss
just above 100 ◦C, is linked to water loss, while the second stage, occurring at approxi-
mately 300 ◦C with substantial mass loss, corresponds to polymer decomposition. Both
the starch and modified starch samples undergo a mass loss of approximately 15% up
to nearly 100 ◦C, attributed to the absorption of water due to the hygroscopic nature of
starch [64,70]. On the other hand, both fluorophores, 4a and 4b, demonstrate a single
stage in their TGAs, indicating thermal degradation at approximately 300 ◦C. Finally, the
infrared spectra presented in the Supplementary Material (Figures S4–S6) reveal strong
absorption at approximately 2100 cm−1 for both studied fluorophores related to the N=C=S
bond vibrations. In addition, the localized absorptions at 1491 cm−1 and 1572 cm−1 (4b),
as well as at 1507 cm−1 and 1586 cm−1 (4a), correspond to aromatic C=C bond vibrations.
A specific absorption at 1445 cm−1 (C=C aromatic stretching) was observed, along with
absorptions at 1653 cm−1 (carbonyl C=O) and 3500 cm−1 (medium intensity, stretching
of the primary amine N-H bond). In natural starch, localized absorptions at 1159, 1082,
and 1014 cm−1 are related to C-O stretching, while other bands at 992, 929, 861, 765, and
575 cm−1 are due to stretching vibrations of the anhydroglucose unit [62,63]. Similar results
were observed for processed starch (StarchP). The broad band at 3425 cm−1 is attributed to
hydroxyl groups, and at 1641 cm−1, strongly bound water is observed [62,63]. Notably, no
infrared absorption related to the fluorophores was detected in the modified starches. The
anticipated band at approximately 1550 cm−1 (NH(C=S) group) is absent, which should
result from the formation of a thiocarbamate group during the reaction between –OH
and isothiocyanate. Additionally, the characteristic band of N=C=S bond vibrations in
unreacted fluorophores was not observed, possibly due to the low fluorophore content
used in the starch reactions. Detecting very small quantities or dilutions in the polymer
chain is challenging with FTIR [71].
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3.2. Photophysics

The obtained modified starches were characterized in the solid state using UV–Vis
absorption and fluorescence emission spectroscopies. The relevant data are summarized
in Table 3. All the experiments were performed under the same conditions, using 50 mg
of each sample, which was treated as powder. Each modified starch sample exhibited a
distinct absorption in the visible region, which intensified at higher energies, below 400 nm
(Figure 3a,b). Furthermore, there is an increase in absorption at approximately 350 nm
as the concentration of fluorophores increases during starch preparation, which could be
related to the absorption of the fluorophore. It is also noteworthy that with an elevated
fluorophore concentration, the absorption maxima shifts toward the corresponding maxima
observed for pure fluorophores (Figure 3c). Finally, it was observed that the pure starch in
the solid state (blank sample) presented absorption below 300 nm, as already reported in
the literature [72,73].

Table 3. Photophysical data in the solid state for modified starches using fluorophores 4a and 4b,
where λabs and λem are the absorption and emission maxima, respectively, ∆λST is the Stokes shift,
and QY is the fluorescence quantum yield.

Sample λabs λem ∆λST (nm/cm−1) QY (%)

Starch@4a01 333 514 181/10575 1.1
Starch@4a05 344 512 168/9539 3.4
Starch@4a1 350 511 161/9002 4.5
Starch@4a5 366 512 146/7791 7.6

Starch@4b01 334 501 167/9980 1.8
Starch@4b05 345 503 158/9105 3.3
Starch@4b1 366 503 137/7442 4.2
Starch@4b5 362 540 178/9106 1.1
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Figure 3. Absorption spectra in the solid-state (DRUV) of the obtained modified starches prepared
with different fluorophore amounts using (a) 4a and (b) 4b. (c) DRUV spectra of pure fluorophores
are presented for comparison.

