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Simple Summary: Obesity is associated with cognitive impairment and reduced levels of circulating
brain-derived neurotrophic factor (BDNF), a protein crucial for brain function and health. The aim of
this systematic review was to overview the effects of acute (a single session) and regular (long-term)
exercise on circulating BDNF levels in obese individuals. The meta-analysis of 16 studies with 23 trials
revealed an increase in BDNF levels after a single session of exercise in individuals with obesity.
However, long-term exercise did not elevate circulating BDNF levels. These findings highlight the
complexity of the relationship between exercise, obesity, and brain health. Further research is needed
to delve deeper into how different exercise parameters, such as type, duration, and intensity, impact
BDNF levels in obese individuals. Understanding these nuances can help tailor exercise interventions
more effectively to improve brain function and overall well-being in this population.

Abstract: Obesity is a major global health concern linked to cognitive impairment and neurological
disorders. Circulating brain-derived neurotrophic factor (BDNF), a protein crucial for neuronal
growth and survival, plays a vital role in brain function and plasticity. Notably, obese individuals
tend to exhibit lower BDNF levels, potentially contributing to cognitive decline. Physical exercise
offers health benefits, including improved circulating BDNF levels and cognitive function, but the
specific impacts of acute versus regular exercise on circulating BDNF levels in obesity are unclear.
Understanding this can guide interventions to enhance brain health and counter potential cogni-
tive decline in obese individuals. Therefore, this study aimed to explore the impact of acute and
regular physical exercise on circulating BDNF in individuals with obesity. The target population
comprised individuals classified as overweight or obese, encompassing both acute and chronic
protocols involving all training methods. A comprehensive search was conducted across comput-
erized databases, including PubMed, Academic Search Complete, and Web of Science, in August
2022, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. Initially, 98 studies were identified, from which 16 studies, comprising 23 trials, met
the selection criteria. Substantial heterogeneity was observed for both acute (I2 = 80.4%) and long-
term effects (I2 = 88.7%), but low risk of bias for the included studies. A single session of exercise
increased circulating BDNF levels among obese patients compared to the control group (ES = 1.25,
95% CI = 0.19 to 2.30, p = 0.021). However, with extended periods of physical exercise, there was no
significant increase in circulating BDNF levels when compared to the control group (ES = 0.49, 95%
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CI = −0.08 to 1.06, p = 0.089). These findings highlight the need to consider exercise duration and
type when studying neurobiological responses in obesity and exercise research. The study’s results
have implications for exercise prescription in obesity management and highlight the need for tailored
interventions to optimize neurotrophic responses. Future research should focus on elucidating the
adaptive mechanisms and exploring novel strategies to enhance BDNF modulation through exercise
in this population. However, further research is needed considering limitations such as the potential
age-related confounding effects due to diverse participant ages, lack of sex-specific analyses, and
insufficient exploration of how specific exercise parameters (e.g., duration, intensity, type) impact
circulating BDNF.

Keywords: obesity; BDNF; physical exercise; meta-analysis

1. Introduction

The World Health Organization (WHO) stated that, worldwide, obesity has nearly
tripled since 1975 [1]. Despite being deemed preventable, the ramifications of being over-
weight and obesity are pervasive, impacting almost 60% of adults and nearly one in three
children, with 29% of boys and 27% of girls affected, within the WHO European Region.
Currently, obesity is considered a disease by several medical institutions (e.g., The Ameri-
can Medical Association; WHO; Obesity Society), and the World Obesity Federation sees
obesity from an epidemiological model, i.e., as an agent affecting the host and producing
disease [2]. In fact, it is now clear from long-term follow-up studies that obesity is related
to a greater probability of developing heart diseases, type 2 diabetes mellitus, some cancers,
dementia, osteoarthritis, among others [3–6]. Recently, attention has been given to the link
between obesity and neurobiological impairments, since the high levels of dysfunctional
adipose tissue observed in patients with obesity may aggravate metabolic abnormalities,
which increase the risk of mood disorders as depression [7,8] and affect the balance of
energy expenditure control [9,10]. Indeed, the brain-derived neurotrophic factor (BDNF),
which is a protein that has a significant role in the energy homeostasis of body fluids
and blood pressure in humans [11], registered significantly lower levels in the patients
with obesity [7,12]. Reduced satiety and hyperphagia manifest as discerning features of
BDNF deficiency, providing a plausible rationale for fat accumulation. This phenomenon is
undeniably associated with the pivotal role of BDNF in the intricate regulation of dietary
intake [13]. Furthermore, diminished levels of circulating BDNF have been ascertained in
individuals diagnosed with type 2 diabetes [14]. Notably, an inverse correlation has been
established between peripheral BDNF concentration and key anthropometric parameters,
such as body mass index (BMI), in both pediatric and adult populations [15]. Additionally,
in adult males, a negative relationship has been identified between peripheral BDNF levels
and fat mass [16].

Indeed, circulating BDNF supports survival, growth, and maintenance of neurons
during development [17,18], and influences synaptic plasticity in the adult brain [19].
The impact of circulating BDNF encompasses developmental processes, the regulation
of neuron and glial cell formation, the protection of neurons, and the modulation of
synaptic connections that affect memory and cognition mechanisms [20–22]. In opposition,
deletion or inhibition of the BDNF gene results in a deficiency in long-term potentiation, a
transcription-dependent electrophysiological phenomenon associated with learning and
memory [20,22,23]. This synaptic dysfunction may be corrected by external administration
of BDNF [18] or by increasing its expression [24].

Physical exercise may improve circulating BDNF concentration, thus inducing brain
plasticity and cognitive enhancement [25,26]. Physical exercise might favor the release of
neurotransmitters and neurotrophins in an activity-dependent manner. This acute stimula-
tion potentiates neural function and initiates a cascade of events that actively contribute to
the promotion of structural and functional plasticity within the brain [27–29]. Physical ex-
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ercise elevates the rate of mitochondrial respiration and cerebral oxygen consumption [30],
with heightened levels of circulating BDNF [31–33] and enhanced functionality of the
prefrontal cortex in individuals without pre-existing health conditions [34].

The role of circulating BDNF in neurological impairments associated with obesity has
received considerable attention in the recent literature. Indeed, circulating BDNF has been
implicated in the pathophysiology of several neurological disorders, including cognitive
decline associated with obesity [35,36]. Decreased BDNF levels correlate with cognitive
deficits often seen in obese individuals, including impaired learning and memory, executive
dysfunction, and mood disorders [37,38]. Likewise, interventions that boost BDNF expres-
sion, such as physical exercise, have been associated with enhanced cognitive performance
and mood in both healthy individuals and those grappling with obesity [36]. Moreover,
previous studies conducted on obese animals have offered mechanistic insights into how
circulating BDNF regulates neuronal function and synaptic plasticity in brain regions essen-
tial for cognitive processes, such as the hippocampus and prefrontal cortex [39,40]. These
findings highlight circulating BDNF’s significance as a potential therapeutic target for
alleviating neurological complications associated with obesity. Despite the expanding body
of evidence, the precise mechanisms by which circulating BDNF exerts its neuroprotective
effects in the context of obesity remain partially understood. Nonetheless, factors such as
obesity-related inflammation, insulin resistance, and alterations in neurotrophin signaling
pathways may contribute to circulating BDNF dysregulation and subsequent cognitive
impairments [35]. The link between obesity and altered BDNF signaling underscores the
importance of understanding how physical exercise, a primary intervention for obesity
management, affects circulating BDNF levels [41]. Furthermore, while emerging evidence
suggests that physical exercise can modulate circulating BDNF levels, its impact on individ-
uals with obesity remains to be fully elucidated. Therefore, a comprehensive understanding
of how both acute and regular physical exercise influence circulating BDNF levels in this
population is warranted.