In Figure 4a,b, the emission curves of the modified starches are depicted, clearly indi-
cating that all the samples exhibited photoactivity within the 450–650 nm range. Unlike
what was noted in absorption, the emission spectra show notable distinctions when the
fluorophores are bound to starch, suggesting that the matrix influences the photophysical
properties of these compounds. The emission peaks for modified starches prepared with flu-
orophore 4a are situated at approximately 510 nm (Figure 4a), matching the region observed
for the pure fluorophore (Figure 4c). Specifically, the resemblance between the spectra of the
pure fluorophore and modified starch samples suggested that the photophysical behavior of
4a was similar, regardless of whether it was covalently linked to the polymer chain of starch.
In addition, in the modified starches prepared with fluorophore 4a, there was an increase in
the emission intensity of the photoactive starch as the quantity of fluorophore used for the
preparation of the materials increased, in accordance with expectations. However, modified
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starches prepared using 4b as a fluorophore exhibited different photophysical behaviors.
Initially, after binding with starch, the emission maxima of fluorophore 4b shifted toward
blue (500 nm) compared to that of the pure fluorophore (530 nm). This behavior has already
been observed when benzazoles reactive to the ESPT mechanism are covalently attached or
doped into organic or inorganic matrices, highlighting the sensitivity of these fluorophores
to the environment [74,75]. Additionally, as observed for starch doped with fluorophore 4a,
samples prepared with 4b showed that the emission intensity was dependent on the dye
concentration in the starch (from Starch@4b01 to Starch@4b1). Additionally, the modified
starch prepared with more fluorophore (Starch@4b5) exhibited an emission maximum
located at 540 nm, which was less intense than that at lower concentrations. In this case,
unlike what was noted in absorption, the emission spectra show notable distinctions when
the fluorophores are bound to starch, suggesting an additional nonradiative energy loss in
the excited state or even interaction with additional ESIPT dyes in the matrix. The pure
starch did not exhibit fluorescence emission, as expected. Furthermore, regarding the Stokes
shift, the calculated values are consistent with what is expected for the keto* emission
arising from the ESIPT process, indicating the absence of dual emission or the favoring of
conformers unresponsive to ESIPT. The low values for the fluorescence quantum yield were
expected due to the low dye content and agree with similar structures presenting ESIPT,
as reported in the literature [76]. Finally, we would like to emphasize that the correlation
between the quantum yields in the solid state, emission curve profiles, and the location of
their respective maxima suggests that the emitting species may be different. Although it is
not possible to observe any red-shifted absorption band, corresponding to ionized species
already present in the ground state, the literature reports that compounds that are reactive
to ESIPT can ionize in the excited state, generating species with emissions distinct from
those observed in their neutral analogs [76,77]. Although the Stokes shift values indicate
the presence of keto emission, the possibility of ionization in the excited state should not be
dismissed, since the remaining OH groups in the starch could serve as proton acceptors [77].
This property, stemming from these compounds’ increased photoacidity, may contribute in
some way to the distinct emissions observed.
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Figure 4. Steady-state emission spectra in the solid-state of the obtained modified starches prepared
with different fluorophore amounts using (a) 4a and (b) 4b. (c) Solid-state emission spectra of pure
fluorophores are presented for comparison.

As a proof of concept, films were prepared with modified starches, as shown in Figure 5.
As noted in this study, the fluorophores exhibiting fluorescent properties were covalently
bonded to the polymeric structure of starch through reactions with its hydroxyl groups.
The quantity of compound used in modifying starch does not compromise its original
properties, which allowed us to prepare these photoactive films. In this investigation,
a control film (Figure 5a) prepared with nondoped starch was prepared for comparison
(Table 2, Film Starch). The good transparency of the films prepared with pure starch and
modified starches can be observed in Figure 5a–c. The films prepared with photoactive
starches exhibited emission in the cyan-green to green regions, as expected from the
emission results of the modified starches in the solid state.
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Figure 5. Photographs of the films prepared with (a) pure starch, (b) modified starch with 4a, and
(c) modified starch with 4b under normal light. (d) Modified starch under UV light (365 nm). The
black arrows indicate the boundaries of the starch films.

4. Conclusions

In this study, we successfully synthesized novel starch-based materials with solid-state
fluorescence under mild reaction conditions. Thermal analyses revealed that the thermal
behavior of natural starch remained largely unchanged after reactions with fluorophores.
Although the X-ray diffraction patterns of the modified starches differed from those of natu-
ral starch, a consistent pattern was not observed. The presence of fluorophores in the starch
polymeric matrix was confirmed through photophysical characterizations. The similarity
between the spectra of pure fluorophores and modified starches, which feature a significant
Stokes shift, suggests that the photophysical behavior of fluorophores is consistent, whether
covalently linked to the polymeric chain of starch or not. Moreover, the modified starches
developed in this study facilitated the creation of photoactive thermoplastic films.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/colorants3020007/s1, Figure S1: FTIR spectra of fluorophores 4a and 4b;
Figure S2; 1H NMR spectrum (CDCl3, 400 MHz) of fluorophore 4a; Figure S3: 1H NMR spectrum
(CDCl3, 400 MHz) of fluorophore 4b; Figure S4: FTIR spectra of starch and processed starch (StarchP);
Figure S5: FTIR spectra of modified starches with fluorophore 4a. StarchP spectrum was presented
for comparison; Figure S6: FTIR spectra of modified starches with fluorophore 4b. StarchP spectrum
was presented for comparison.
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