Given the intricate interplay between obesity, physical exercise, circulating BDNF, and
neurological function, this study aims to systematically review and meta-analyze studies
related to the effects of acute and regular physical exercise on circulating BDNF levels
in individuals with obesity. By synthesizing the existing literature and elucidating the
relationship between exercise, circulating BDNF, and neurological outcomes, we aim to
offer insights that can guide future interventions aimed at preserving cognitive health
in this population. Our hypothesis suggests that physical exercise has the potential to
elevate circulating BDNF levels in individuals with obesity, thus potentially alleviating
neurobiological impairments associated with the condition and enhancing brain health.

2. Methods

The present review adhered to the Preferred Reporting Items for Systematic Reviews
and Meta-Analyses (PRISMA) 2020 guidelines [42,43].

2.1. Protocol and Registration

The systematic review protocol is accessible on the Open Science Framework (OSF)
under the registration number DOI 10.17605/OSF.IO/4UM3B, documented on the 10th of
August 2022. Interested parties can review the protocol through the following web address:
https://archive.org/details/osf-registrations-4um3b-v1 (accessed on 30 April 2024).

2.2. Eligibility Criteri

Research articles considered for inclusion in this study were published in peer-
reviewed journals, without imposing any restrictions on the publication date. The eligibility
criteria are constructed according to the Participants, Intervention, Comparators, Outcomes,
and Study Design (PICOS) framework below [44,45]:

Participants (P): As a criterion for inclusion, studies involving subjects classified as
overweight (Body Mass Index-BMI = 25–30 kg/m2) or obese (BMI = 30 kg/m2 or greater)

https://archive.org/details/osf-registrations-4um3b-v1
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according to the BMI have been accepted. This instrument was chosen because most studies
reported BMI values rather than using more specific measurements for assessing body
composition. The classification employed in the original studies were disregarded. Studies
conducted with participants of both genders, spanning any age within range, have been
included. Studies involving athletes or those incorporating subjects with normal body
weight have been excluded.

Intervention (I): Both acute (single-session) and regular physical exercise interven-
tions (multiple sessions, with no minimum session requirement) including aerobic, high
intensity interval training, resistance training, or combined training methodologies were in-
cluded. Studies lacking physical exercise programs or containing only cognitive programs
were excluded.

Comparators (C): In acute effect studies, the comparator encompassed pre-and post-
evaluations. For interventions, comparators involved at least one experimental group or
the inclusion of a control group.

Outcomes (O): The primary outcome of interest is circulating BDNF variability, with a
focus on the methodology applied during the session or sessions. Furthermore, we included
studies that specifically assessed circulating levels of BDNF in serum or plasma samples.

Study Design (S): Only experimental studies, whether acute or interventions, and whether
randomized or non-randomized clinical trials, were considered for inclusion [44,45].

2.3. Data Sources and Search Strategy

The current systematic review involved searching the following databases on the same
day (05/08/2022): (i) PubMed; (ii) Academic Search Complete; and (iii) Web of Science.
The search encompassed files up to the present year, with no lower limit. Additionally,
a manual search was carried out to identify potentially relevant articles not covered in
the automated searches, including sources such as Google Scholar and ResearchGate. The
manual search focused on: (i) scrutinizing the reference lists of included full texts to identify
potentially relevant titles; (ii) reviewing abstracts for adherence to inclusion criteria; and,
if necessary, (iii) revising the full text. Furthermore, errata/retractions were examined to
ensure the accuracy of the included articles [46]. The search strategy employed Boolean
operators AND/OR without applying any filters or limitations (e.g., date, study design)
to enhance the likelihood of identifying relevant studies [47]. The primary search strategy
comprised the following terms:

“BDNF” OR “brain-derived neurotrophic factor”
AND
“aerobic*” OR “HIIT” OR “high intensity interval training” OR “anaerobic*”
AND
“obesity” OR “overweight”
The complete search strategy [47] is detailed in Table 1

Table 1. Full search strategy for each database.

Database Specificities of the
Databases Search Strategy

PubMed None to report

(“brain derived neurotrophic factor”[MeSH Terms] OR (“brain derived”[All Fields] AND
“neurotrophic”[All Fields] AND “factor”[All Fields]) OR “brain derived neurotrophic factor”[All
Fields] OR “bdnf”[All Fields] OR (“brain derived neurotrophic factor”[MeSH Terms] OR (“brain

derived”[All Fields] AND “neurotrophic”[All Fields] AND “factor”[All Fields]) OR “brain derived
neurotrophic factor”[All Fields] OR (“brain”[All Fields] AND “derived”[All Fields] AND

“neurotrophic”[All Fields] AND “factor”[All Fields]) OR “brain derived neurotrophic factor”[All
Fields])) AND (“aerobic*”[All Fields] OR “HIIT”[All Fields] OR (“high intensity interval

training”[MeSH Terms] OR (“high intensity”[All Fields] AND “interval”[All Fields] AND
“training”[All Fields]) OR “high intensity interval training”[All Fields] OR (“high”[All Fields] AND
“intensity”[All Fields] AND “interval”[All Fields] AND “training”[All Fields]) OR “high intensity

interval training”[All Fields]) OR “anaerobic*”[All Fields]) AND (“obeses”[All Fields] OR
“obesity”[MeSH Terms] OR “obesity”[All Fields] OR “obese”[All Fields] OR “obesities”[All Fields]

OR “obesity s”[All Fields] OR (“overweight”[MeSH Terms] OR “overweight”[All Fields] OR
“overweighted”[All Fields] OR “overweightness”[All Fields] OR “overweights”[All Fields]))
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Table 1. Cont.

Database Specificities of the
Databases Search Strategy

Academic Search Complete Search for title and abstract
also includes keywords

“(BDNF OR brain-derived neurotrophic factor) AND (aerobic* OR HIIT OR high intensity interval
training OR anaerobic*) AND (obesity OR overweight)

Web of Science
Search for title and abstract
also includes keywords and

its designated “topic”

BDNF OR brain-derived neurotrophic factor (All Fields) and aerobic* OR HIIT OR high intensity
interval training OR anaerobic* (All Fields) and obesity OR overweight (All Fields)

2.4. Selection Process

The initial phase of the study involved a screening process conducted by two authors,
namely HC and AFS, who independently evaluated the titles and abstracts of the retrieved
records. Following this initial screening, the same authors independently assessed the
full texts of the gathered literature. Discrepancies that arose between these two authors
were subjected to thorough discussion in a collaborative reanalysis. In instances where a
consensus could not be achieved, a third author, EMC, resolved.

2.5. Data Collection Process

The data collection process commenced with AFS as the primary investigator (Novem-
ber 2022), who meticulously gathered the data. To ensure the accuracy and completeness
of the collected information, a dual verification process was implemented, involving two
co-authors, namely HC and EMC. A specially designed Microsoft® Excel datasheet was
employed as the tool for extracting and organizing the data, encompassing key information
pertinent to the study [48]. In instances where essential data were absent from the full
text of the included studies, proactive measures were taken by author HC, who initiated
direct communication with the corresponding authors via email and/or ResearchGate.
This communication sought to obtain the requisite information, with an anticipated re-
sponse time of approximately 10 business days. The systematic extraction of pre- and
post-intervention means, coupled with the standard deviation of dependent variables was
methodically carried out using Microsoft Excel (Microsoft Corporation, Redmond, WA,
USA) [48]. In situations where studies reported data in formats other than means and stan-
dard deviations—specifically, presenting values such as median, range, interquartile range,
or standard error—a methodically standardized conversion procedure was systematically
implemented, strictly adhering to established recommendations [49–51]. The statistical
analysis of diverse data formats employed the Comprehensive Meta-Analysis Software,
Version 2, developed by Biostat in Englewood, NJ, USA. This software was chosen for its
versatility in handling various data structures inherent in the included studies [52]. In
instances where the required data were not exhaustively reported in the literature, the
authors of the respective studies were engaged through direct communication to seek
clarification. This proactive approach aimed to enhance the accuracy and completeness
of the dataset under consideration. Following a standard protocol, if no response was
received from the authors after two attempts, with 10 business days waiting period between
attempts, or if the authors were unable to provide the requested data, the study outcome
was deemed ineligible for further analysis. Moreover, when data were visually presented
in figures without accompanying numerical values, a validated software tool, WebPlot-
Digitizer, version 4.5 (Rohatgi, A., Pacifica, CA, USA. https://apps.automeris.io/wpd/,
accessed on 30 April 2024), was employed. This software, validated with a correlation
coefficient (r = 0.99, p < 0.001) [53], facilitated the extraction of numerical data from the
graphical representations. The extraction process was spearheaded by one author, AFS,
with another author, HC, responsible for confirming the accuracy of the extracted data. Any
discrepancies between the two authors, such as disagreements on mean values for specific
outcomes, were judiciously resolved through consensus with a third author, ensuring
the reliability and consistency of the data extraction process throughout the analytical
phase [54].

https://apps.automeris.io/wpd/
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2.6. Data Items

Descriptive characteristics of study participants, including sex and physical activity
level were documented to provide a contextual understanding of the study population.

Context-related information played a pivotal role in the data extraction process and
included, though was not restricted to, the presence of other clinical complications such as
diabetes and hypertension, among others.

Methodological-related details were integral to the analysis and included information
on the specific physical exercise protocols employed in the studies. This encompassed
details such as the type of exercise (aerobic, HIIT, resistance, combined training), as well as
the number, volume, and intensity of the exercise sessions.

The main outcome of interest, namely the changes in circulating BDNF in response
to the prescribed physical exercise protocols, formed the core focus of the data extraction
process. Variations in circulating BDNF levels, whether indicative of increases or decreases,
were systematically recorded to discern the effects of different exercise methodologies.

Additionally, supplementary information was gathered, including citation details, the
publication year, and any potential competing interests declared by the authors.

2.7. Risk of Bias Assessment

The evaluation of the risk of bias within each study was conducted independently
by two authors, namely EM and AFS. In instances where discrepancies emerged between
the two assessors, a collaborative reanalysis was undertaken to resolve differences. In
instances where a consensus could not be attained, a third author resolved. The Risk
of Bias Assessment Tool for Non-randomized Studies (RoBANS) was employed as the
standardized instrument for evaluating the risk of bias in the included studies [55]. This tool
has demonstrated moderate reliability, as well as trustworthy feasibility and validity [55],
making it a suitable choice for the present analysis. The RoBANS framework encompasses
six pivotal domains: participant selection, confounding variables, exposure measurement,
outcome assessment blinding, handling of incomplete outcome data, and avoidance of
selective outcome reporting [55]. Each of these domains was systematically assessed, and
the risk of bias within each domain was classified as low, high, or unclear.

2.8. Data Management and Synthesis Methods

The analytical approach adhered to a previously established methodology, as outlined
in references [56,57], wherein the analysis and interpretation of results were undertaken
only when a minimum of three studies provided both baseline and follow-up data for the
same outcome measure. The effect size (ES), denoted by Hedge’s g, was computed for
each outcome measure within the experimental groups by utilizing pre- and post-exercise
mean values in conjunction with standard deviations (SD) [49,50]. Standardization of
data involved the utilization of post-intervention SD values. A random-effects model was
employed to accommodate variations between studies that might influence the impact of
interventions on BDNF response [58,59]. Effect sizes were presented with 95% confidence
intervals (CIs) and interpreted as follows: <0.2, trivial; 0.2–0.6, small; >0.6–1.2, moderate;
>1.2–2.0, large; >2.0–4.0, very large; >4.0, extremely large [59]. The assessment of het-
erogeneity was conducted using the I2 statistic, with low heterogeneity characterized by
values < 25%, moderate heterogeneity when values fell between 25% and 75%, and high
heterogeneity observed with values > 75% [60]. Publication bias was evaluated utilizing the
extended Egger’s test [58]. In instances where bias was identified, the trim and fill method
was applied, with L0 serving as the default estimator for missing studies [61,62]. All statis-
tical analyses were performed using Comprehensive Meta-Analysis software (version 2;
Biostat, Englewood, NJ, USA) [52]. Statistical significance was set at p ≤ 0.05. Moderators
associated with acute or interventional studies, physical exercise frequency, and type were
considered in cases where two or more studies provided relevant data, enhancing the depth
of the analysis and interpretation of results.
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3. Results
3.1. Study Identification and Selection

The initial phase of the literature search yielded 98 titles, which were systematically
managed using the EndNoteTM reference manager software (version 20.2, Clarivate Ana-
lytics, Philadelphia, PA, USA). After removal of duplicates, totaling 35 titles, through an
automated and manual process, the dataset was refined to 63 unique titles. These were
then subjected to a screening process based on their relevance, involving an assessment
of the title and abstract. This screening led to the exclusion of 32 titles. The remaining
31 titles underwent a thorough evaluation in their full-text versions, resulting in the ex-
clusion of an additional 15 studies for various reasons. Specifically, one study focused on
pregnant individuals, five studies did not incorporate physical exercise and were merely
report-based, one study constituted a review paper, and eight studies were excluded due
to issues related to the outcome measure. In the latter case, one study evaluated proBDNF
instead of mBDNF, while in the remaining eight studies, no pertinent data were available
in the manuscripts, and attempts to obtain information from the authors were unsuccessful.
Following this selection process, 16 studies, encompassing 23 trials remained eligible for
data extraction and subsequent analysis. This final set of studies formed the basis for
the comprehensive examination and synthesis of data to address the research objectives
(Figure 1).
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3.2. Study Characteristics and Context

The characteristics and contexts of studies showing the effect of acute and regular
exercise on circulating BDNF are shown in Tables 2–4.
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Table 2. Characteristics of the included studies for acute effect on circulating BDNF level (N: 3, 6 trials).

Study Study
Design n Sex Groups Acute Exercise

Protocol
Main

Outcome
Brand/Company

Name of BDNF Kits
Main Results

(BDNF)

Dominguez-
Sanchez 2018 [63] RCT 51

Physically
inactive

Men

-HIIT: 14
-RT: 12
-CT: 12
-CG: 12

HIIT: 4 × 4-min intervals at 85–95%
HRmax with 4-min active recovery
at 75–85% HRmax
RT: ≈12–15 reps per set of six
exercises targeting major muscle
groups at high intensity.
CT: underwent both the HIIT and
RT protocols
CG: Non-exercising

Plasma BDNF
(ng/mL)

SPR Biosensors
methods, an

amino-coupling
chemistry kit KAN-50

Coupling Kit (GE
Healthcare, Uppsala,

Sweden)

-HIIT: Increased
(+6.8%, p = 0.134)
-RT: Increased (+9.3%,
p = 0.066)
-CT: Increased
(+11.6%, p < 0.05)
-CG: Increased (+0.6%,
p = 0.804)

Roh et al.,
2017 [64] RCT 24 Untrained Men -Ob: 12

-NonOb: 12
Treadmill run of 20 min,
%85 VO2max

Serum BDNF
(pg/mL)

Human BDNF ELISA
kit (cat. no. DBD00;

R&D Systems,
Minneapolis,
MN, USA)

- Increased
(Ob > NonOb)

Wheeler et al.,
2020 [65] RCT 65 Sedentary men

and women

-SIT: 22
- EX + SIT: 23
- EX + BR: 20

SIT: 8 h uninterrupted sitting
EX + SIT: 1 h sitting, 30 min
walking (65–75% HRmax), 6.5 h
uninterrupted sitting.
EX + BR: 1 h sitting, 30 min
walking (65–75% HRmax), 6.5 h
sitting interrupted every 30 min
with 3 min light-intensity walking.

Serum BDNF
(ng/mL)

Human BDNF ELISA
Kits (R&D Systems,

Wiesbaden, Germany

- EX + SIT: increased
(+171), p < 0.05
- EX + BR: increased
(+139), p < 0.05
-SIT: Decreased (−227)

Abbreviations: n = Population; BDNF = Brain-derived neurotrophic factor; RCT = Randomized controlled trial; BMI = Body mass index; HIIT = High intensity interval training;
RT = Resistance training; CT = Combined training; EX + SIT = exercise + sitting; EX + BR = exercise + breaks; SIT = Sitting; BR: Breaks; CG = Control group; Ob = Obese; NonOb =
Non-obese; HRmax = Maximum heart rate; VO2max = Maximum oxygen intake; Hr: Hours; SPR: Surface Plasmon Resonance, Elisa: Enzyme-linked immunosorbent assay.
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Table 3. Characteristics of the included studies for regular exercise on circulating BDNF level (N: 13, 17 trials).

Study Study
Design n Sex Groups Regular Exercise Protocol Main Outcome Brand/Company

Name of BDNF Kits
Main Results

(BDNF)

Cho et al.,
2016 [66] RCT 16 Physically

inactive men
-EG: 8
-CG: 8

EG: Supervised treadmill running at
70% of HRR, 40 min each session,
3 times a week for 8 weeks.
CG: maintained their own life-styles
with no intervention

Serum BDNF
(ng/mL)

A human BDNF
ELISA Kit (R&D

Systems, Minneapolis,
MN, USA).

-EG: Increased
(20.56%), p < 0.05

Cho et al.,
2016 [67] RCT 36 Physically

inactive women

-AE: 12
-AE + CES: 12

-CG: 12

AE: Three times 40-min treadmill
running sessions per week for
8 weeks at 70% of HRR.
CG: maintained their own life-styles
with no intervention

Serum BDNF
(pg/mL)

A human BDNF
ELISA Kit

(Cat. no. DBD00; R&D
Systems, Minneapolis,

MN, USA)

-AE: Increased
(AE > CG), p < 0.05

Damirchi et al.,
2014 [68] RCT 21

Physically
inactive men with

MetS

-EG: 11
-CG: 10

EG: a 6-week aerobic training:
(3 sessions per week; 25–40 min
walking, running by 50–60% of
·
VO2peak)
CG: maintained their own life-styles
with no intervention

Serum BDNF
(pg/mL)

A human BDNF
ELISA Kit (R&D

Systems, Minneapolis,
MN, USA)

-EG: Decreased,
p < 0.05

Glud et al.,
2019 [69] RCT 50

Physically
inactive men and

women

-EXO: 7 women,
9 men

-DIO: 8 women,
6 men

-DEX: 11 women,
9 men

EXO: 12 weeks of aerobic exercise
and isocaloric diet. Supervised
aerobic exercise 3 times/week,
60–75 min/session, 500–600
kcal/session, intensity at 70% of
HRR.
DEX: 12 weeks of aerobic exercise
alongside 8 weeks of VLED
(800 kcal/day), followed by a 4-week
weight maintenance diet.

Serum BDNF
(ng/mL)

Quantikine ELISA
Human Free

BDNF immunoassay
(DBD00, R&D

Systems, Abingdon
OX14, UK)

-EXO: decreased
(22.4%, p < 0.05) in
women, (22.1%,
p < 0.05) in men
-DIO: decreased
(29.9%, p < 0.05) in
women, and (4.2%,
p < 0.05) in men
-DEX: decreased
(32.5%,
p < 0.05) in women.
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Table 3. Cont.

Study Study
Design n Sex Groups Regular Exercise Protocol Main Outcome Brand/Company

Name of BDNF Kits
Main Results

(BDNF)

Goldfield et al.,
2018 [70] RCT 282

Irregularly
active men and

women

-AE: n = 69
-RT: n = 70
-CT: n = 74
-CG: n = 69

AE: Aerobic exercise on treadmills,
elliptical machines, and/or bicycle
ergometers, 6-month intervention,
twice a week, 20–45 min/session,
65–85% HRmax.
RT: Resistance training, 6-month
intervention, twice a week,
progressing from 20 to 45
min/session. Exercises using weight
machines or free weights,
progressing from 2 sets of 15 reps at
moderate intensity to 3 sets of 8 reps
at 8-RM.
CT: Combination of AE and RT.
CG: maintained their own life-styles
with no intervention

Serum BDNF
(ng/mL)

Human Free BDNF
Quantikine ELISA kit,

R&D systems, Cat#
DBD00)

-AE group: Increased
(+1.80)
-RT group: Decreased
(−2.00)
-CT group: Decreased
(−1.70)

Gyorkos et al.,
2019 [71] RCT 12

Sedentary
free-living
individuals

-CRPD-Sed: 5
-CRPD-Ex: 7

CRPD-Ex: HIIT on a cycle ergometer.
Three min warm-up, 10 × 60 s
cycling intervals with 60 s active
recovery, ~90% HRmax, and a 3 min
cool down. 3 sessions per week for
four weeks.
CRPD-Sed: (<50 g Carbohydrate)

Serum
BDNF (ng/mL)

Human BDNF Elisa
Kit (#DBD00, Thermo

Fisher Scientific)

-CRPD-Sed: Increased
(+20%), p < 0.05
-CRPD-Ex: Increased
(+38%), p < 0.05
-CRPD-Ex >
CRPD-Sed.

Abbreviations: n = Population; BDNF = Brain-derived neurotrophic factor; RCT = Randomized controlled trial; MetS = Metabolic syndrome; EG = Exercise group; RT = Re-
sistance training; CT = Combined training; HIIT = High Intensity Interval Training; RM = Repetition maximum; CG = Control group; EXO = Exercise-only; DIO = Diet-only;
DEX = Diet and exercise; AE = Aerobic exercise; CES = Cranial electrotherapy stimulation; CRPD-Sed = Carbohydrate-restricted paleolithic-based diet with sedentary behavior;

CRPD-Ex = Carbohydrate-restricted Paleolithic-based diet with high intensity interval training; HRR = Heart rate reserve;
·

VO2peak = Highest oxygen uptake; VLED = very low energy
diet; Elisa: Enzyme-linked immunosorbent assay.
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Table 4. Characteristics of the included studies for regular exercise on circulating BDNF level (N: 13, 17 trials) (Continuation of Table 3).

Study Study
Design n Sex Groups Regular Exercise Protocol Main

Outcome
Brand/Company

Name of BDNF Kits
Main Results

(BDNF)

Lee et al., 2014 [72] RCT 26 Physically inactive
men and women

-Ob: 8
-T2DM: 7
-CG: 11

AE: 40–60 min per session at
50~60% VO2max, 3 sessions a
week, for 12 weeks.
CG: maintained their own
life-styles with no intervention

Serum
BDNF (ng/mL)

A human BDNF Elisa
Kit (R&D Systems,
Minneapolis, MN,

USA)

Ob: Increased

Levinger et al.,
2008 [73] RCT 49 Physically inactive

men and women

-HiMF-Exp: 15
-HiMF-CG: 14
-LoMF-Exp: 10
-LoMF-CG: 10

RT: 10 weeks. Initially, two sets of
15–20 reps at 40–50% 1RM. From
weeks 2–10, progressed to three
sets, 8–20 reps, at 50–85% 1RM.
CG: maintained their own
life-styles with no intervention

Serum BDNF
(pg/mL)

Human BDNF Elisa
Kit (Catalog number:

DY248;
Minneapolis, MN,

USA)

-RT: Unchanged

Li et al., 2021 [74] RCT 29 Physically inactive
men and women

-HIIT: 10
-VICT: 10

-CG: 9

HIIT: 4 × 3 min at 90% VO2max
with 3 min at 60% VO2max, about
45 min/session, 3 sessions per
week for 12 weeks.
VICT: 25 min at 70% VO2max,
about 45 min/session, 3 sessions
per week for 12 weeks.
CG: maintained their own
life-styles with no intervention

Serum BDNF
(pg/mL)

Human BDNF Elisa
Kit (Abcam Inc.,
Cambridge, UK)

- HIIT: Increased,
p < 0.05
- VICT: Increased,
p < 0.05
- There was no
significant difference
between HIIT and
VICT in terms of
BDNF.

Osali et al.,
2020 [75] RCT 44 Physically inactive

women

-MetS exercise +
Nano-Curcumin:

11
-MetS exercise: 11

-MetS
Nano-Curcumin:

11
-MetS CG: 11

AE: moderate intensity (65–75%
HRR) on a treadmill (run or walk)
for 3 sessions per week, each
lasting 12–17 min, over 6 weeks.
CG: maintained their own
life-styles with no intervention

Serum BDNF
(pg/mL)

Human BDNF Elisa
Kits (Adipo

Bioscience, Santa
Clara, CA, USA)

EG: Increased, p < 0.05

Roh et al.,
2017b [76] RCT 20 Physically inactive

men
-Ob: 10

-NonOb: 10

AE: 40 min, 3 times a week, for
8 weeks, at 70% HRR, totaling
60 min per exercise session

Serum BDNF
(pg/mL)

Human BDNF ELISA
Kit (#DBD00; R&D

Systems, Minneapolis,
MN, USA)

Ob: Increased, p < 0.05
NonOb: Unchanged
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Table 4. Cont.

Study Study
Design n Sex Groups Regular Exercise Protocol Main

Outcome
Brand/Company

Name of BDNF Kits
Main Results

(BDNF)

Saleh et al., 2020
[77] RCT 60 Physically inactive

men and women

-Ob-Exp: 15
-Ob-CG: 15

-NW-Exp: 15
-NW-CG: 15

Anaerobic gymnastics exercise:
45 min/session, 3 sessions per
week for 8 weeks.
CG: maintained their own
life-styles with no intervention

Serum BDNF
(pg/mL)

Human BDNF
PicoKine™ ELISA Kit
(Catalog No. EK0307;

R&D Systems,
Austria)

Ob: Increased
(+33.80%), p < 0.05
NW:Increased
(+31.36%, p < 0.05

Zibinaite et al.,
2019 [78] RCT 26 Sedentary women EG: 13

CG: 13

AE: 72 supervised exercise sessions
on cycle ergometers over 6 months,
3 sessions per week. Each session
lasted 50 min at an intensity
between 60% and 70% of HRmax.
CG: maintained their own
life-styles with no intervention

Serum BDNF
(pg/mL)

Human BDNF Elisa
Kits (Gemini; Stratec

Biomedical,
Birkenfeld, Germany).

EG: Unchanged
CG: Unchanged

Abbreviations: n = Population; BDNF = Brain-derived neurotrophic factor; RCT = Randomized controlled trial; MetS = Metabolic syndrome; T2DM = Type 2 diabetes mellitus;
HiMF = number of metabolic risk factors ≥ 2; LoMF = number of metabolic risk factors ≤ 1; HIIT = High intensity interval training; VICT = Vigorous-intensity continuous training;
AE = Aerobic Exercise; 1RM = One-repetition maximum; VO2max = Maximum oxygen intake; HRmax = Maximum heart rate; HRR = Heart rate reserve; RT = Resistance Training;
EG = Exercise group; CG = Control Group; Ob = Obese; NonOb = Non-obese; NW = Normal Weight; Exp = Experimental; Elisa: Enzyme-linked immunosorbent assay.
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3.3. Risk of Bias in Studies

The Risk of Bias Assessment Tool for Non-Randomized Studies (RoBANS) was applied
by two independent authors to evaluate potential biases in six distinct do-mains. Notably,
the selection of participants posed challenges in several studies, as the recruitment methods
were not consistently explained, raising concerns about potential convenience sampling
without clear contextual information. However, given that most studies adhered to clinical
trial assumptions, the domains of confounding variables, exposure measurements, and
blinding of outcome assessments exhibited a low risk of bias. The comprehensiveness of
protocols was generally high, with 16 studies providing detailed explanations, while a few
studies lacked minor protocol characteristics. One study lacked information regarding
training load characteristics. Regarding outcome data, biases were identified in some
studies (three at high risk), where explanations for discrepancies in sample sizes from the
beginning to the end of the study were not provided. In the overall analysis, the included
studies appeared to have a low risk of bias, with none exhibiting a high risk in more than
three domains. Despite uncertainties in participant selection methodologies in some studies,
the majority adhered to rigorous clinical trial principles in other key domains, contributing
to the overall robustness of the studies. These findings underscore the methodological
quality of the included studies in this assessment of bias risk.

3.4. Results of Syntheses
Effect of Acute and Regular Exercise on Circulating BDNF Level

This systematic review with meta-analysis synthesized findings from three studies
encompassing a total of six trials, involving 104 participants, to assess the impact of acute
exercise on circulating BDNF levels (see Figure 2). The meta-analysis revealed a statistically
significant increase in circulating BDNF levels in individuals with obesity compared to
controls (Effect Size, ES: 1.25, large effect, p < 0.05). However, there were indications of
heterogeneity in the results (I2 = 80.4%).
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Figure 2. Forest plot illustrating the effect of acute exercise on circulating BDNF levels in comparison to
controls. Forest plot values are shown as effect sizes (Hedges’ g) with 95% confidence intervals (CI). Black
squares: individual studies. The size represents the relative weight. Black rhomboid: summary value.
Mean results: ES = 1.25, 95% CI = 0.19 to 2.30, p = 0.021, I2 = 80.4%, N total participants = 104 [63–65].

Thirteen studies, encompassing 17 trials and involving a total of 571 participants,
investigate the impact of regular physical exercise interventions on circulating BDNF levels
(see Figure 3). Regular exercise interventions did not change circulating BDNF levels
when compared to control groups (p > 0.05). Despite the lack of statistical significance, a
small positive effect on circulating BDNF levels was observed in the exercise intervention
group (effect size, ES: 0.49, small effect). It was determined high heterogeneity among the
studies investigating the impact of regular exercise intervention on circulating BDNF levels
(I2 = 88.7%).
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levels in comparison to controls. Forest plot values are shown as effect sizes (Hedges’ g) with
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weight. Black rhomboid: summary value. Mean results: ES = 0.49, 95% CI = −0.08 to 1.06, p = 0.089,
I2 = 88.7%, N total participants = 571 [66–78].

4. Discussion

The aim of this systematic review with meta-analysis was to understand the acute
(short-term) and regular (long-term) effects of physical exercise on circulating BDNF levels
in patients with obesity. Acute exercise led to a significant increase in the concentration of
circulating BDNF patients with obesity compared to the control group. Despite long-term
regular physical exercise, there was no significant increase in circulating BDNF levels when
compared to the control group. Although the results were not statistically significant, it was
revealed a small effect size of long-term physical exercise interventions on circulating BDNF
levels. (ES = 0.49). Our study also found high levels of heterogeneity in both acute effects
(I2 = 80.4%) and long-term effects (I2 = 88.7%). Finally, the quality of the methodologies
used in the included studies was determined to be low risk of bias, with none of the studies
exhibiting high risk in more than three of the six evaluated domains.

Acute physical exercise has been shown to be an effective stimulant that arise periph-
eral BDNF levels [79]. The present study found that acute exercise led to a statistically
significant augment in circulating BDNF level compared to the control group (ES: 1.25).
This review synthesized the findings of three studies involving 104 participants to specify
the impact of acute physical exercise on BDNF levels. This result confirms previous system-
atic reviews and meta-analysis studies showing that acute exercise increases circulating
BDNF levels in healthy adults [36,41,79,80], and older adults [81]. Regarding the included
studies, Dominguez-Sanchéz et al. [63] found that acute combine exercise (high-intensity
interval exercise and resistance) led to a greater increases (+11.6%, p = 0.029) in circulating
BDNF levels compared with acute resistance (+9.3%, p = 0.066), and high intensity interval
exercises (+6.8%, p = 0.134) in overweight men adults. Likewise, another study notified that
acute high-intensity exercise (20 min at 85% of VO2max) triggered a rise in serum BDNF
levels in inactive adult patients with obesity [64]. Additionally, Wheeler et al. [65] (2020)
observed that 30 min of aerobic exercise (65% and 75% HRmax) performed in the morning



Biology 2024, 13, 323 15 of 25

hours elevated circulating BDNF levels in inactive elderly men patients with obesity and
postmenopausal women. Based on the studies mentioned (3 studies, 6 trials), regardless
of the type of exercise, it has been shown that circulating BDNF levels increase in patients
with obesity after both acute moderate (1 trial) and high-intensity exercises (5 trials).

Considering the studies mentioned above (3 studies, 6 studies), regardless of the type
of exercise (aerobic, resistance and high intensity exercise), it is seen that the circulating
BDNF levels of patients with obesity increase after both acute moderate (1 trials), and
high-intensity exercise (5 trials). Regarding the studies analyzed, high-intensity exercise
protocols were commonly used in patients with obesity, resulting in elevated circulating
BDNF levels. The elevation in circulating BDNF levels after acute exercise can be linked
to exercise intensity. For instance, previous systematic reviews indicated that circulating
BDNF levels augmented with increased intensity [36,82] and duration (lasting more than
30 min) of the exercise [80]. Furthermore, a recent meta-analysis of 22 studies in healthy
adults (aged 20–31 years) with a total of 552 participants noted that greater circulating
BDNF levels were observed after acute high-intensity exercise compared to light and
moderate-intensity exercise conditions [83].

Several potential mechanisms behind the elevation of circulating BDNF after acute
exercise have been proposed. One of these is exercise-induced thrombocytosis (EIT). Due
to the fact that the most of peripheral BDNF is found in thrombocytes, exercise can lead to
a rise in BDNF levels through EIT, which is thought to occur due to splenic contractions
releasing BDNF-rich platelets [84,85]. However, the increase in platelets and peripheral
blood BDNF after exercise was reported to be temporary and returned to pre-exercise
levels within 15–30 min after cessation of the physical activity [86]. Despite its temporary
nature, it was stated that the increased BDNF response to acute exercise could have the
potential to enhance cognitive function by triggering various neuronal processes [87].
Second, the contraction of skeletal muscle during physical activity boosts the manufacture
and activity of certain proteins involved in mitochondrial biogenesis, such as PGC-1α,
ERRalpha, and fibronectin type III domain-containing protein (FNDC5)/irisin. These
factors regulate BDNF transcription in the brain and energy metabolism in skeletal and fat
tissue [88]. Third, exercise elevates insulin-like growth factor-1 (IGF-1). This hormone has
been shown to have a close relationship with an increase in BDNF level in the hippocampus,
playing a role in mediating exercise-induced changes in synaptic function and cognitive
plasticity [89]. Lastly, a single high-intensity exercise has been linked to higher levels of
brain hydrogen peroxide (H2O2) and tumor necrosis factor-α (TNF-α). These molecules are
among the many stimulators of PGC-1α signaling, which in turn increases BDNF synthesis
in neurons [90].

Furthermore, circulating BDNF, like leptin, promotes feelings of satiety. Recent studies
has shown that it actively controls food intake, regulates body weight, and balances energy
at the hypothalamic level [91,92]. According to these studies, the BDNF-producing neurons
in the paraventricular hypothalamus were found to limit food intake and serve as an
anorexigenic factor, resulting in feelings of satiety. These neurons also improve energy
consumption by stimulation of thermogenesis in brown adipose tissue. Also, mutations in
the BDNF gene and its receptor TrkB in mice and humans caused an increase in food con-
sumption, and contributed to the onset of severe obesity [93,94]. Based on these studies, the
rise of circulating BDNF levels, which are lower baseline in patients with obesity compared
to normal-weight individuals [94–96], following high-intensity exercise may be related to
decreased hunger and an increased sense of fullness. This can minimize the likelihood of
obesity developing arising from excessive appetite sensation or appetite signal disorder,
and in addition, it can make an additional contribution to the treatment of various neu-
ropsychological diseases accompanying obesity. More mechanisms of neuropsychological
disturbance, especially related to the depression state has been summarized by Murawska-
Cialowicz et al. [97]. Moreover, a previous study noted that administering BDNF to mice
increased the levels of GLUT4 in skeletal muscle [98]. This suggests that the possible impact
of increased BDNF levels following acute high-intensity exercise on substrate utilization
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may enhance the management of metabolic disorders related to obesity [99]. Obesity is a
metabolic disorder associated with inflammation and also poses a serious risk of develop-
ing cardiovascular diseases, including hypertension [100,101]. Endothelial dysfunction in
these conditions leads to the development of atherosclerosis [102]. Reduced production
of nitric oxide (NO) by reactive oxygen species (ROS), inflammation, imbalance between
vasodilators and vasoconstrictors, and blood vessels are important mechanisms leading
to endothelial dysfunction [103]. BDNF production by skeletal muscle during exercise is
thought to originate specifically from endothelial cells and is stimulated by NO, especially
in oxidative fibers, although greater BDNF expression is observed in type II glycolytic
fibers [104].

Numerous studies indicate that there is cross-talk between organs and that substances
in the nature of growth factors, as BDNF, which is one of the most important factors commu-
nicating skeletal muscle with brain and adipose tissue, are involved in this communication.
Therefore, the term, metabolokine, is used in relation to BDNF, which is a neurokinin,
adipokine and myokine [105]. This is the way one of the possible mechanisms of BDNF
synthesis during high intensity exercise, is the production of lactate [La-]. High-intensity
exercise stimulates anaerobic energy processes. The product of this process, especially
glycolysis is high concentration of [La-] that exceeds the anaerobic threshold. Nowadays,
[La-] is known to be a very important substance acting as a transmitter involved in var-
ious metabolic processes [106–108]. In the brain [La-] W mediated by monocarboxylate
transporters (MCT) [109,110] enters into neurons (via MCT2) and astrocytes (via MCT4)
supporting, among other things, glucose transport into neurons, their energy metabolism
and ion [111].

Current studies indicate that [La-] transport from astrocytes to neurons plays a key
role in memory formation [112,113] and may represent a link between exercise and neu-
roplasticity and BDNF synthesis [107]. In this mechanism, [La-] can activate of various G
protein-related receptors, as well as the silent information regulator 1 (SIRT1). With relation
to adipose tissue, activation of the PGC1α/FNDC5/BDNF pathway seems to be a convinc-
ing one [114]. Lactate can induce the PGC1α/FNDC5/BDNF pathway through activation
of SIRT1. Intraperitoneal infusion of lactate in mice was shown to induce SIRT1 activity,
thereby enhancing the PGC1α/FNDC5/BDNF pathway, resulting in improved spatial
learning and memory retention [115]. It was documented that lactate in the adipocytes
in obesity is a key player connecting obesity with inflammation and insulin resistance
and that the higher adipocytes size is related to the high lactate production in adipose
tissue [116] which is resulted in hypoxia in obese adipocytes [117]. Moreover lactate can
stimulate browning of the white adipocytes [118]. In white adipose tissue (WAT), MCT-1
is expressed in white adipose adipocytes and may be treated as a marker of adipocytes
maturation [119].

FNDC5 is a precursor protein called irisin, which is an exercise hormone involved in
carbohydrate and fat utilization and fat reduction. Expression/secretion of irisin promotes
the conversion of WAT into brown adipose tissue (BAT) (browning) due to increased
expression of UCP-1 (uncoupling protein 1). WAT browning was found to be induced by
irisin through p38 MAPKs and ERK MAPK signaling [120]. It was documented that lack of
irisin is associated with poor adipocyte browning and impaired glucose/lipid levels [121].
The another study shows that irisin concentrations are increased after intense exercise in
healthy men [122] as well as in obese subjects in whom aerobic exercise showed no change
in irisin levels [123] which given the common mechanism of action of irisin with BDNF,
may potentiate BDNF secretion during exercise.

Chronic physical activity increases circulating BDNF in answer to an acute exer-
cise [41]. Regarding the relationship between regular exercise intervention and circulating
BDNF, this systematic review and meta-analysis summarized the findings of 13 studies
comprising a total of 571 participants, regarding the impact of regular exercise interven-
tion on circulating BDNF levels. The associations between regular exercise interventions
and circulating BDNF is complicated [85]. In the literature, recent meta-analysis stud-
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ies indicated that peripheral BDNF concentrations significantly increased after exercise
intervention in healthy individuals [36,124], older adults [81], individuals with multiple
sclerosis [125], and neurodegenerative disorders [126]. Contrary to the studies mentioned,
the present study observed that regular physical exercise did not significantly augment
circulating BDNF levels compared to the control group. Although not statistically signifi-
cant, it was found a small effect size of regular physical exercise on circulating BDNF levels
(ES = 0.49; trivial, p = 0.089). Consistent with our study, previous meta-analysis studies
demonstrated that chronic exercise had a minimal impact on circulating BDNF level in
healthy [41,80] and elderly individuals [127]. The current meta-analysis of included studies
showed inconsistent findings considering the effect of chronic physical activity on circulat-
ing BDNF level. According to this, it was notified that circulating BDNF level significantly
increased [66,67,71,72,74–77], decreased [68,69], and remained unchanged [70,73,78] after
exercise intervention in patients with obesity. However, the lack of significant changes
in circulating BDNF levels following regular exercise in our meta-analysis could be due
to the high heterogeneity in the studies included, which explains the inconsistent results.
Moreover, the high heterogeneity could be attributed to differences in the methodology
of the included studies, including the characteristics of participants, exercise applications
(frequency, intensity, type, time, volume), measurement methods, methodological quality
of studies, and type of Elisa kits used. Also, the absence of a significant difference in regular
exercise intervention compared to acute exercise may be related to difficulties in controlling
too many variables that may affect the results depending on the duration of the program.
In this sense, Fleitas et al. [127] emphasized that some factors should be considered in the
lack of significant effects of chronic physical exercise on peripheral BDNF levels. Failure
to control participants’ nutritional status or energy intake during the study and before
blood samples are collected may have a negative impact on BDNF results. Considering
the included studies, it was observed that the energy intake of the participants during
the exercise program was not considered in many studies. Conducting more controlled
studies in the laboratory environment by applying standardized nutrition programs to the
participants during the study may contribute to obtaining more accurate results. Addition-
ally, circulating BDNF levels fluctuate throughout the day due to the diurnal variations
of the cortisol and various hormonal fluctuations [128]. Thus, time of the day on both
exercise interventions and data collection (blood collection time), and non-standardization
of the collection may have a negative impact on BDNF-related measurements [127]. In
this context, it is important to conduct quality and randomized controlled studies with
larger sample groups, considering the energy intake of the participants in order to elevate
circulating BDNF in response to exercise intervention in patients with obesity.

It is also important that authors of experimental studies accurately describe the re-
search protocols, providing comprehensive information regarding the biological material
and analytical procedures [129]. The different levels of BDNF are reported in serum and
plasma. This can relate to thrombocytosis mechanism and utilization of BDNF after chronic,
intensive, or long-term exercise. Higher production of growth factors in platelets and uti-
lization of BDNF for reparation and regeneration of skeletal muscle and nerve fibers at the
muscle levels is quite possible mechanism of BDNF reduction in serum and plasma [16,130].

Moreover, in our study, it was revealed that the circulating BDNF level did not differ
significantly following the six months of high-intensity [70], and ten weeks of moderate-
intensity [73] regular resistance exercises, and 6 months of moderate-intensity aerobic
exercise [78]. In literature, studies have shown that resistance exercise had no significant
effect on circulating BDNF concentration in both healthy [36,79,124], and elderly [127]
individuals. Nevertheless, despite all these, it was seen that the circulating BDNF level
increased after regular exercise in many studies included in present study. Regarding the
studies in which the circulating BDNF level increased (1 study: moderate aerobic exercise,
the other 7 studies: high-intensity aerobic exercise, a total of 8 studies), it was observed that
high-intensity aerobic exercise performed for approximately 8–12 weeks were more likely
to trigger the increase in circulating BDNF levels. In the light of this information, recent
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meta-analysis study suggested that moderate and high-intensity aerobic exercise programs
(3–5 times a week and 20–60 min, 12 weeks) were an effective strategy to increase circulating
BDNF levels in adolescents [131]. Therefore, aerobic exercise is effective in increasing BNDF
level compared to resistance exercise. Indeed, regular exercise augmented circulating BDNF,
while resistance exercise did not [79,124,127]. Aerobic exercise is linked to physiological
processes that enhance BDNF, including improved endothelial function, insulin sensitivity,
and cerebral blood flow [79,85,132]. Walsh et al. [85] suggested that high-intensity short-
duration physical activities might increase circulating BDNF levels and improve brain
health, and that combining aerobic and anaerobic exercise at approximately 60% of VO2max
may have the greatest effect on circulating BDNF elevation due to mechanisms such as
cardiovascular changes and lactate release.

The present meta-analysis study has limitations. Firstly, the potential confounding
effect of age among participants included in the studies analyzed. Unfortunately, due to the
small number of studies analyzing exercise-induced changes in circulating BDNF concen-
trations in obese subjects, subjects of different ages were included in the analysis. Moreover,
age-related differences in physiological responses to exercise could impact the magnitude
of BDNF upregulation, thereby influencing the overall effect size observed in our meta-
analysis. Therefore, future studies with age-stratified analyses could provide more nuanced
insights into the relationship between exercise, circulating BDNF, and obesity. Another
limitation may be the gender of the subjects. Changes were not differentiated separately
for male and female subjects. Older patients may exhibit differential responses to exercise
interventions compared to younger individuals, which could influence the observed effects
on circulating BDNF levels. Future investigations should consider stratified analyses based
on gender, allowing for a more nuanced understanding of how exercise-induced changes
in circulating BDNF levels may differ between male and female participants, especially
in the context of obesity. Additionally, previous studies on different populations showed
that duration of the exercise intervention (weeks) [83,125–127], intensity of exercise [79,85],
the weekly volume of the exercise [126] did not significantly affect the circulating BDNF
level. Although the studies above do not show a significant effect, the last limitation in
our study is that, due to the small number of studies in obese individuals, separate sub-
modular analyzes were not performed to examine the effects of individual components
of exercise prescription such as time, intensity, type, and frequency on circulating BDNF
responses. These components are critical determinants of the physiological responses to
exercise, and their nuanced exploration could provide valuable insights into the specific
parameters influencing circulating BDNF levels in individuals with obesity. For instance,
different exercise modalities, such as aerobic, resistance, or combined training may elicit
distinct molecular responses, and the variability in exercise interventions could introduce
heterogeneity into our meta-analysis. Lastly, BDNF’s pivotal role in brain development,
cognition, and mood regulation is extensively documented, particularly in adults with
obesity. Studies indicate that circulating BDNF responses to stimuli such as exercise vary
across different life stages. This emphasis may arise from the marked physiological and
developmental differences between adults and children. While childhood obesity remains a
significant health concern, included studies in our meta-analysis concentrates on exploring
circulating BDNF responses to exercise in especially adults with obesity. Although there
are relatively few studies in children in the literature, children’s circulating BDNF levels
and responses to exercise may diverge significantly from those of adults due to ongoing
growth and maturation processes. Nevertheless, we recognize the significance of address-
ing childhood obesity and its enduring impact on neurodevelopment. Future investigations
could specifically target childhood obesity and examine in depth how exercise modulates
circulating BDNF levels in this population only, tailoring interventions to accommodate
developmental stages and foster healthy brain development from an early age. Such a
nuanced approach promises to enhance our understanding of BDNF dynamics across the
lifespan and guide targeted strategies for managing obesity and promoting brain health.
Recognizing this limitation is essential for interpreting our findings and emphasizing the



Biology 2024, 13, 323 19 of 25

need for more focused investigations into the specific effects of different exercise programs
on circulating BDNF in the context of obesity. Thus, more studies are needed to provide a
clearer understanding of which type of physical activity has the greatest impact on circulat-
ing BDNF in patients with obesity. By acknowledging these limitations, we aim to provide
a comprehensive and transparent assessment of the findings while highlighting areas for
future research to address these potential sources of bias and variability. Well designed
and quality randomized controlled studies with greater populations are recommended
to determine how different exercise configurations may affect circulating BDNF levels in
patients with obesity [126].

5. Conclusions

The present meta-analysis represents a pioneering effort in investigating the impact
of acute and regular physical activity on circulating BDNF levels, focusing exclusively on
individuals with obesity. This study distinguishes itself by synthesizing findings exclusively
from randomized control group studies, thereby contributing a specialized perspective
to the existing literature. The principal objective was to discern whether acute exercise
or a more regular physical exercise could elicit alterations in circulating BDNF levels in
comparison to a control group within the context of obesity. The meta-analysis reveals that
acute exercise induces a noteworthy elevation in circulating BDNF levels among individuals
with obesity when compared with the control group. However, intriguingly, regular
physical exercise did not yield a statistically significant alteration in circulating BDNF levels
when compared to the control group. Although the observed effect of regular physical
exercise interventions on circulating BDNF did not attain statistical significance, there
was a discernible small-scale impact, underscoring the nuanced nature of the relationship.
This investigation underscores the potential utility of both acute and regular exercise
regimens in positively modulating circulating BDNF levels in the context of obesity. Given
the intricate interplay of circulating BDNF with appetite regulation, neuroplasticity, and
cognitive functions, augmenting the diminished basal levels inherent in obesity through
non-pharmacological approach, such as physical exercise, emerges as a promising avenue
for mitigating the condition. Moreover, the potential ancillary benefits extend beyond
mere weight management, encompassing the amelioration of psychological comorbidities
associated with obesity, including cognitive disorders and depression. Additionally, given
the complex processes regulating BDNF levels in tissues, it is challenging to explain
the relationship between BDNF and obesity. Therefore, further research is needed to
understand the mechanisms of exercise and BDNF regulation to develop more effective
therapies for obesity and optimize exercise-based treatments. Consequently, the study
underscores the importance of customizing exercise recommendations for managing obesity
and emphasizes the necessity of tailored interventions to maximize neurotrophic responses.
Future research should concentrate on understanding how the body adapts to exercise and
exploring innovative approaches to enhance circulating BDNF regulation through physical
activity in individuals with obesity.

Considering the mechanisms of action of BDNF and the multitude of factors influ-
encing the secretion of this protein in healthy people, in obesity, and under the influence
of physical exercise, it is important for the authors of future studies to prepare detailed
descriptions of experimental studies. Our meta-analysis indicates the need for precise
characteristics of the studied patient groups and the conditions of conducting exercise
tests, including a detailed description of the laboratory and environmental test conditions.
This will enable certain conclusions to be drawn regarding the results of meta-analyses in
the future.
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